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20 Bayesian model
specification: heuristics
and examples

david dr aper

20.1 Introduction

You (a person wishing to reason sensibly in the face of uncertainty: [12]) are about to begin work
on a new scientific problem P. You begin by identifying θ , the unknown aspect of P of principal

interest; in the story I wish to tell here, θ could be just about anything (e.g., a map precisely locating
the highest and lowest points on the surface of a newly-discovered Earth-like extra-solar planet), but
(for concreteness) think of θ = (θ1, . . . , θk) as a vector in �k (all finite-dimensional unknowns can
be expressed in this way). You take stock of Your resources and realize that it’s possible to obtain a
new dataset D to decrease Your uncertainty about θ ; again, D could be just about anything (e.g., a
surveillance-camera video record of a crime, offering a partial identification of the perpetrator), but
(again, for concreteness) think of D = (y1, . . . , yn) as a vector in �n (all datasets can be expressed
in this way). Your other source of information relevant to solving P is a set B of (true/false)
propositions, all regarded by You as true, describing the scientific context of P and the nature of
the data-gathering process. (An example of a proposition in B from (e.g.) the field of history is as
follows: {(y1, . . . , yn) is a random sample of size n from the populationP of all words in essay 19 of
the Federalist Papers} [20], with θ as the unknown author of the essay (among Alexander Hamilton,
James Madison, and John Jay).) At design time (i.e., when You’re still contemplating how to obtain
D), You notice that the existence of D at analysis time (i.e., after D has arrived) partitions the
overall information about θ into {information internal to D} and {information external to D}, and
this means that (at analysis time) You’ll face a fundamental question: how should the information
about θ both internal and external to D be combined, to create an optimal summary of Your total
information (and therefore an accurate audit of Your uncertainty) about θ?

Here’s a simple but real example, to fix ideas. In 1962 and 1963 [11], two employees of the
US National Bureau of Standards (now called the National Institute of Standards and Technology)
made n = 100 weighings of a block of metal called NB10—given this name because it was supposed
to weigh 10 grams—under conditions that were as close as humanly possible to the statistical ideal
of independent, identically distributed (IID) sampling from the population PNB10 = {all possible
weighings of NB10 with the given apparatus}. Calling this problem PNB10, here θ is evidently the
‘true’ weight of NB10, by which I mean the average of all the potential data values in PNB10; D con-
sists of the 100 weighings y = (y1, . . . , yn); andB contains the proposition {y is an IID sample from
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PNB10} (along with background propositions known to be true from the context of PNB10, such as
{θ > 0} and {θ is close to 10 grams}). In this problem the same fundamental question looms: how
can an optimal summary of the total information about the weight of NB10 be constructed?

The Bayesian approach to answering this inferential question, and to making predictions of future
data D∗ and decisions in the face of uncertainty, has been settled from a foundational perspective
by de Finetti [2] and RT Cox [1]. Each of them proved a theorem, from different points of view
about the meaning of probability: for de Finetti, probabilities arise from betting, and for Cox they’re
numerical expressions of information, in both cases about the truth status of propositions whose
truth is unknown to You. The theorem says that if You specify two ingredients for inference and
prediction—a probability distribution p(D|θ B) (usually referred to as Your sampling distribution)
quantifying Your information about θ internal to D, and a probability distribution p(θ |B) (usually
referred to as Your prior distribution) quantifying Your information about θ external to D—and two
additional ingredients for decision-making—a setA of possible actions (usually referred to as Your
action space) and a real-valued utility function U(a, θ∗) trading off the costs and benefits that will
arise if You choose action a andθ takes the valueθ∗—then (to obtain logically-internally-consistent
inferences, predictions and decisions) You must combine the four ingredients according to the
following three equations:

p(θ |DB) ∝ p(θ |B) p(D|θ B), (20.1)

p(D∗|DB) =
∫
�

p(D∗|θ DB) p(θ |DB) dθ , (20.2)

a∗ = argmax
a∈A

E(θ |DB) U(a, θ) = argmax
a∈A

∫
�

U(a, θ) p(θ |DB) dθ . (20.3)

Here � is the set of possible values of θ ; p(θ |D B) (usually referred to as Your posterior distribution)
summarizes Your total information about θ and solves the inference problem; p(D∗|DB), Your
(posterior) predictive distribution for future data D∗, solves the prediction problem; and a∗ solves
the decision problem by maximizing expected utility (where the expectation is over Your posterior
distribution p(θ |DB)).

This is excellent, as far as it goes, but the original fundamental question has now been replaced by
a new task that’s almost as fundamental: how do You optimally specify the four ingredients {prior
distribution, sampling distribution, action space, utility function} to be used in the three equations
(20.1–20.3)? This task is Bayesian model specification, construed broadly. Sometimes this phrase
is used more narrowly, to apply just to the sampling distribution, or just to {prior distribution,
sampling distribution} if inference and/or prediction are the only goals. In the NB10 problem, for
instance, although there may be a subsequent decision with action space {replace NB10 (because it
doesn’t actually weigh 10 grams), keep it}, I’ll focus here on the inferential issue of the ‘true’ weight
θ of NB10; in this problem let’s call M = {p(θ |B), p(D|θ B)} Your model for (Your uncertainty
about) θ .

To make the last paragraph meaningful I need to say what I mean by optimal Bayesian model
specification, and this in turn depends on the following two-step argument:

• All Bayesian reasoning under uncertainty is based on P(A|B) = P(A B)
P(B)

for propositions A
and B, and this is undefined if B is false; therefore

• Rule 1: You should try hard not to condition on propositions (a) that You know to be false
and (b) that may be false.

This motivates the following terminology: in model specification, optimal = {to come as close as
possible to the goal of [conditioning only on propositions rendered true by the context of the
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problem and the design of the data-gathering process, while at the same time ensuring that the set
of conditioning propositions includes all relevant problem context]}.

Achieving this goal seems hard; for example, a popular method of Bayesian model specification
involves looking at the data to specify p(D|θ B)—for example, with the NB10 data You could make

a normal quantile plot of the 100 observations and assume {(yi|θ σ 2 B)
IID∼ N(θ , σ 2)} for Your

sampling distribution if the plot indicated approximate normality—but if You do this You’ll be
conditioning on a proposition that seems true on the basis of Your data analysis (see Rule 1(b)) but
was not compelled by the problem context or data-collecting design. This approach can be regarded
as a kind of ‘cheating’ in the model-specification process: You peek at the data to help guide this
process away from conditioning on obviously false propositions, but the something-for-nothing
bell in Your head is probably ringing—the very fact that You peeked may be an action that should
come with a price-tag.

In this chapter I examine three methods that may be helpful in moving toward the
optimal-model-specification goal described above: an approach called Calibration Cross-Validation
(CCV) that helps You to pay the right price for the data-peeking mentioned in the previous para-
graph (Section 20.2), and Bayesian non-parametric methods for specifying sampling distributions
(Section 20.3) and prior distributions (Section 20.4).

