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Hierarchical models (HMs; Lindley & Smith, 1972) offer considerable prom-
ise to increase the level of realism in social science modeling, but the scope
of what can be validly concluded with them is limited, and recent technical
advances in allied fields may not yet have been put to best use in implement-
ing them. In this article, I (a) examine 3 levels of inferential strength
supported by typical social science data-gathering methods, and call for a
greater degree of explicitness, when HMs and other models are applied, in
identifying which level is appropriate; (b) reconsider the use of HMs in
school effectiveness studies and meta-analysis from the perspective of causal
inference; and (c) recommend the increased use of Gibbs sampling and
other Markov-chain Monte Carlo (MCMC) methods in the application of
HMs in the social sciences, so that comparisons between MCMC and better-
established fitting methods—including full or restricted maximum likelihood
estimation based on the EM algorithm, Fisher scoring, and iterative general-
ized least squares—may be more fully informed by empirical practice.

Much of the data gathered in the social sciences to answer scientific and
decision-making questions has a nested or hierarchical character. Examples
in fields as disparate as economics, education, and health policy come immedi-
ately to mind: :

® the multistage cluster sampling employed by the U.S. government’s
‘main instrument for estimating local and national unemployment rates,
the Current Population Survey (e.g., Bureau of the Census, 1978), in
which random samples are taken at each of the state, area, and (city)
block levels; ' 8

I am grateful to Leigh Burstein, Carol Fitz-Gibbon, David Freedman, Harvey
Goldstein, Sander Greenland, David Lane, Dennis Lindley, and Michael Seltzer for
helpful discussions, comments, and references. I owe particular thanks to Steve
Raudenbush for a detailed and interesting critique, to which I have attempted to
respond on all matters of fact but few matters of interpretation and emphasis, in the
interest of a more vigorous discussion. Membership on this list does not imply
agreement with the ideas expressed here, nor are these people responsible for any
errors that may be present.
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® the natural grouping of information relevant to the study of educational
effectiveness (e.g., Bryk & Raudenbush, 1992) into variables gathered
at the student, class, school, and district levels; and

® the measurement of quality of hospital care (e.g., Draper et al., 1990;
Rogers et al., 1990) obtained from samples of patients chosen from each
of a number of sampled hospitals, themselves perhaps drawn from a
sample of geographic areas.

For decades, quantitative workers in the social sciences have taken advan-
tage of the hierarchical character of such data at the design stage of their
investigations (e.g., Deming, 1947), using the multilevel organization of the
population of interest to guide the data gathering. One might have expected
that anything playing such a central role in the design must also have been
accurately represented in the analysis, but surprisingly, until about 10 years
ago, hierarchical analyses that made effective use of the nested data structure
were the exception rather than the rule in much social science research,
and there are egregious examples of underestimated uncertainty assessments
arising from a failure to account for the homogeneity within levels of the
hierarchy exhibited by cluster samples (see, e.g., Kish, 1957, for a summary
of this problem). Why did day-to-day empirical work lag behind the perception
of correct practice for so long?

The reason was mainly the constraints of technique. Although standard
analysis of variance methods dating back to the 1920s (e.g., Fisher, 1925;
see Scheffé, 1956, for some of the history) have long provided partial answers
to some of the questions posed by some kinds of data gathered in a fully
nested manner, the general formulation of the hierarchical linear model was
not given until the early 1970s (Lindley & Smith, 1972), and the fitting of
such models in something approaching full generality proved elusive until
the introduction of the EM algorithm (Dempster, Laird, & Rubin, 1977) later
in that decade. Since then, a variety of altemnative fitting methods have been
developed—including full or restricted maximum likelihood based on Fisher
scoring (Longford, 1987) or iterative generalized least squares (Goldstein,
1986), and Gibbs sampling and other Markov-chain Monte Carlo (MCMC)
methods (e.g., Smith & Roberts, 1993), although this last approach has not
yet caught on fully in multilevel modeling in some of the social sciences,
including education—and the number of applications of hierarchical models
(HMs) is burgeoning.

Multilevel Data Analysis Before HMs

Historically popular methods for analyzing multilevel data that preceded
HMs include what de Leeuw (1992) calls disaggregation and aggregation
techniques. In the former—for instance, in a study of student performance
with a four-level nesting structure (schools, teachers, classes, and individu-
als)—one might attempt an ordinary least squares (OLS) regression in which
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“teacher, class, and school characteristics are all assigned to the individual,
and the analysis is done on the individual level.” This is unsatisfactory
because the implied covariance matrix of the performance outcome fails to
capture the within-school, within-teacher, and within-class homogeneity one
would expect the data to exhibit through positive intracluster (intraclass)
correlations. In the latter—for instance, with the means on means or ecological
regression approach (see, e.g., the discussion of Aitkin & Longford, 1986)—
one attempts to avoid this problem by aggregating across units at the lower
levels of the hierarchy and then building linear models for the aggregates.
But this runs afoul of the aggregation bias problem, long familiar to econome-
tricians (e.g., Judge et al., 1988) and other quantitative workers, in which
aggregate relationships typically appear stronger than they would at the
individual level, where predictions of the greatest relevance to policy must
be made.

Advantages of HMs

Hierarchical models offer at least three clear advantages, both conceptual
and technical, over these and other methods for the analysis of multilevel
data in the social sciences:

(a) As noted by many authors (e.g., Goldstein, 1987; Burstein, Kim, &
Delandshere, 1989), HMs provide a natural environment within which to
express and compare theories about structural relationships among variables
at each of the levels in the organizational or sampling hierarchy.

(b) In sharp contrast with standard regression methods applied to observa-
tions made with cluster sampling, the fitting of HMs yields better calibrated
uncertainty assessments in the presence of positive intracluster correlations
of a magnitude typical in social science data (e.g., Scott & Holt, 1982;
Longford, in press).

(c) HMs offer an explicit framework in which to express similarity
(exchangeability) judgments (e.g., Draper, Hodges, Mallows, & Pregibon,
1993), in order to combine information across units (such as students or
schools) to produce accurate and well calibrated predictions of observable
outcomes.