20.2 Calibration cross-validation

Two paragraphs ago I mentioned that a common method for specifying the model M =
{p(θ |B), p(D|θ B)} involves (a) looking at the data to identify an apparently reasonable choice
for the sampling distribution p(D|θ B)—call this particular choice S∗—and then (b) acting as
if S∗ is something that can safely be conditioned on in drawing inferences about θ . This clearly
doesn’t satisfy the definition of optimal model specification introduced in Section 20.1, because S∗
didn’t arise from the problem context or data-gathering design, and it’s also likely to be deficient
from a calibration point of view (in this chapter, a well-calibrated inferential process is one that,
informally, gets the right answer about as often as it claims to do so): the S∗ approach uses the
full dataset twice (once to find S∗, and again to draw inferential conclusions about θ based on
S∗). The mis-calibration consequences of the S∗ approach will generally be that Your nominal
100(1 − γ )% inferential intervals for (univariate components of) θ and predictive intervals for
(univariate components of) future datasets D∗ will include the actual values less than 100(1 − γ )%
of the time.

A natural approach to improving on the calibration performance of the S∗ method for sam-
pling-distribution specification is two-component cross-validation (CV), undertaken in three steps:
first (1) You partition D exchangeably (see Section 20.3) into (mutually exclusive and exhaustive)
modelling and validation subsets—call them M and V, respectively; then (2) You explore a variety
of models with the data in M, eventually settling on one or more that appear to fit the data well; and
then finally (3) You see how well the model(s) from (2) validate on the data in V, for example by
constructing 100(1 − γ )% predictive intervals (based on the data in M) for all of the data values in
V and seeing what percentage of these intervals contain the actual observations. (The S∗ approach
could be considered a kind of one-component CV, in which modelling and validation take place on
the same data.)

Two-component CV (2CV) is clearly a big improvement on the S∗ method, but what happens if
the model(s) in step (2) don’t validate well in step (3)? This occurs more often than You would like
it to, and is an embarrassment for 2CV. The natural thing to do is to go back to step (2), re-modelling
and re-validating in step (3), iterating (2) and (3) until You finally do have one or more models that
validate well in V, but You now notice that You’ve painted Yourself into a corner: You don’t have
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any pristine data values left to see how well the iterative modelling process calibrates on data not
used in that process. This motivates calibration cross-validation (CCV; [4]): going out one more
term in the Taylor series, so to speak, the idea is to

(a) partition the data into modelling (M), validation (V) and calibration (C) subsets;
(b) use M to explore a variety of models until You’ve found one or more plausible candidates,

which You can collect in an ensemble M = {M1, . . . , Mm};
(c) see how well the models in M predictively validate in V;
(d) if none of them do, iterate (b) and (c) until You do get good validation, and
(e) fit the best model inM (or, better, use Bayesian model averaging (see, e.g., [19] and [3]) with

the entire ensembleM) on the data in (M ∪ V), and report both (i) inferential conclusions
based on this fit and (ii) the quality of predictive calibration of Your model/ensemble on
the data in C.

The goal with this method is both

(1) a good answer, to the main scientific question, that has paid a reasonable price for model
uncertainty (the inferential answer is based only on (M ∪ V), not the entire dataset, making
Your uncertainty bands wider than those from an S∗ analysis), and

(2) an indication of how well calibrated {the iterative fitting process yielding the answer in (1)}
is in the calibration subset C, which is a good proxy for future data.

You can use Bayesian decision theory [4] to decide how much data to put in each of M, V and C:
the more important calibration is to You, the more data You want to put in C, but only up to a
point, because getting a good answer to the scientific question is also important. I’ve found that
(0.5, 0.25, 0.25) is often a reasonable allocation of data fractions into (M, V, C), and that’s what I’ll
use here. In the rest of this subsection I illustrate the use of CCV on the NB10 dataset, which is
summarized in the top part of Table 20.1 (values are expressed in micrograms below the nominal
weight of 10 g).

I randomly partitioned the 100 NB10 data values into the (M, V, C) subsets of sizes (50, 25, 25)

given in the bottom part of Table 20.1 (for greatest stability of conclusions, this random partitioning
should be repeated a number of times, with CCV performed in parallel on the repetitions and the
results combined appropriately (see [4] for details); in the interests of brevity, here I only show
results with the partition in Table 20.1). Step (b) of CCV now involves exploratory modelling with
the data in M.

Given the NB10 problem context, it’s natural to begin by fitting the parametric Gaussian model

M1:

{
(θ σ 2|B) ∼ p(θ σ 2|B)

(yi|θ σ 2 B)
IID∼ N(θ , σ 2)

}
(20.4)

for i = 1, . . . , n. At the point at which these 100 weighings of NB10 were performed in 1962–63,
it’s likely that workers at the National Bureau of Standards (NBS) already knew quite a bit about
the weight of this block of metal, but here I’m going to illustrate the analysis from the view-
point of someone (like me, and probably You) who has little information external to the present
dataset D about the actual weight of NB10 or the accuracy of the NBS weighing process. To make
this state of information operational, I used the diffuse prior p(θ σ 2|B) = p(θ |B) p(σ 2|B), with
(θ |B) ∼ N(0, 106) and (σ 2|B) ∼ �−1(0.001, 0.001) (other diffuse prior specifications yielded
nearly identical conclusions). With this prior, under the Gaussian model (20.4), (i) the marginal
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Table 20.1 Top: A raw frequency distribution of n = 100 weighings of NB10; bottom: the random
CCV partition illustrated here (with the data values in each component sorted).

Value 375 392 393 397 398 399 400 401
Frequency 1 1 1 1 2 7 4 12
Value 402 403 404 405 406 407 408 409
Frequency 8 6 9 5 12 8 5 5
Value 410 411 412 413 415 418 423 437
Frequency 4 1 3 1 1 1 1 1

M: 375 399 399 399 399 400 400 400 401 401 401 401 401
401 402 402 402 402 402 402 403 403 403 403 403 404
404 404 404 404 404 404 405 405 405 406 406 406 406
406 407 407 407 408 408 408 409 410 411 437

V: 393 397 398 399 400 401 401 402 403 404 405 406 406
406 407 407 407 408 408 409 409 412 412 418 423

C: 392 398 399 399 401 401 401 401 402 404 405 406 406
406 406 407 407 409 409 410 410 410 412 413 415

posterior for θ is approximately Gaussian with mean 403.8 and standard deviation (SD) 1.00, (ii) a
95% central posterior interval for θ runs from 401.8 to 405.8, (iii) the marginal posterior for σ has a
moderately long right-hand tail (as You would expect for a scale parameter) with mean 7.06 and SD
0.730, (iv) the posterior predictive distribution for a future observation is approximately Gaussian
with mean 403.8 and SD 7.17, and (v) the 95% central posterior predictive interval for the next data
point runs from 389.7 to 417.9.