However, as with any other methodological advance, there are limits to
what may be validly concluded on the basis of a hierarchical analysis—
examples that overstep this boundary have already begun to appear—and
there is always room for potential technical improvements. In this article, I
(a) focus on issues of interpretation of muitilevel analyses in education,
arguing that the level of explicitness in the scope of inferential conclusions
drawn from HMs needs to be raised; (b) examine the causal implications of
the use of HMs in school effectiveness studies and meta-analyses; and (c)
conclude with some remarks on the value of comparative study of the various
fitting methods in current or potential use in hierarchical modeling, with an
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emphasis on contrasting the methods that are currently most populaf with
Gibbs sampling and other MCMC methods.

Interpreting Hierarchical Analyses

As an example of where I am headed in this section, consider the HM
analysis presented by Huttenlocher, Haight, Bryk, Seltzer, and Lyons (1991)
on the effects of parental speech on early childhood vocabulary growth. The
data for this analysis were gathered in the following way.

Parents who were full-time caregivers were recruited through newspaper

ads from a relatively educated middle-class, urban community. For all

children [studied], this caregiver was the mother. There were two groups

of parent-child pairs. Each group contained 11 children (6 boys and 5 girls).

The groups varied somewhat in the conditions in which subjects were

observed. Subjects in Group 1 were seen every 2nd month for 5 hr. Five

children were 14 months [old] at the beginning of the study, and 6 children

were 16 months; all children were 26 months at its conclusion, Subjects in

Group 2 were seen every 4th month for 3 hr., beginning when children

were 16 months and continuing until they were 24 months. . . . Children

and their mothers were observed during children’s typical daily activities.

- - . The written transcript, including all utterances produced by the child

and directed at the child, was completed later from an [audio or video]

tape recording.
In their modeling work, the authors chose to define the exposure of the
children to speech from their mothers by measuring the total number of
words the mothers directed to their children in the 3-hour observation period
at 16 months. One may visualize the data gathered in this way as a rectangular
array with 22 rows and 10 columns: Y,, the vocabulary size for child i at ¢
months (r = 14, 16, . . ., 26, with missing values at four of these time points
for Group 2); X, the exposure for child i; and dummy variables for group
membership and gender. Preliminary data analysis indicated that the relation-
ship between Y, and r was roughly quadratic, with near-zero coefficients for
the constant and linear terms when time was measured forward from 1 year
of age, and that it was useful to work with the exposure variable on the
log scale.

Among other models the authors fit the growth-curve HM

Y,,' = 11'2,-'(t - 12)2 + €, (WithilbsubjeCtS),
T2 = Bo + B, - group; )
+ B,-log(X)) + B;-gender; + U; (between-subjects).

Here “mr,; represents the acceleration in vocabulary growth for child i,” €, is
the “deviation of child i from his/her growth trajectory at time ¢,” U, “repre-
sents a unique effect for child i on the acceleration parameter,” and the ¢,
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and U; are regarded as Gaussian random variables with mean 0 and variances
o? and T, respectively. The authors report'a variety of standard errors (SEs)
and p values computed on the basis of this model—for instance, the estimated
coefficient f, for log (exposure) in the between-subjects level of model (1)
comes out 0.89 with an SE of 0.36 (p < .05)—and speak in a rather general
way about the lessons learned from these inferential results, for example, “In
summary, our data strongly suggest that the number of word learning trials
to which a child is exposed is an important factor in the acquisition of
vocabulary items.” But what meaning, if any, may be attached to such P
values—and to the SEs the authors quote for the parameter estimates arising
from the fitting of model (1) above—and what is the valid scope of inferences
drawn from this model with these data?

The predictive approach to inference, and its interpretive advantages. In
answering this question, it is useful to consider the perspective provided by
the approach to inference, based on the prediction of observable quantities,
advocated by de Finetti (e.g., 1974-1975) and developed by Lindley (e.g.,
1972), Geisser (e.g., 1993), and others. Within this approach, the only inferen-
tial elements with objective reality are data values X you have already observed
and data values ¥ you have not yet observed. Inference is then the process
of quantifying your uncertainty about future observables Y on the basis of
things you know, including the X values and the context in which they were
obtained. Informally one might call X the data you have and ¥ the data you
wish you had; with this terminology, a statistical model supporting your
inference is a mathematical story that links these two data sets.

Parameters, such as 1 and the m,; in model (1) above, may come up in
this story as placeholders for particular kinds of uncertainty on the way to
prediction of observables, but in many cases (see, e.g., Lane, 1986) they
have no objective reality of their own, and do not receive anywhere near as
much emphasis as they get in other inferential approaches. By focusing on
things that you can see rather than things you can’t, this outlook has the
advantage of readily available calibration information on the quality of your
inferences: in educational research you can make predictions, with uncertainty
assessments, for a number of students and schools, and compare their actual
outcomes with what you thought they would be. If you miss by a lot more
than you thought you would in a lot of these predictions, you are out of
calibration, and need to revise your uncertainty assessments. This may be
contrasted with, say, confidence statements about unobservable parameters—
how do you know when they’re right? :

In practice in the social sciences, the data you have and the data you wish
you had may differ from each other in three main ways:

(a) Problems of measurement error arise when you are trying to quantify
something elusive, such as intelligence, and you are not sure if you got it
right. The data you have then consist of one or more scales, say, that you
hope measure the “underlying construct” of interest, and the data you wish
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you had are the actual values of that construct, if only you knew how to
measure it well. In this case, X can fall short of Y in at least two ways,
identified by the concepts of reliability (X is an unbiased but possibly noisy
estimate of Y) and validity (X may be biased for ¥). This is an important
topic, both rather generally in social science research (see, e.g., Freedman,
1983, for a sharp critique of such research based largely on this issue)
and particularly in education, where Burstein (e.g., 1980) and others have
expressed concern at the application of complex analytic methods to problems
relying on measures of key constructs (such as the difficulty level of the
material taught, in studies of student performance) of unclear validity.