It’s now interesting to see how well calibrated the Gaussian model is on the data set used to fit it.
The left panel of Figure 20.1 presents a calibration plot based on the data in M, comparing nominal
and actual coverage of 100(1 − γ )% predictive intervals for γ = (0.01, 0.02, . . . , 0.99). You can
see that the Gaussian model produces predictive intervals that are sharply conservative; for example,
at all nominal levels from 70% to 95%, the actual coverage is 96%. The right panel of Figure 20.1 gives
a normal quantile plot of the data in M, which identifies the reason for the poor validation of the
Gaussian model: the distribution is unimodal and close to symmetric but has substantially heavier
tails than the Gaussian, and this has led in the Gaussian framework to a large estimate of σ . By way
of a second, improved model this suggests a t sampling distribution, as in

M2:

{
(θ σ 2 ν|B) ∼ p(θ σ 2 ν|B)

(yi|θ σ 2 ν B)
IID∼ tν(θ , σ 2)

}
. (20.5)

This model is easy to fit via MCMC with slice sampling; 100 000 monitoring iterations took 15 sec-
onds at 3.3 GHz (this monitoring sample size produced Monte Carlo standard errors for all posterior
summaries less than 0.01). Here I used the diffuse prior p(θ σ 2 ν|B) = p(θ |B) p(σ 2|B) p(ν|B),
with the same marginal priors as in the Gaussian model for θ and σ 2 and with (ν|B) ∼
Uniform(1.0, 10.0) (the right endpoint was chosen to be large enough to avoid truncation of the
likelihood; other values that avoid truncation give similar results).
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Figure 20.1 Left panel: calibration curve (dotted line) for the Gaussian model (20.4) fit to the NB10
data in M and validated in M (the solid line represents the target behaviour under good calibration);
right panel: normal quantile plot of the data in M.

The results from fitting the t model (20.5) to M are as follows: (i) the marginal posterior for
θ is again approximately Gaussian, but this time with mean 403.4 and SD 0.50; (ii) a 95% cen-
tral posterior interval for θ runs from 402.5 to 404.4; (iii) the marginal posterior for σ again has
moderate positive skew, this time with mean 2.73 and SD 0.46; (iv) the marginal posterior for ν

has a substantial right-hand tail, with (mode, median, mean) = (2.31, 2.44, 2.60) and SD 0.91; (v)
the posterior predictive distribution for a future observation is approximately Gaussian with mean
403.4 and SD 2.80; and (v) the 95% central posterior predictive interval for the next data point
runs from 397.9 to 409.0. Note how much smaller both the inferential uncertainty about θ and
the predictive uncertainty about future observations are with the t model than with the Gaussian
sampling distribution; this is a consequence of the Gaussian having minimal Fisher information for
location among all symmetric unimodal sampling distributions on �. The much smaller values for
σ are because observations from a tν(θ , σ 2) sampling distribution have variance ν

ν−2 σ 2 (i.e., scale
and shape are confounded in this model).

Is the t model better than the Gaussian for the data in M? There are a number of ways to answer
this question; the one I like best [5] involves full-sample log scores. The idea, with a univariate dataset
D = y = (y1, . . . , yn) (such as the NB10 weighings) and models Mj (here j = 1, 2) to be compared,
involves computing
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Figure 20.2 Contributions to the overall LSFS values for each model from each observation; triangles
(solid curve) and circles (dotted curve) track the Gaussian and t models, respectively.

LSFS(Mj|DB) = 1
n

n∑
i=1

log p(yi|D Mj B) (20.6)

and favouring the model with the bigger log score LSFS. Computation of LSFS is straightforward;
when parametric model Mj with parameter vector ηj is fit via MCMC, the predictive ordinate
p(y∗|D Mj B) in LSFS can be approximated as follows. With m identically distributed (not nec-
essarily independent) MCMC monitoring draws (ηj)∗k from p(ηj|D Mj B),

p(y∗|D Mj B) =
∫

p(y∗|ηj Mj B) p(ηj|D Mj B) dηj

= E(ηj|D Mj B) p(y∗|ηj MjB) (20.7)

.= 1
m

m∑
k=1

p[y∗|(ηj)
∗
k Mj B].

Applying this method to models M1 ((20.4), Gaussian) and M2 ((20.5), t) with the data in M yields
LSFS values of −3.30 and −2.86, respectively; this represents a (sharp) preference for the t model.
Figure 20.2 shows the individual contributions, from each data value in M, to the overall LSFS values
from the Gaussian and t models. It’s evident that the t model fits better both in the tails (where the
most influential observations are from the Gaussian point of view) and in the centre (where most
of the data values are); in fact, 80% of the data values in M are predicted better by the t model than
by the Gaussian.

Next question: is the t model good enough to stop looking for a better model? The answer is
complicated here by the small sample sizes in each of the M and V partition components. Figure 20.3
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Figure 20.3 Calibration plots for the t model (20.5), fit to the data in M and validated in M (left panel);
fit to M and validated in V (centre); and fit to V and validated in V (right).

gives calibration plots for the t model with three different data configurations: fit to the data in M
and validated in M (left panel); fit to M and validated in V (centre; this corresponds to step (c) in the
CCV algorithm); and fit to V and validated in V (right). Internal validation (evaluating the fit on the
same dataset used to create the fit, as in {fit to M, validate in M}, which could be abbreviated M → M,
and similarly V → V) ranges from barely adequate (the left panel) to excellent (the right display),
but external validation (evaluating the fit on new data not used in the fitting process, as in M → V, in
the centre) is abysmal, with the opposite calibration problem (predictive intervals that are not wide
enough) from that exhibited by the Gaussian M → M model in the left panel of Figure 20.1. With
only 50 observations in M and 25 in V, the parameter estimates from the t model are quite different
when it’s applied separately to M and V (see the first two rows in Table 20.2 below). Another way to
put the difficulty, looking at the full NB10 dataset in Table 20.1, is that there are ‘only’ 3 outliers in
the entire dataset (namely, the observations 375, 423 and 437), and the presence or absence of any
one of these outliers in M or V is, by its very nature, highly influential for the parameter estimates. As
mentioned previously, [4] performs the obvious analysis to remedy this problem—repeat the CCV
algorithm across many random (M, V, C) partitions and average the results—which, in the interests
of brevity, I do not reproduce here; the conclusion from this broader analysis is that the t model is
a good basis for stopping the iterative step (d) in CCV and proceeding to the final step (e).

The third row in Table 20.2 gives posterior summaries from fitting the t model to the 75 obser-
vations in (M ∪ V), and the left panel in Figure 20.4 gives the calibration plot for this fit when
applied to C. You can see that the model’s validation is not perfect, again in part because of the
small sample sizes: for instance, the nominal 95% predictive interval runs from 397.1 to 410.9 and
includes only 88% of the data values in C. Although it’s not part of the CCV algorithm to do so,
for comparison purposes the final row of Table 20.2 summarizes the fit of the t model to the entire



OUP CORRECTED PROOF – FINAL, 28/12/2012, SPi

Bayesian model specification 417

Table 20.2 Parameter and predictive summaries from fitting the t model separately to the M and V
partition components, to the merged dataset (M ∪ V), and to the entire dataset D; y∗ is a future
data value.

Data Sample Posterior mean (SD)
partition size

θ σ ν y∗

M 50 403.4 (0.50) 2.73 (0.46) 2.60 (0.91) 403.4 (2.80)
V 25 405.3 (1.23) 5.31 (1.12) 5.73 (2.39) 405.3 (5.54)
(M ∪ V) 75 404.0 (0.50) 3.42 (0.47) 2.88 (0.95) 404.0 (3.48)
D 100 404.3 (0.47) 3.85 (0.45) 3.56 (1.18) 404.3 (3.91)

dataset D, and the right panel in Figure 20.4 displays the calibration plot that results when the t
model is fit to, and validated in, all of D; this shows what someone using the S∗ approach would
conclude, both about the parameters and about the quality of the model fit. The right panel of Figure
20.4 provides a somewhat rosier view of the quality of the t model than the left panel, and is therefore
somewhat misleading about the calibration performance of the iterative modelling process leading
to the results of the S∗ method.