(b) Problems of a counterfactual nature arise with experimental data when
you are trying to quantify the effects of a particular cause, such as a new
teaching method, and the outcome for each student in the experiment may
be observed for only one setting of the supposedly causal factor, new versus
standard method, say. Here, the data you have for the treatment (control)
students is the outcome they exhibited under the new (standard) method, and
the data you wish you had is the outcome the same students would have
exhibited if, instead, they had been taught with the standard (new) method.
This model dates back at least to Neyman (1923/1990)—and in the special,
and almost certainly false, case in which the two outcomes for each person

-are identical (though differing from person to person), to Fisher (1935)—and
has been extensively developed over the last 15 years or so by Rubin (1978),
Holland (1986), and others. It provides a good example of the value of de
Finetti’s approach in clarifying what people mean when they talk about causal
inference (see, e.g., Sobel, in press) and what must be assumed to support
such inference.

(c) Problems of a sampling nature (e.g., Cochran, 1978) arise when there

. is a finite population of subjects of direct scientific or policy interest (such
as all sixth-grade students enrolled in California public schools in the fall of
1993, or all eighth-grade math teachers in New York as of March 1, 1994)
and, typically for reasons of cost, you are able to obtain data only on a subset
of the population. In this case, the data you have is the information on the
sampled individuals and the data you wish you had is the corresponding
information on the unsampled people.

All three of these ways in which X and Y differ may, in turn, be thought
of as special cases of the general missing data problem, addressable—at
least, in principle—by imputation methods (e.g., Rubin, 1987; Little & Rubin,
1987). See Little and Schenker (in press) for a recent review of this approach.

A Taxonomy of Inferential Strength in Statistical Modeling

When inferential examples, in the social sciences in general and in educa-
tional research in particular, are examined from the predictive point of view,
four kinds of inference—of varying strength and scope of generalizability—
are discernible, which may be termed calibration inference, specific causal
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inference, general causal inference, and sampling inference. In the remainder
of this section, I examine the implications of this taxonomy for hierarchical
modeling, although the discussion applies rather generally to the use of
stochastic models in the social sciences.

Calibration Inference

The lowest level of inferential strength and generalizability of results arises
when attempts are made to model data that are neither experimental in
character nor sampled, from the population P of most direct scientific or
decision-making relevance to the question at hand, in a way that supports
straightforward exchangeability assumptions about how the sampled and
unsampled units are likely to be similar and how they are likely to differ.
Freedman, Pisani, Purves, & Adhikari (1991) call such data samples of
convenience; a slightly less pejorative name for them might be uncertain
exchangeability (UE) samples.

The Huttenlocher et al. (1991) example above would seem to fall into this
category. From various conclusions of unqualified scope drawn in that paper
(e.g., “The present study provides the first direct evidence that amount of
exposure is important to vocabulary growth”), the authors appear to have
quite a broad population in mind, and yet the data consist of 22 mother-child
pairs from families living in a single “relatively educated middie-class urban
community” (which I will refer to here as Chicago for discussion purposes)
who responded to newspaper ads. Also, several statements headed in the
direction of causal inference are made, for example,

To evaluate the substantive significance of the relation between exposure
and acceleration (B, = .89), we note that the raw frequency of mothers’
speech in our sample ranges from approximately 700 to 7000 words, . .. a
difference of 2.30 units in the log metric. Controlling for differences in
gender and group, y; is expected to be 2.30 - 0.89 = 2.09 units larger for
a child whose mother speaks 7000 words than a mother who speaks only
700 words. ... This translates into a difference in child vocabulary of
2.05 - (16 — 12)? = 33 words at 16 months, 131 words at 20 months, and
295 words at 24 months.

However, the data are purely observational in character, and little or no
information on potential confounding factors (hereafter PCFs)—such as the
amount of nonverbal communication between the children and mothers—is
available to permit any adjustment for the effects of these variables.

Some (e.g., Freedman et al., 1991) would say that no inferential conclusions
are possible with UE samples-—and from the predictive viewpoint it does seem
difficult to identify the as yet unobserved data values to which Huttenlocher et
al.’s (1991) analysis refers—but there is a limited form of inference that 1
nevertheless find both justifiable and somewhat useful in this case. The point
has been made (see, e.g., Kahneman, Slovic, & Tversky, 1982; Diaconis,
1985) that people are quite good at identifying interesting patterns in data—so
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good, in fact, that they are capable of finding them even when they are not
really there to be found, in the sense that the apparent pattern would fail to
materialize in attempts to validate the results of the data-gathering activity
by repeating it. It is arguable that we need some form of calibration inference
to restrain our enthusiasm in the search for scientific relationships. Indeed, this
was the original motivation for significance tests, and—given that estimates of
quantities of direct scientific or policy relevance, together with uncertainty
assessments for those estimates, are typically much more meaningful than p
values—it is essentially the only worthwhile use of such tests (see, e.g.,
Oakes, 1990, for a thorough account of the misuse of significance tests in
the social sciences). '

Two forms of calibration inference in routine use are procedures based on
hypothetical sampling models and permutation tests, both due to Fisher (1925,
1935). In hypothetical sampling inference

the [data] values (or sets of values) before us are interpreted as a random
sample [from] a hypothetical infinite population of such values as may have
arisen in the same circumstances. The distribution of this population will
be capable of some kind of mathematical specification, involving a certain
number, usually few, of parameters. (Fisher, 1925)

You then proceed to work out a sampling distribution for estimates of those
parameters, in effect by calculating all possible values the parameter estimates
could take on across hypothetical replications of the sampling experiment
that produced your data; the standard deviation of this distribution is the SE
Fisher would have you quote as a measure of your uncertainty about the
values of the hypothetical population parameters, and this SE becomes the
denominator in z-ratios that lead to p values for tests of null hypotheses about
those parameters.

The trouble with this formulation applied to UE samples is that the hypo-
thetical population corresponding to the observed sample and the population
P of real interest will often not be the same. Survey sampling specialists
(e.g., Cochran, 1978) call the former the sampled population and the latter
the rarget population, and emphasize that differences between them lead to
invalid inferences about the target population. I do not find standard errors
computed from UE samples meaningful, and I do not see that the parameters
in a model such as (1) above have any meaning when such models are applied
to UE samples, except as technical intermediaries that aid in the prediction
of future observables (e.g., vocabulary sizes at ages beyond those observed
for the children in Huttenlocher et al.’s [1991] data set, an activity those
authors do not emphasize). The point is that Huttenlocher et al. did not write
their article as if they were interested only in what would happen if you
repeatedly ran newspaper ads in Chicago and recruited 22 mother-child pairs
each time, but—without an argument supporting exchangeability of the people
in their study with other people, as yet unnamed—that is the only population
to which their parameter estimates and SEs are of direct inferential relevance.
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In permutation inference, which arises most naturally when comparing two
groups on a single outcome, you condition on the observed data and consider
all possible ways in which the observations might be rearranged among the
two groups, computing a summary such as the difference in group means
for each possible permutation; a p value may then be calculated by asking
how often differences as large as the one observed or larger would occur.
When he introduced this procedure, Fisher (1935) had in mind experimental
situations involving random assignment to the two groups, but (e.g., Freed-
man & Lane, 1983) the calculation may be performed no matter how the
data in the groups were obtained, and even when no causal or sampling
inference is justifiable, the resulting p value does seem to have some calibra-
tive value. The idea is that life is short, there is not enough time to investigate
all the interesting-looking relationships, and so perhaps we should focus on
the ones that seem likely to show up again if we go out and get more data.

With moderate to large samples, p values based on comparisons of means
will tend to be similar with the permutation and hypothetical sampling
approaches, essentially by virtue of the Central Limit Theorem (e.g., Welch,
1937), so that a somewhat roundabout justification of the normal-theory p
values calculated by Huttenlocher et al. (1991) may be attempted: there is
probably some sort of calibration-style permutation test that their normal-
theory tests are trying to approximate. In the absence of better sampling or
causal motivation for their data, however, I find no scientific meaning in the
parameter estimates and SEs Huttenlocher et al. report, and the strongest
interpretation I am abie to make of their p values is calibrative. It is clear
that we have learned something about child development for people outside
Chicago, but (see, e.g., Holland, 1989) without judgmentally estimating what
might be called a variance component for nonexchangeability between sam-
pled and unsampled units in this broader population, and a variance component
for the effects of unmeasured PCFs—quantities that are unaddressed by
Huttenlocher et al.’s data—it is difficult to quantify just what has been learned
more broadly, either causally or externally to the 22 mother-child pairs in
their study. :

For other recent examples of what appear to be inferential hierarchical
analyses of UE samples, see Bryk and Frank (1991), Bryk and Raudenbush
(1987; 1989, sections 4.2 and 5.1; 1992, chapters 4, 5, arid 8), Fitz-Gibbon
(1991), Goldstein (1987, sections 2.3 and 4.4; 1989), and Raudenbush and
Bryk (1989, section 5.3). It is possible that stronger conclusions are supported
by some of these studies, but so little space is devoted in them to the origins
of the data analyzed and the valid scope of their findings that it is hard to tell.

Some of the papers and books mentioned in this section are methodological
in character, and in such work people sometimes sidestep the question of
what kind of inference they are making by calling the modeling “illustrative,”
but (e.g., Draper, 1987) if you use UE samples in your examples and draw
what look like substantive conclusions, you risk misleading your audience
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about the scope of the “illustrative” findings, and in any case an unfortunate
precedent is set for the substantive papers that will later apply the
methodology.

Few discussions of the relationship between the sampled and target popula-
tions are to be found in the recent use of HMs in educational research;
an exception is Longford (1991b), who gives a critique of the difficulties
encountered in trying to make the two populations coincide in pretest studies.

Causal Inference

A higher level in the ladder of inferential strength arises when investigators
interested in the effects of particular causes—such as a novel teaching method
or a new way to allocate educational funding—gather data on some subjects,
using either a controlled experiment or a well-conducted observational study
design, and build a causal inference model. An example is provided by the
Cognitive Strategies in Writing Project (Englert et al., 1988), examined by
Bryk and Raudenbush (1992). This study

sought to improve childrens’ writing and to enhance their self-perceptions
of academic competence through a variety of strategies. The outcome vari-
able was a measure of perceived academic self-competence (mean 2.92,
SD 0.58) for which a pretest, denoted X, served as the covariate. The study
involved 256 children in 22 classrooms in a standard two-group design, with
15 experimental and 7 control classrooms. Because teachers administered the
treatments to intact classrooms, we have, in classical terms, a nested or
hierarchical design: students are nested within classrooms and classrooms
are nested within two treatment groups. (Bryk & Raudenbush, 1992, p. 96)

To these data Bryk and Raudenbush fit the HM

Y; = Boj + ByXy — X)) + r; (Level 1),
Boj = Yoo + Yo Wj + up, By =7vio  (Level 2),

)

in which Y; is the self-perceived competence of child i in classroom j at
the end of the experiment; W; is a classroom-level dummy variable for
experimental/control status; X.. is the pretest grand mean, which came out
2.86 here; and the r; and uy; are “errors,” regarded as Gaussian random
variables with mean 0 and variances o2 and 7y, respectively. The estimate
of the treatment effect in this model comes out 45, = .19, with an SE of
.10,' which is statistically significant at the .05 level if you do a one-tailed
test (although probably not practically significant: the difference between
adjusted experimental and control means is only about 6% of the control
mean, and is less than a third of the overall between-child SD). Causal
conclusions are definitely in the air here (“ ... [the] experimental children
developed a significantly higher perceived self-competence than did the con-
trol children™), but causal for whom, and under what implicit assumption(s)
not yet articulated?

124



Inference and Hierarchical Modeling

The counterfactual framework mentioned in the previous subsection is
clarifying. Table 1 gives a visualization of the data from this perspective,
with plausible numerical values for the observed outcomes and pretest scores,
and question marks for the counterfactual outcomes. Actually, there are two
counterfactual stories operating here: in addition to wondering about what
the experimental (control) students’ outcomes would have been if they had
been in the control (experimental) group, the presence of the pretest X in
model (2) means that Bryk and Raudenbush would also like to know what
the observed experimental and control means on the outcome Y would have
been if the mean X values in the two groups had been the same instead of
differing slightly (Xg = 2.90, X¢ = 2.80).