On the basis of the CCV approach to dealing with specification uncertainty about the sampling
distribution in the NB10 problem, I would draw the following conclusions:

(A) The block of metal called NB10 weighed (in 1963) about 404.0 micrograms below the
nominal weight of 10 grams, give or take about 0.50 micrograms, and a 95% interval for
its weight runs from 403.0 to 404.9; and

(B) the iterative modelling process leading to the inferential conclusion in (A) is somewhat
over-confident in its ability to predict future data values not used in the model-fitting, with
nominal 95% predictive intervals for future observations including the actual data values

about 88% of the time, give or take about 100
√

(0.88)(0.12)
25 % .= 6.5%.

20.3 Bayesian nonparametric sampling-distribution
specification

In the NB10 problem, at design time (before any data have been collected), and with no covariate
information that would serve to distinguish one observation from another, upon reflection (fol-
lowing de Finetti [2]) You would notice that Your uncertainty about the NB10 weighings D =
(y1, . . . , yn) is exchangeable, in the usual sense that Your predictive distribution p(y1 . . . yn|B) is
invariant under permutation of the order in which the data values are observed. Moreover, if the
weighing process were to be continued indefinitely (still with no covariate information), yielding
the entire population PNB10 = (y1, y2, . . . ), Your predictive distribution p(y1 y2 . . . |B) would
still be exchangeable (in the sense that exchangeability would hold for any finite subset of PNB10).
In settings such as this, de Finetti [2] proved a celebrated theorem that says (slightly informally)
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Figure 20.4 Calibration plots for the t model (20.5), fit to the data in (M ∪ V) and validated in C (left
panel); and fit to, and validated in, the entire data set (right panel).

that all logically-internally-consistent predictive distributions p(y1 . . . yn|B) are expressible hierar-
chically as

{
(G|B) ∼ p(G|B)

(yi|GB)
IID∼ G

}
, (20.8)

where G is the empirical CDF of (y1, y2, . . . ); here p(G|B) is a prior distribution on the setG of all
CDFs on �. This theorem founded the sub-field of Bayesian non-parametric (BNP) modelling, which
concerns inference on functions such as G (and also—not addressed in this chapter—functions
such as regression surfaces). At the time he proved the theorem, de Finetti didn’t know how to put
a scientifically meaningful prior on G, but progress toward this goal—started 40–50 years ago by
Freedman [10] and Ferguson [9]—culminated, in the work of people such as Escobar and West
[7] and Lavine [18], with MCMC-based approaches to extracting information from the posterior
distribution p(G|DB), and BNP modelling has become increasingly routine in the past 15 years.
This approach offers the possibility of optimal model specification (in the definitional sense in
Section 20.1) in the NB10 problem, because the judgement of exchangeability leading to model
(20.8) arises directly from problem context; the only remaining issue with this approach is how
to specify p(G|B) in a manner that is both (a) accurately driven by the nature of the data-gathering
process and (b) well-calibrated.

Two approaches to specifying p(G|B) have by now been developed to the point that they’re
both scientifically useful and computationally tractable: Dirichlet-process (DP) mixture modelling
[7, 9] and Pólya-tree (PT) mixture modelling (e.g., [13]). I’ll concentrate here on Pólya trees;
see, e.g., [17] for practical examples of DP modelling with count data. For a univariate sample
D = y = (y1, . . . , yn) such as the NB10 dataset, a natural PT mixture model would take the
following form:
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⎧⎪⎪⎨
⎪⎪⎩

(yi|GB)
IID∼ G (i = 1, . . . , n)

(G|αθσ 2B) ∼ PT
[

N(θ ,σ 2),Aα

]
(αθσ 2|B) ∼ p(αθσ 2|B)

⎫⎪⎪⎬
⎪⎪⎭

, (20.9)

for an appropriately chosen prior distribution p(α θ σ 2|B) on (α, θ , σ 2).
The meaning of the expression PT

[

G0(η),Aα

]
is as follows. Rather generally in Bayesian

work, prior distributions are specified through two main ingredients: a prior estimate of the thing
receiving the prior distribution, and a prior sample size indicating how tightly concentrated the
prior should be around the prior estimate. PT priors for a CDF G follow this pattern: G0(η) is
the prior estimate or centring distribution, which will typically be a parametric family indexed (in
this case) by the parameter vector η, and α acts like a prior sample size, in the sense that bigger
(smaller) values of α lead to posterior distributions on G that are closer to (farther away from)
the centring distribution. In model (20.9), G0(η) is the N(θ , σ 2) distribution; this is natural in the
NB10 problem for the same reason that the Gaussian sampling distribution appeared in model M1 in
Section 20.2.

This approach is referred to as PT mixture modelling because a point-mass prior on (α, θ , σ 2) of
the form (α = α0, θ = θ0, σ 2 = σ 2

0 ) would correspond to fitting a single Pólya-tree prior for G,
whereas a more realistic treatment of prior uncertainty about (α, θ , σ 2)—in which non-point-mass
distributions are given to one or more elements of the (α, θ , σ 2) vector—amounts to mixing over
individual Pólya trees. For univariate outcomes, PT priors are based on binary partitions of � with
2m partition sets at level m of the tree, and act like random histograms; to get PT priors to directly
model continuous data, strictly speaking the number of histogram bars has to become countably
infinite, but in practice finite Pólya trees (with 2M bars, for finite M, at the bottom level) are all that’s
needed, because the real-world process of measuring conceptually continuous outcomes always
discretizes them anyway.

These days it’s relatively straightforward to fit model (20.9) via MCMC with a Metropolis-with-
in-Gibbs approach: the full-conditional distribution p(G|D α θ σ 2 B) turns out to be another Pólya
tree, and then You can Metropolis-sample the other full-conditionals (such as p(θ |D G α σ 2 B)).
The ensemble of R functions called DPpackage [14], available from CRAN, contains several func-
tions that can fit model (20.9), including PTlm andPTdensity, andWinBUGS code for this model
is available from Tim Hanson; this permits attention to shift away from the MCMC details and
toward the modelling, where several surprises await (in relation to Your experience with parametric
modelling).

It’s possible to put a prior distribution on α, but—with an eye on calibration, as in Sec-
tion 20.2—You can instead regard α as a kind of tuning constant that You can vary across a range of
fixed values to achieve good out-of-sample calibration. In the NB10 problem, I again use a diffuse
prior on (θ , σ 2)—Gaussian with huge variance for θ , �−1(ε, ε) for σ 2 with small positive ε—to
quantify the information base of someone who knows little, external to the NB10 dataset, about the
weight of NB10 or the accuracy of the weighing process.