In this case, the HM estimates from model (2) fill in the question marks—or
at least provide guesses for their averages within the experimental and control
groups, if these groups had been the same on average on the pretest—
by computing the adjusted means Yg — 9o;(Xg — X..) = 2.96 and Y. —
Yo1(Xc — X..) = 2.78 as in the usual analysis of covariance. The only essen-
tial difference, in fact, from the usual ANCOVA is that the presence of the
“random” classroom effects ug; in (2) above accounts sensibly for the within-
class homogeneity exhibited by the students on the academic competence
outcome (the conditional intracluster correlation for Y given X here is about
p = .08). However, the adjusted means are good estimates of the averages
across the question marks in the two groups only if the groups are similar
on variables likely to be strongly correlated with ¥ (after adjusting for X)—that
is, if they are similar on PCFs, such as the amount of encouragement the
students got at home while the experiment was in progress. Why should this
be so0?

One reason would be random treatment allocation (or, at least, randomiza-
tion would tend to promote balance on the PCFs), but Bryk and Raudenbush
fail to mention whether the experimental and control classrooms were
assigned at random. In the absence of random assignment, the use of g, as
an estimate, for the children in Table 1, of the effect on self-perceived
academic competence caused by the intervention rests on an implicit assump-
tion of what Rosenbaum and Rubin (1983) call strong ignorability of the

TABLE 1
Display of the Cognitive Strategies in Writing Project data in Jactual-
counterfactual form

Class 1 ... 1 15 ... 15 16 16 22 22
Chid 1 ... 11 1 ... 14 1 9 1 13
Goup E ... E E ... E C cC ¢ C
YfE 26 ... 30 28 ... 36 ? ... ? ? .. 2
YifC 2 ... 0?7 7 ... 2 30 ...29 19 ... 31
X 25 ... 24 35 ... 33 27 30 21 ... 25
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treatment allocation mechanism conditional on the pretest X: the assumption
(for the students in the table) that ¥ and experimental status are independent
given X. If you do not believe this assumption—for instance, if you have a
PCF, not yet in model (2), in mind that is likely to be influential after X is
accounted for—then there is no reason for you to regard the issue of the
effect caused by the intervention for the students in Table 1 as settled. Model
(2) has correctly inflated the SE of 9q;, to account for within-classroom
homogeneity, in relation to the value it would have had assuming indepen-
dence of all 256 student outcomes, but it has modified neither 4, nor its SE
to account for uncertainties in the validity of causal inferences based on the
raw group means adjusted only for X.

Specific versus general causal inference. Moreover, even if either treatment
assignment were random in this experiment or you were willing to assume
strong ignorability given the pretest, the topic of scope of inferences based on
Yo1 remains to be addressed. Under random assignment or strong ignorability,
model (2) shows that something causal is going on for the 256 students in
Table 1 (although the effect is not very big), but what about other students?
From a policy point of view, it is nice to know that there exists a group of
students for whom the Cognitive Strategies in Writing Project intervention
makes a modest difference, but without some effort to relate these 256 children
to the broader collection of other students to whom the intervention might
be offered, it is not clear how much has been leamed about whether the
program should be tried elsewhere.

The distinction between specific causal inference (there is something causal
going on for the people in this experiment) and general causal inference
(there is something causal going on for everybody in the target population)
is particularly forceful in medical research, where—to judge from articles in
leading journals over the past 10 years—it is nevertheless routinely ignored.
A typical recent example is a study by Ahmed, Garrigo, and Danta (1993),
in which 12 patients who presented at Mount Sinai Medical Center in Miami
Beach with exercise-induced asthma during the last half of 1992 (and who,
in addition, were selected on the basis of a number of intake criteria) were
randomized into three groups of size 4; one group received heparin, another
cromolyn sodium, and the third a placebo. A statistically significant difference
between the groups was found, in favor of heparin, and both the abstract
(“Inhaled heparin prevents exercise-induced asthma without influencing hista-
mine-induced bronchoconstriction™) and the discussion section of the article
read as if there is no longer any uncertainty about how everybody with this
ailment should be treated.

This pitfall clearly also arises in educational research, and the use of
HMs—whether the studies giving rise to the data to which the HMs are fit
are randomized or not—does not avoid it. In particular, making the classroom
effects random rather than fixed in model (2) does not convert a UE sample
of classrooms into a random sample from the target population of real policy
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interest. A parallel comment applies to the use of random variables in Hutten-
locher et al.’s (1991) model (1), above: Regarding the “errors” at both levels
of model (1) as realizations of random variables does not make the 22 mother-
child pairs any more or less “randomly” drawn from the target population
than they would have been if you had treated the lack-of-fit terms in model
(1) in some other way.

For other recent examples of specific causal inference with HMs in observa-
tional studies (“quasi-experiments”) involving educational interventions, see
Raffe (1991) and Jacobsen (1991).

Sampling Inference

The fourth entry in the inferential hierarchy arises when sufficient good
fortune and money are available to sample representatively from the target
population and build a sampling model. There are two cases to distinguish,
according to whether or not causal inferences are desired instead of (or in
addition to) sampling inferences; in the sampling world, the distinction is
roughly that between descriptive and analytical surveys (Cochran, 1978). A
recent example involving HMs that had the potential to include both kinds
of inference is the study conducted by Lockheed and Longford (1991), who
examined school- and student-level factors associated with successful mathe-
matics achievement in Thailand. The data, from the IEA Second International
Mathematics Study, were gathered with a two-stage sampling design
employing stratification at the first stage (the primary sampling units were
national education regions) and clustering at the second (the cluster units
were schools, chosen randomly to produce a 1% sample of all eighth-grade
mathematics classrooms in each region). One class was selected at random
per school, and all students enrolled for the entire academic year in the
chosen class became part of the sample, resulting in a data set containing 32
variables—13 at the student level, 5 pertaining to school characteristics, 4
to the teacher, 9 to the classroom, and 1 to the region—measured on a total
of 4,030 students in 99 schools. The choice of one class from each school
confounded the school, teacher, and classroom levels in the design, so that
Lockheed and Longford simply referred to measures at those levels as
“group” variables.

Sampling inferences, such as estimation of the average number of students
per math class in Thailand (about 44) or the proportion of students in the
country with access to a’calculator at home (roughly 31%), were not the
main emphasis in Lockheed and Longford’s study, but could have been based
on HMs that reflected the sampling design, with fixed effects for the regions
and random effects for the classes and students to accurately estimate the
relevant intracluster correlations. In the analytic part of their work, Lockheed
and Longford fit a variety of multilevel models with fixed and random
coefficients to find characteristics at the student and group levels that were
associated with student achievement in mathematics, noting (for instance)
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that large school size was positively associated with high achievement, and
high levels of teacher time spent on maintaining order in the classroom were
negatively associated with math learning. Lockheed and Longford concluded
with the important point that even though their sample was representative of
eighth-grade mathematics education in Thailand, the process by which stu-
dents were assigned to treatment groups defined by factors such as school
enroliment and teachers’ disciplinary styles was observational, so that it
would be rash to regard these associations as causal.

Identifying the variables associated with higher outcome scores [in an obser-

vational study] does not offer a direct answer to the principal question of

a development agency about the distribution of its resources to a set, or

continuum, of intervention policies in an educational system. Without any

prior knowledge of [that system], any justification for an intervention policy

based [only] on the results of regression (or variance component) analysis,

or even of structural modeling (LISREL), has no proper foundation.

Additional recent examples of HMs based on what appear to be representa-
tive samples from policy-relevant target populations in education include
Bryk and Raudenbush (1989, section 3.2), Lee and Smith (1991), Paterson
(1991), Raudenbush and Bryk (1989, section 4.2), and Zuzovsky and Aitkin
(1991). I have been unable to find any instances of general causal infer-
ence—in which a representative sample from the target population is enrolled
in a randomized controlled experiment—in the recent education literature on
the use of HMs.

The Value of Explicitness in Inferential Conclusions

Table 2 summarizes this section by displaying the four kinds of inference
in the taxonomy above in a two-by-two array, with rows defined by the

TABLE 2
Types of inference supported by various sampling and design assumptions

Strong Ignorability of
Treatment Assignment

Difficult
Justifiabl
to Justify ustifiable
Exchangeability of Difficult Calibration Specific
. Causal
Sampled and to Justify Inference
o Inference
Unsampled Units in
Target Population Samplin General
& P Justifiable piing Causal
Inference
Inference
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sampling plan and columns indexing the experimental design. In the language
of evaluation research in, say, psychology (e.g., Campbell & Stanley, 1966),
the rows of this table correspond to different levels of external validity and
the columns to varying levels of internal validity. There is a partial ordering,
in inferential strength, of the cells of the table of the form

calibration specific sampling general causal
. <|{ causal ,, < ®, 3
inference . inference inference

inference

Random assignment of units to the groups (sampled, unsampled) and (treat-
ment, control) is sufficient, but not necessary, to land you in the “justifiable”
row and column in Table 2, respectively; well-designed nonrandom sampling
plans and observational studies can also achieve these distinctions, at least
Jjudgmentally, by measuring and appropriately adjusting for all relevant PCFs.

I have considered the taxonomy of inferential strength in this table by way
of arguing that an increase in clarity about the scope of valid inferential
conclusions supported by complicated analyses, including those based on
HMs, would be a net gain, not just in education but quite generally in the
social sciences. What I have in mind, quite literally, would be for people to
start explicitly saying in their papers—ideally both in the abstract and in the

- body of the article, including the discussion section—which kind of inference
they are trying to do. In addition to improved communication of exactly what
has been learned in a given study and what remains to be discovered by
future studies, this greater explicitness might actually increase the rate at
which uncertainty about the population-wide effects of social policy interven-
tions declines, by promoting a larger funding emphasis on the sorts of experi-
mental and sampling designs that are most effective in decreasing such
uncertainties: controlled experiments and randomized sampling plans, with
(a) stratification on known PCFs at the top of the design, (b) clustering as
needed for reasons of cost, and to study the effects of the interventions at
different levels of the organizational hierarchy into which the intervention
must fit, and (c) randomization at the bottom of the design to balance the
unknown PCFs.

There is nothing revolutionary about strong designs of this type, and their
greater expense over the empirically more prevalent class of observational
studies and UE samples is an obstacle to be reckoned with in the social
sciences, but other fields in which both data-gathering strategies have been
tried—such as medicine (see, e.g., Freedman et al., 1991)—have amply
demonstrated that the average number of retrospectively valid causal conclu-
sions per monetary unit is higher with the costlier designs. Ethical considera-
tions sometimes preclude the use of controlled experiments, as with studies
of the causal link between smoking and adverse health outcomes in humans,

129



Draper

but successes in areas as different as health policy (e.g., Brook et al., 1983)
and criminal justice (e.g., Ares, Rankin, & Sturz, 1963) have shown that the
field for social experimentation is wide, and in any case there is nothing
unethical about conducting a fully representative sampling study. An increased
degree of candidness about the inferential limitations of observational studies
and UE samples could shift the funding balance in the social sciences toward
stronger designs, just as it did in medicine decades ago.