As a first example of the results from the BNP approach to dealing with specification uncertainty
about sampling distributions, I used PTlm on the entire NB10 dataset with α = 1 and M = 6,
employing a burn-in of 5000 iterations (from starting values for μ and σ that were not far from their
likely posterior means) and a monitoring run of 10 000 saved values after thinning by a factor of 20.
(In PTlm, by default θ is identified as the median of the population empirical CDF.) The resulting
205 000 iterations took 4.5 minutes at 3.3 GHz, and initially yielded poor acceptance rates for the
Metropolis steps for θ and σ 2. Iterative tuning of the proposal distribution SDs eventually yielded
near-optimal univariate acceptance rates of 44–49%, at which point I examined the Monte-Carlo
accuracy achieved by this MCMC sampling strategy. The saved iterations for θ behaved like draws
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from an AR1(ρ1) time series with a first-order autocorrelation ρ̂1 of +0.75, even after 20-fold thin-
ning. From the usual expression

̂MCSE
(
θ̄∗) = σ̂θ√

n∗

√
1 + ρ̂1
1 − ρ̂1

(20.10)

for the Monte Carlo standard error (MCSE) of the MCMC estimate θ̄∗ = 1
n∗
∑n∗

j=1 θ∗
j of the

posterior mean of θ , where σ̂θ is the estimated posterior SD of θ and n∗ is the number of saved
monitoring iterations, it became clear that—with only 200 000 iterations going into the monitoring
process—the MCSEs of the posterior mean and SD estimates were on the order of 0.08, which was
too big for getting a good idea of the posterior SD of θ . To drive the MCSEs down to about 0.01, a
monitoring run of 12 000 000 iterations (thinning by a factor of 200) was needed; this took about
3.9 hours at 3.3 GHz. The first surprise with BNP modelling is how much longer in clock time it
can take to get results with decent Monte-Carlo accuracy, in relation to Your parametric-modelling
experience; on reflection, this is perhaps not actually so surprising, for two reasons: (i) You’re
treating G as a nuisance parameter that has to be learned along with the main parameter(s) of
interest (with M = 6 in Pólya trees, this is like learning an additional 26 = 64 parameters (albeit
rather highly correlated, so that the effective dimensionality of the learning process for G is probably
on the order of a few dozen additional parameters)), and (ii) uncertainty about G is bound to create
poorer mixing for θ and the other parameters You care about.

Figure 20.5 displays the marginal posterior distributions for θ (left panel) and σ (right panel)
from this fitting of model (20.9), using default window-widths for the kernel density estimation.
The second surprise with BNP modelling, when compared with parametric-modelling intuition,
is how rough these posterior distributions are; on reflection this is once again perhaps not so
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Figure 20.5 Marginal posterior distributions for θ (left panel) and σ (right panel), from fitting the Pólya-
tree model (20.9).
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startling (with the NB10 data, the empirical CDF is itself quite rough, from the granularity of the
observations). The marginal posterior for θ has a mean of 404.2 and an SD of 0.58, and the 95%
central posterior interval runs from 403.1 to 405.4; these results are in reasonable agreement with
those from the CCV approach in Section 20.2, with perhaps a bit more uncertainty about θ arising
from what may be a better attempt to fully quantify uncertainty about G.

As a second example of the fitting of BNP models, to get a closer look at their calibration
properties, I created an artificial dataset that had the same mean ȳ and SD s as the NB10 data but
was (in a certain sense) as close to Gaussian as possible: observation i in this artificial dataset

had the value y′i = ȳ + s 
−1
(

i− 1
2

n

)
, where 
 is the standard normal CDF. I then fit model

(20.9) to this artificial dataset, with 12 different priors on (α, θ , σ 2); all these priors were of the
form p(α, θ , σ 2|B) = p(α|B) p(θ |B) p(σ 2|B), with (θ |B) ∼ N(0, 106) and (σ |B) ∼ U(0, 20)

in each case (the upper limit on the uniform prior on σ was again chosen to avoid likelihood
truncation). My goal in this work was (a) to represent (as in all of the results in this section) the
information base, external to the NB10 data, of someone who knows little about the weight of NB10
or the accuracy of the NBS measuring process, and (b) to examine the resulting posterior inferences
about (θ , σ) as a function of various priors on α, which is also (to put it mildly) not a quantity
strongly pinned down by information external to the NB10 dataset. I used Tim Hanson’s WinBUGS
code for these runs; in this code θ is identified as the mean of the population empirical CDF.

Consider a point-mass prior on α that sets α = α∗ (say). At each iteration of the
Metropolis-within-Gibbs sampling used to fit model (20.9), at the point at which θ∗ and σ∗
values have been drawn from p(θ σ |G DB), imagine standardizing the artificial data values y′i to

create y′′i = y′
i−θ∗
σ ∗ , and let G′′ be the empirical CDF of the resulting y′′i values. To complete the

current scan of the sampler, the final step is to draw a CDF G∗ from the Pólya-tree distribution
PT
[

G† ,Aα∗

]
, where G† is a weighted average of the standard normal CDF 
 and G′′ with

weights given by α∗ and n (respectively). Thus as α∗ grows (with n fixed at 100), with the artificial
dataset examined here (in which the empirical CDF is as close to Gaussian as possible), You would
expect the Pólya-tree results to more and more closely resemble those from fitting the parametric
Gaussian model (20.4), with the same diffuse prior on (θ , σ) as above; the question is how quickly
(as α∗ increases) this convergence will occur.

Table 20.3 presents the results of these calculations. By way of priors on α I used a popular
choice in BNP modelling—a variety of �(a, b) priors on α (almost all of which had b = 1)—and I
compared these with point-mass priors having the same prior means as the Gamma distributions;
the bottom row of the table gives the parametric Gaussian results for further comparison. (All of the
Monte Carlo standard errors for the values in this table were 0.01 or smaller.) You can see that the
expected convergence has indeed occurred, but the interesting thing (and this is a third surprise
from BNP modelling) is how large α needs to be to get (calibrationally correct) results that are close
to those from the parametric model. With small α, even with n = 100 observations, with diffuse
priors on θ and σ , the uncertainty about those two parameters imposed upon the BNP modelling,
above and beyond the uncertainty about G, makes the BNP inferences extremely conservative. (Of
course, to really pin this down You would have to create a simulation environment in which many
Gaussian datasets were generated at random, rather than simply using the one “super-Gaussian”
artificial dataset I used here; I intend to report on results from this broader simulation experiment
elsewhere.)

The reason for the inferential conservatism in Table 20.3 with small α is that, in the BNP formu-
lation, (θ , σ) and G are correlated in the posterior (especially when α is small), and uncertainty
about G is therefore propagated into uncertainty about the parameters. As an example of these
correlations, I monitored the posterior for G on an equally spaced grid of 200 points in the range
(ȳ ± 3.5s), obtaining a vector (G∗

1 , . . . , G∗
200) on each MCMC scan; with α = 1, correlations
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Table 20.3 Posterior summaries from fitting the Pólya-tree model (20.9) with an artificial Gaus-
sian dataset having the same mean and SD as the NB10 data, using a variety of prior distribu-
tions on α. In the first column, an integer k signifies α = k, and �a,b is the �(a, b) distribution.
The last row gives results from fitting the parametric Gaussian model (20.4) to the same dataset,
for comparison.

Posterior summaries for

θ σ α

α Mean SD Mean SD Mean SD

�1,1 404.6 1.69 6.75 0.72 3.26 1.53
1 404.5 3.13 7.11 1.11 — —
�5,1 404.6 1.32 6.66 0.59 6.37 2.54
�10,2 404.6 1.63 6.66 0.60 5.74 1.63
�10,1 404.6 1.09 6.61 0.55 10.9 3.21
10 404.6 1.11 6.62 0.55 — —
�20,1 404.6 0.96 6.59 0.51 20.6 4.53
�50,1 404.6 0.82 6.56 0.49 50.2 7.08
�100,1 404.6 0.75 6.55 0.48 100.1 9.97
100 404.6 0.74 6.55 0.48 — —
�200,1 404.6 0.71 6.54 0.47 200.1 14.2
�500,1 404.6 0.68 6.54 0.48 499.8 22.3

Parametric
Gaussian

404.6 0.65 6.53 0.47 — —

between θ and elements of this G∗ vector ranged from −0.33 for G∗
1 to 0 for G∗

100 to +0.34 for
G∗

200, and correlations between σ and elements of the G∗ vector ranged from +0.67 for G∗
1 to

−0.06 for G∗
100 to +0.65 for G∗

200.
The upshot of this inquiry is that if You know little, external to Your present dataset D,

about the population empirical CDF G that gave rise to Your data (in a one-sample problem
like that posed by the NB10 dataset), and You express this uncertainty—in the Pólya-tree ver-
sion of BNP modelling—with a prior on α that concentrates on small values (thereby ensuring
that most of the information about G in the posterior comes from the empirical CDF based
on Your sample), the resulting inferential answers for the parameters in Your model may not be
well-calibrated, even if the centring distribution G0 in Your Pólya-tree prior closely matches the
actual data-generating mechanism. (Note that the conservatism in Table 20.3 is not present in
the results summarized in Figure 20.5. I conjecture that this is because (a) θ was identified, in
the modelling leading to Figure 20.5, as the median of G, whereas it was identified as the mean
of G in the modelling that produced Table 20.3, and (b) the correlations noted in the previ-
ous paragraph are substantially smaller in the median modelling; this is a subject of continuing
investigation.)
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20.4 Bayesian nonparametric prior-distribution
specification

Changing the focus now to specification of the prior distribution, it’s common in Bayesian work to
solve this specification problem with one member or another of a standard parametric family, some-
times chosen (e.g., for reasons of computational convenience) to be conjugate to Your sampling
distribution. But this almost always goes beyond the optimal model-specification goal identified
in Section 20.1; typically the sorts of propositions (relevant to Your prior distribution) that are
rendered true by the context of the problem are (a) qualitative shape criteria such as monotonicity,
convexity, or unimodality, and possibly also (b) one or more quantitative bounds on prior moments
or percentiles. In such situations it would seem more satisfying to work with an infinite-dimen-
sional non-parametric class C of prior densities satisfying the qualitative and quantitative criteria,
for instance either (i) by sampling random members of this class and averaging over the implied
uncertainty or (ii) by calculating upper and lower bounds over C for the posterior summaries of
greatest interest (this is a form of sensitivity analysis).

Here’s a case study in which to explore this idea. Suppose You’re observing an IID Bernoulli(θ)

process that has so far yielded n consecutive zeros, and the goal is to use the data to discriminate
between two competing explanations for this outcome: θ = 0 or θ > 0. (In the real-world appli-
cation on which this model is based, I once had occasion to buy n cups of tea over a several-week
period from a machine that featured on its front a stick-on label announcing to customers that they
might be lucky and get a free beverage, implying the existence of a device inside the machine that
dispensed free drinks at random. After n = 78 consecutive fee-paying cups of tea, it was natural to
speculate whether the makers of the machine had found it cheaper to attach the stick-on label, with
no intent to offer free drinks at all, than to supply the machine with a randomization mechanism.
Other applications of this problem arise, e.g., in medicine, when the first n patients screened in a
particular sub-population all fail to have a disease that’s rare in the overall population, and in process
control, when the first n items manufactured have all been free of defects.)

Although most inferential settings involving observation of a Bernoulli process are more satisfy-
ingly approached through interval estimation based on a model that treats 0 ≤ θ ≤ 1 continuously,
with no individual value singled out for special treatment, this situation is a genuine sharp-null
hypothesis-testing problem, and may be approached from the Bayesian point of view through the
model

{
(θ |B) ∼ p(θ |B)

(yi|θ B)
IID∼ Bernoulli(θ)

}
(20.11)

(i = 1, . . . , n), with a prior of the form

p(θ |B) =
{

0 with probability λ

π(θ |B) (1 − λ)

}
(20.12)

for some 0 ≤ λ ≤ 1. In the initial choice of π(θ |B) in the tea-machine case study, it seemed natural
to quantify the following set of prior information about θ , conditional on θ being positive: (a)
smaller values are more likely than bigger values, and (b) on substantive (economic) grounds, prior
uncertainty about θ should be centred between two values (α1, β1), for instance

(
1

75 , 1
25

)
. (The

upper bound in (b) arises because the makers of the tea machine would not wish to give away more
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free drinks than necessary, and the lower bound corresponds to the view that, if θ were too small,
customers would not perceive a large enough reward from the possibility of a free cup of tea for
the randomization strategy to be worthwhile. Unimodal priors with a positive mode are also worth
considering in this problem; this possibility will be examined elsewhere.)

20.4.1 A conjugate parametric solution

The off-the-shelf choice for π(θ |B) is of course a member of the Beta (η1, η0) family chosen, in
view of (a) and (b), to be monotonically decreasing (and possibly also convex) and to have a mean
between α1 and β1. Examination of the qualitative behaviour of the Beta family reveals that the
desired monotonicity and convexity correspond to the region within which 0 < η1 ≤ 1 and η0 ≥
2. The mean constraint (b) in the Beta family,

α1 ≤ η1
η1 + η0

≤ β1, (20.13)

further restricts the appropriate subclass of parametric priors to those with

η1

(
1
β1

− 1
)

≤ η0 ≤ η1

(
1
α1

− 1
)

, (20.14)

giving rise with α1 = 1
75 and β1 = 1

25 to the roughly triangular admissible region in Figure 20.6
(the contours in this plot will be explained below).
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Figure 20.6 Admissible parametric priors given the substantive constraints (inside the dotted region),
together with contours of p (y|θ > 0,B) with n = 78; see equation (20.16).
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With data y = (y1, . . . , yn) = (0, . . . , 0),

[
posterior

odds

]
=
[

prior
odds

]
·
[

Bayes
factor

]

[
p(θ = 0|yB)

p(θ > 0|yB)

]
=
[

p(θ = 0|B)

p(θ > 0|B)

]
·
[

p(y|θ = 0,B)

p(y|θ > 0,B)

]
(20.15)

=
(

λ

1 − λ

)
·
[

1
p(y|θ > 0,B)

]

where

p(y|θ > 0,B) =
∫ 1

0
p(y|θ , θ > 0,B) p(θ |θ > 0,B) dθ

=
∫ 1

0
(1 − θ)n π(θ |B) dθ ≡ B−1. (20.16)

With the parametric choice π(θ |B) = Beta(η1, η0), the Bayes factor in favour of θ = 0 takes
the form

B(η1, η0) = �(η0) �(η1 + η0 + n)
�(η1 + η0) �(η0 + n)

. (20.17)

0 < B−1(η1, η0) < 1 is a probability and is easier to contour-plot than the Bayes factor; the con-
tours in Figure 20.6 are values of B−1(η1, η0) with n = 78. From this it may be seen that in the
admissible region B−1 takes its minimum value 0.235 at (η1, η0) = (1, 24) and its maximum value
of 0.899 at (η1, η0) = (0.027, 2). Thus in the parametric Beta(η1, η0) class with the given prior
specifications of monotonicity, convexity and bounds on the mean,

1
0.899

= 1.11 ≤
⎛
⎜⎝

Bayes factor
in favor of

θ = 0

⎞
⎟⎠ ≤ 4.25 = 1

0.235
, (20.18)

i.e., even with 78 consecutive zeros the strength of data evidence that θ = 0 is surprisingly small.
Using the informal guidelines of Jeffreys [15], as modified by Kass and Raftery [16], further calcu-
lation reveals that one would need more than 450 consecutive zeros for the evidence that θ = 0
(as summarized by the upper bound on the Bayes factor) to pass from ‘positive’ to ‘strong’ with the
prior specification examined here.