The Use of HMs in School Effectiveness Studies

The last 10 years have seen an increase in the attention paid to the quality
with which public and commercial institutions carry out their mandates (e.g.,
Box, 1994). In education this has taken the form of increased interest in
measuring the effectiveness of schools and teachers at promoting learning.
One result in Great Britain, for example, has been a call for the publishing
of “league tables,” ranking schools in each area of the country by the achieve-
ments of their students on standardized tests at the end of each year. As
mentioned by Goldstein (1992) and others, the British government initially
proposed to do this without adjusting in any way for the achievement levels
of the students upon entry to the schools, but more recently (e.g., “League
Table,” 1994) a greater willingness to measure the “value added” by each
school, through a comparison of input and output achievement levels, has
emerged. A number of authors have noted that HMs can play an important
part in analyses of this type. My main points in this section are that the
value added by HMs in school-effectiveness studies would be increased by
a stronger attempt to tell an explicit causal story about the outputs of the
HM analyses that drive policy choices, and that cohort standardization and
other biostatistical concepts already in use in hospital effectiveness studies
can help in this attempt. v

The Guardian value-added survey (“From the Raw to the Refined,” 1993;
Goldstein & Thomas, 1993) provides a good example within which to examine
the connections between HMs and causal inference. In early 1993, Goldstein
and Thomas requested the participation of almost all secondary-education
institutions in England, Wales, and Northern Ireland in a major school effec-
tiveness study, but were able to achieve a school-level response rate of only
about 15%. This produced a sample of 29,985 students in 425 institutions,
from which data of two kinds were gathered: a baseline score X;j created by
aggregating a set of standardized tests for student i in institution J. and a
later achievement score Y;; for the same student, obtained in a similar manner
from a different set of tests. The simplest HM that captures the flavor of
their analyses has the form N

Yi=Bo+ BiXy+y;+e;  (Level ),
v=u (Level 2),

C))
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in which the u; and e; are regarded as realizations of Gaussian random
variables and the second level of the HM is like a regression with no school-
level predictors. Goldstein and Thomas use this model to produce shrinkage
estimates of the school effects +y;, standard errors for these estimates, and a
series of plots of intervals of the form §; + ¢ - SE(§)), created to facilitate
school rankings (with the multiplier ¢ chosen so that “for all possible pairs
of comparisons, the average significance level is 5%"). In this model, the 4;
take the form of a weighted average of the usual ANCOVA school-level
residuals [Y; — (8o + B,X.)] and the grand mean of those residuals (zero),
with weights (1 ~ B;) and B}, respectively, where B; is the usual random-
effects shrinkage factor for school j.

Despite concerns about nonexchangeability of Goldstein and Thomas’s
schools with the rest of the policy-relevant population (which would, among
other things, have implications for the quality of inferences about B,, and
therefore about the process of adjustment for baseline scores), it is unquestion-
able that this methodology represents a noticeable improvement over both
the league tables rankings previously released by the British government
(based only on the raw school means Y.;, which, on average, were pulled
about 75% of the way back toward the grand mean by model (4) in Goldstein
and Thomas’s analysis, meaning that the Y,; provide a quite unstable set of
predictions of what would be expected at the sampled schools next year) and
results obtainable by treating the school effects as fixed. But what estimated
causal effects, if any, do the 4; actually correspond to?

This situation is exactly analogous to the health policy problem of trying
to measure quality of care at the hospital level by comparing a hospital’s
observed mortality rate with what you would have expected given how sick
its patients were when they arrived (e.g., Daley et al., 1988; Longford, 1991a;
Thomas, Longford, & Rolph, 1992), except that the outcome variable in the
health policy problem is dichotomous rather than continuous. In the case of
hospital mortality rates (e.g., Draper, 1994), it has proven useful to make a
link between analyses like that of Goldstein and Thomas and standardization
methods motivated by counterfactual considerations, and the analogy is so
strong that it seems worthwhile to do so in school effectiveness studies,
as well.

From the point of view of experimental design, the process by which
students wind up in particular schools in Goldstein and Thomas’s data is
observational, with achievement score Y as the quantitative outcome, school
S (qualitative, at 425 levels) as the supposedly causal factor (SCF), and
baseline score X as a quantitative PCF. To obtain a better estimate of the
causal effect of S on Y in the presence of confounding from X than that based
on the raw school means Y.;, you have to compare the factual data set (Y: S,
X) with your estimate of the counterfactual data set obtained by holding one
of (S, X) constant and changing the other. Here this amounts to guessing at
one or the other of the following counterfactuals:
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® standardization to the national cohort (hold S constant, change X): How
would this school have done if its group of students had been different
(e.g., average) at entry instead of whatever they were?

® standardization to the school cohort (hold X constant, change S): How
did the rest of the country do on average with students like those at
this school?

Because of nonlinearities in a given school’s effect on learning (e.g., on a
common 100-point pre/post scale, a particular school may take students
scoring 20 on intake and bring them up on average to 30, but may only raise
children starting at 60 to an average of 65), the answers to these two questions
may not lead to the same school assessment conclusions.

Given the shrinkage character of the 4, it is not at all clear which, if either,
of these two counterfactual stories is, in effect, estimated by model (4).
Sorting this out would be a net gain, because the various players involved
in the school assessment drama have different utility functions corresponding
to different counterfactuals. The British government, for example, presumably
wants to know which are the best and worst schools, to use the former as
case studies and to figure out how to improve the latter; for this purpose, an
analysis that standardizes to the national cohort would probably be easiest,
because it directly holds the PCF of differential student ability at intake
constant in the ranking it produces. Many individual schools, on the other
hand, do not expect their intake cohorts to differ much from year to year;
for each of them, standardization to their own cohort is probably of most
direct relevance. A particular family, to take a third example, will want to
know what differences they might expect to see if they were to send their
child to each of the quite small number of schools that are feasible for them
on geographical and/or cost grounds. For this purpose, standardization to
their child (and others exchangeable with him/her) would be the ideal.

In closing this section, it is probably worth emphasizing the limitations of
HM (or any other) analyses of data like those collected by Goldstein and
Thomas, in order that school effectiveness studies not be oversold. First, the
observational nature of the data and the small yearly school-level sample
sizes will sharply limit subanalyses—for example, of the kind just mentioned
as ideal for parent-level decision making—to broad exchangeability classes.
Goldstein and Thomas, for example, produced separate results for each of
the three groups (low, middle, high) defined by the first and third quartiles
of the X distribution, and this may be about as fine as you can cut it.

Second, even after careful modeling, school-level rankings based on models
such as (4) carry large uncertainty bands, about which lists of point estimates
like the original raw British government league tables are negligently silent.
When distributions across the categories (definitely better than, definitely
worse than, uncertain) are computed for the schools in Goldstein and Thomas's
sample—by making pairwise comparisons between each school and all the
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other schools—and these distributions are averaged, the results are approxi-
mately (15%, 15%, 70%), meaning that the bands are too wide to locate most
schools more accurately than somewhere in the middle of a large gray area.

As noted by Goldstein (1991), value-added rankings at their best should
probably be used only diagnostically, as warning flags indicating where to
focus attention in seeking causal explanations, which is like the best uses of
hospital mortality rates so far.

Multilevel modeling is not a panacea. Its power is limited, and it is most
certainly not a magic wand that will allow us automatically to make definitive
pronouncements about differences between individual schools.

Hierarchical Models and Meta-Analysis

HMs and meta-analysis (e.g., Glass, McGaw, & Smith, 1981) arrived on
the social science scene at about the same time, and no wonder: the former
is such a natural technical tool for implementing the latter that meta-analysis
may be said to have been waiting for HMs to come along. Quantitative
research synthesis is now an integral part of disciplines as varied as education
and medicine, with the use of hierarchical models to capture between-study
variability commonplace. In this section, I examine an interpretive point,
arising in the use of HMs for this purpose, which has normative implications
for allocation of research effort and resources. A separate technical point
will come up in the section below on fitting HMs.

Consider the meta-analysis presented by Goodman (1989) and reexamined
by Draper, Gaver, et al. (1993) on data from six controlled clinical trials of
the effect of aspirin on mortality for patients who had survived a heart attack.
Table 3 gives the data from the six studies; it may be seen that the first five
trials were in good agreement with each other and with the view that aspirin
causes a decline in mortality of about 2.3 percentage points (a 20% drop
from 11.5%, the composite placebo mortality for the first five trials), but it
is also clear that the sixth and largest trial—the Aspirin Myocardial Infarction

TABLE 3

Number of patients and mortality rate from all causes, for 6 trials comparing
the use of aspirin and placebo by patients following a heart attack

Aspirin Placebo Comparison
No.of  Mortality No.of  Mortality ‘ SE of
Study Patients  Rate (%) Patients Rate (%) Diff (%) Diff (%)
UK-1 615 8.0 624 10.7 -2.8 1.7
CDPA 758 58 771 8.3 -25 1.3
GAMS 317 8.5 309 104 -1.8 23
UK-2 832 12.3 850 14.8 -26 1.7
PARIS 810 10.5 406 12.8 -23 2.0
AMIS 2267 109 2257 9.7 +1.2 0.9
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Study (AMIS)—was in sharp disagreement with the other experiments. Three
natural questions arise: (a) Why did AMIS get such different results? (b) If
the answer to (a) is uncertain, what should be done next to reduce this
uncertainty? (c) What therapy should be recommended to heart attack patients
while we are waiting for the answer provided by (b)?

To move toward answers to these questions, Goodman used standard empir-
ical Bayes methods to fit a Gaussian random-effects two-level model,

(:16) " NO, V)  (Level 1),

(5)
Ol P Z N, 1 (Level 2),

in which y; is the mortality difference in study i and the V; (the squared SEs
in Table 3) are assumed known. Level 1 of this model is not hard to justify,
at least approximately, on large-sample causal inference grounds; Level 2
embodies a prior judgment of exchangeability of the effects of aspirin on
mortality across the patient cohorts and treatment protocols in the six studies.
The maximum likelihood estimate of T comes out about 1.5% here, leading
to noticeably wider 95% central interval estimates for the “true effect” p.
than those obtained from the usual fixed-effects model that assumes T = 0
((=3.2, +0.2) versus (—2.1, +0.2)). Adding Level 2 to the hierarchy has
definitely improved the fit,2 but because there are no study-level predictors
in Goodman’s model, there has been no increase in causal understanding in
moving from a fixed-effects to a random-effects formulation, which means
that model (5) is, at best, only part of the story. '
Epidemiologists (e.g., Greenland, 1993) have begun to note that, although
the use of (5) is certainly better than pretending that 7 is 0 in the presence of
substantial between-study heterogeneity, random-effects models that simply
describe the heterogeneity rather than attempt to explain it can actually
promote an antiscientific attitude of indifference to the cause of the study-
level discrepancies. Indeed, a caricature of (acceptable statistics, unacceptable
science) involves {tossing the heterogeneity into the Level 2 error term,
verifying that the unexplained bit does look independent and identically
distributed (IID) according to some standard distribution, and going on to
the next problem feeling like the job was well done}, rather than, say, carefully
reading the articles documenting the studies—and perhaps also interviewing
the principal investigators—to identify how the protocols and patients were
different (Greenland claims that useful information of this type is almost
always fairly straightforward to obtain) and to then include these differences
as Level 2 predictors. Model (5) provides a better answer to the short-run
third question posed above than that offered by the fixed-effects formulation,
but it is silent on the long-run (and ultimately more important) first and
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second questions. A full answer to all three questions involves the use of
model (5) as a kind of placeholder on the way to full causal understanding,
while the answers to the first and second questions are sought. Note that this
perspective implies a different use of research time and money than that
employed to answer the third question alone.

For a social science example of a much more satisfying meta-analysis—in
which (a) model (5) is fit to 19 experiments estimating teacher expectancy
effects on students’ observed IQ scores and substantial between-study hetero-
geneity is noted, and (b) much of that heterogeneity is shown to disappear
when the number of weeks of student-teacher interaction prior to the experi-
ment is accounted for—see Bryk and Raudenbush (1992, chapter 7).

Fitting HMs in Education:
Why So Little Comparative Study and MCMC? |

Turning now to the fitting of HMs, a Babel of options has arisen in the
last 7 or 8 years, creating an embarrassment of apparent riches for the potential
user and raising questions of choice, many of them still lacking fully satisfying
answers. The main options are all one form or another of full or restricted
maximum likelihood (FML, REML), including the EM algorithm, as imple-
mented in Bryk, Raudenbush, Seltzer, and Congdon’s (1988) program HLM,
and in Wong and Mason’s (1989) REML program GENMOD; iterative gener-
alized least squares (IGLS), as carried out by