However, this conclusion is conditional on the Beta form of π(θ |B), which is not specified
by the scientific context; how much bigger are the bounds when the calculation is made more
appropriately over the nonparametric class C mentioned earlier? Answering this question involves
finding the extreme values (here I mean supremum/infimum, which need not be attained) of the
integral

I = I(π) =
∫ 1

0
(1 − θ)n π(θ |B) dθ (20.19)
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when π ranges over C∗, the set of functions π(θ |B): [0, 1] → � in the constraint set

⎧⎪⎨
⎪⎩

π(θ |B) ≥ 0,
∫ 1

0 π(θ |B) dθ = 1,
(∗) π is monotone nonincreasing

0 < α1 ≤ ∫ 1
0 θ π(θ |B) dθ ≤ β1 ≤ 1

2

⎫⎪⎬
⎪⎭ , (20.20)

or the set C∗∗ of π(θ |B) in the same constraint set but with (∗) replaced by

(∗∗) π is monotone nonincreasing and convex. (20.21)

20.4.2 A nonparametric solution

Draper and Toland [6] give solutions to the nonparametric specification problems detailed
in the previous paragraph, using a method based on functional analysis that appears to be
new to the literature; space constraints here permit only a sketch of these results, itemized as
follows.

• LetC∗ andC∗∗ be as in (20.20) and (20.21) for n > 1. Implementation of the method detailed
in [6] leads to the conclusion that

sup
π∈C∗

∫ 1

0
(1 − θ)n π(θ |B) dθ = 1 − 2 α1 n

n + 1
. (20.22)

• It turns out that this supremum is not attained by any π ∈ C∗, but instead occurs at the
generalized function

π∗
sup(θ |B) = (1 − 2 α1) δ0 + 2 α1, (20.23)

where δ0 is the Dirac delta measure at 0, i.e., the maximizing distribution has a point mass at
0 of size (1 − 2 α1) and is otherwise constant at height 2 α1 on [0, 1].

• One of the main ideas in [6] is to (a) identify a relaxed version of the optimization problem
and then (b) relate the solutions of the relaxed problem to those of the original problem. To
this end, Toland rewrites the primary problem (20.19) and (20.20) as follows:

sup / inf
{

1 +
∫ 1

0

[
(1 − θ)n − 1

]
π(θ |B) dθ

}
(20.24)

over all functions π : [0, 1] → � satisfying (20.20). This ensures that hypothesis (H1) in Sec-
tion 2.1 of [6] holds, and the relaxed problem is then (20.24) over all functions π : [0, 1] → �
in the relaxed constraint set

⎧⎨
⎩

π(θ |B) ≥ 0,
∫ 1

0 π(θ |B) dθ ≤ 1,
π is monotone nonincreasing

0 < α1 ≤ ∫ 1
0 θ π(θ |B) dθ ≤ β1 ≤ 1

2

⎫⎬
⎭. (20.25)
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Table 20.4 Bayes factor bounds as a function of how the prior is specified, with n = 78, α1 = 1
75 ,

and β1 = 1
25 .

Bayes factor

Specification Low High

Parametric 1.11 4.25
Nonparametric C∗ 1.03 6.33
Nonparametric C∗∗ 1.03 5.29

The main point of the discussion in this case study is the observation that the supremum and
infimum of the relaxed problem are attained at the constant function π ≡ 2α1, and coincide
with the supremum and infimum of the primary problem (20.19, 20.20) (even though the latter
supremum is not attained).

• The infimum of I over π ∈ C∗ turns out to be

inf
π∈C∗

∫ 1

0
(1 − θ)n π(θ |B) dθ = 1 − (1 − 2 β1)n+1

2 β1 (n + 1)
; (20.26)

the infimum is attained in C∗ by

π∗
inf (θ |B) =

{
1

2 β1
for 0 ≤ θ ≤ 2 β1

0 2 β1 < θ ≤ 1

}
, (20.27)

i.e., a piecewise constant density (histogram).
• When convexity is added the supremum is unchanged, but the infimum of I over C∗∗ is

2
[

1
3 β1 (n + 1)

− 1 − (1 − 3 β1)n+2

(3β1)2 (n + 1)(n + 2)

]
(20.28)

and occurs at the function

π∗∗
inf (θ |B) =

{
2

(3 β1)2 (3 β1 − θ) for 0 ≤ θ ≤ 3 β1

0 3 β1 < θ ≤ 1

}
, (20.29)

i.e., a piecewise linear density (a frequency polygon).

With n = 78, α1 = 1
75 , and β1 = 1

25 , the minimum and maximum values of I overC∗ are 0.158 and
0.974, respectively, and over C∗∗ the minimum rises to 0.189. Table 20.4 summarizes the numerical
findings, and Figure 20.7 plots the optimizing densities. Without convexity the nonparametric limits
are 8% lower and 49% higher than the parametric values, and even with convexity the correspond-
ing figures are 8% and 24%; the casual adoption of a convenient parametric family satisfying the
scientifically motivated monotonicity and convexity constraints has led to noticeably narrower
sensitivity bounds than those that more appropriately arise from assuming only monotonicity and
convexity.
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Figure 20.7 Optimal densities π∗
inf (long dotted line), π∗∗

inf (short dotted line), and approximation to
π∗

sup in which the point mass at 0 is replaced by a histogram bar of width ε = 0.01 (solid line).

20.4.3 A heuristic sketch of the method of proof

The goal is to optimize the integral I = I(π) in (20.19) over functions π subject to monotonicity
and/or convexity constraints, (20.20) and (20.21), respectively. The basic idea is to think of π as
though it were a point in a convex subset of �k and to use intuitions from the geometry of such sets
in �k to inform the proof.

(1) The set C∗ of admissible functions π may be thought of as like a convex polygon in �k,
but with infinitely many vertices and edges. In this heuristic proof sketch, consider the
situation with k = 2 and visualize a polygon with a finite number of vertices and edges.
The boundary points are of two kinds: extreme points and all the other boundary points.
An extreme point is not an interior point of any line segment in the set. (For example, the
corners of a square are its only extreme points.)

(2) The function I in (20.19) is linear on π , analogous to a linear function in the plane. But
it’s important to realize that, because the set of functions satisfying (20.19) and (20.20) is
infinite-dimensional, the extreme values may not be attained at points of the constraint
set; and in fact the supremum is not attained but the infimum is. Because of this difficulty,
Toland replaced the primary problem with a relaxed problem over a larger convex set and
showed that in the relaxed problem the extreme values are attained and that they coincide
with the extreme values of the original problem. Moreover he showed that the solution of
the relaxed problem is finite-dimensional, although the original problem was not.

(3) The level sets of a linear function on�2 are parallel straight lines. When the relaxed polygon
lies on one side of a level line and touches it, the polygon and the line intersect in one of two
ways: at single vertices (one for each of the minimizer and maximizer), or along an edge.
In the latter case, even though the intersection set includes points that are not vertices, the
set always includes vertices. Thus it suffices in optimizing a linear function to evaluate it at
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the vertices of the polygon (this is the basic intuition behind linear programming). This is
where the Krein–Milman theorem (e.g., [21]) comes into the infinite-dimensional argument
(see Theorem 2 in Section 2 of [6]).

(4) Because of geometric constraints of monotonicity on π in the relaxed problem, the ana-
logue of vertices in C∗ turns out to be the class of step functions with at most three distinct
values; thus the infinite set of extrema can be indexed with at most five parameters.

(5) A vertex π of the relaxed polygon has the property that no linear perturbation (π ± φ π)

away from it for small non-zero φ lies completely inside the admissible set. Toland was able
to conjecture a particular form of φ, namely

φ(θ) =
∫ θ

0
h(t) π ′(t) dt (20.30)

and show that if π is more complicated than a step function with two distinct values, a
non-trivial (φ π �= 0) h can always be found such that all of the constraints in C∗ are
satisfied. Therefore the vertices are histograms with two or three bars.

(6) Thinking of a two-bar histogram, in the limit as the left-hand bar becomes infinitely tall the
maximizer π∗

sup over C∗ results: a point mass at 0 plus a constant over the rest of [0, 1]. In
the limit as the right-hand bar goes to 0 the minimizer over C∗ is obtained.

(7) When convexity is added, the relaxed polygon vertices become the class of convex piecewise
linear functions with exactly three distinct segments; here only six parameters are needed.
The maximizer over C∗∗ remains the same as in C∗ because π∗

sup is already convex. The
minimizer of the relaxed problem turns out to be a two–part piecewise linear function
(frequency polygon) with the second segment 0.

(8) When unimodality is assumed instead of the other qualitative constraints examined, a
modification of the method Toland employs for dealing with monotonicity is available,
because unimodal densities on [0, 1] are non-decreasing on [0, d) and non-increasing on
(d, 1] for some d ∈ [0, 1].

Results similar to the findings here under monotonicity have been obtained elsewhere in the
Bayesian robustness literature by quite different means, through the use of Khintchine’s Theorem
(e.g., [8]) on generating unimodal densities as mixtures of uniform distributions. The approach
sketched here, via functional analysis, both subsumes the condition of unimodality and yields new
results under the alternative qualitative specifications of monotonicity and convexity.

20.4.4 Conclusions

As more moment constraints are added to the quantitative mean constraint examined here to
increase realism, e.g.,

σ 2
low ≤

∫ 1

0
[θ − E(θ |B)]2 π(θ |B) dθ ≤ σ 2

high, (20.31)

the optimal nonparametric solutions become k–part piecewise linear functions (frequency poly-
gons) with increasing k, approaching the smoothness built into parametric families like Beta (α, β).
Thus continuous parametric assumptions are equivalent to infinite sets of moment constraints, i.e.,
when You choose continuous parametric priors You’re probably assuming more than You think
You are.
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The set of practical problems in which

(a) the prior really matters and
(b) off-the-shelf parametric specifications are often used instead of qualitative descriptions

involving shape (e.g., number of modes, monotonicity, convexity, smoothness) and sub-
stantive bounds on quantitative descriptions (e.g., moments or quantiles)

is larger than is generally acknowledged. The method of proof offered here shows promise to
inform Bayesian sensitivity analysis in a wide variety of such problems, because all of the above
characteristics may be enforced with linear constraints through derivatives and integrals of π .

Postscript On the 79th visit to the machine it yielded a free cup of tea.

Acknowledgements

I’m grateful to Tim Hanson and Alejandro Jara (a) for help with the programming that led to the
results presented in Section 20.3 and (b) for comments that aided interpretation of the Bayesian
nonparametric findings; to Milovan Krnjajić for helpful discussions about calibration cross-valida-
tion; to John Toland for doing all of the heavy lifting in the proofs underlying Section 20.4; and to
Jim Berger, Brad Efron, Richard Olshen, Luc Tartar, and Stephen Walker for helpful comments and
references. Membership on this list does not imply agreement with the conclusions drawn here, nor
are any of these people responsible for any errors that may be present.

References

[1] Cox, R. T. (1946). Probability, frequency, and reasonable expectation. American Journal of
Physics, 14, 1–13.

[2] de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut
Henri Poincaré, 7, 1–68.

[3] Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Jour-
nal of the Royal Statistical Society (Series B), 57, 45–97.

[4] Draper, D. (2012). Bayesian model specification: towards a theory of applied statistics.
Submitted.

[5] Draper, D. and Krnjajić, M. (2012). Calibration results for Bayesian model specification.
Submitted.

[6] Draper, D. and Toland, J. (2012). Bayesian non-parametric prior specification. Technical
Report, Department of Applied Mathematics and Statistics, University of California, Santa
Cruz.

[7] Escobar, M. and West, M. (1995). Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90, 577–588.

[8] Feller, W. (1971). An Introduction to Probability Theory and its Applications (2nd edn), Vol-
ume 2. Wiley, New York.

[9] Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Annals of Statis-
tics, 2, 209–230.

[10] Freedman, D. (1963). On the asymptotic behavior of Bayes’ estimates in the discrete case.
Annals of Mathematical Statistics, 34, 1194–1216.

[11] Freedman, D., Pisani, R. and Purves, R. (2007). Statistics (4th edn). Norton, New York.



OUP CORRECTED PROOF – FINAL, 28/12/2012, SPi

Bayesian model specification 431

[12] Good, I. J. (1950). Probability and the Weighing of Evidence. Charles Griffin, London.
[13] Hanson, T. (2006). Inference for mixtures of finite Pólya tree models. Journal of the American

Statistical Association, 101, 1548–1565.
[14] Jara, A., Hanson, T., Quintana, F., Müller, P. and Rosner, G. (2011). DPpackage: Bayesian semi-

and nonparametric modeling in R. Journal of Statistical Software, 40, 1–30.
[15] Jeffreys, H. (1967). Theory of Probability (3rd edn). Oxford University Press, Oxford.
[16] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Associa-

tion, 90, 773–795.
[17] Krnjajić, M., Kottas, A. and Draper, D. (2008). Parametric and non-parametric Bayesian

model specification: a case study involving models for count data. Computational Statistics
and Data Analysis, 52, 2110–2128.

[18] Lavine, M. (1992). Some aspects of Pólya tree distributions for statistical modeling. Annals of
Statistics, 20, 1222–1235.

[19] Leamer, E. E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental Data.
Wiley, New York.

[20] Mosteller, F. and Wallace, D. L. (1984). Applied Bayesian and Classical Inference: The Case of
The Federalist Papers. Springer-Verlag, New York.

[21] Rudin, W. (1991). Functional Analysis (2nd edn). McGraw-Hill, New York.


	20 Bayesian model specification: heuristics and examples

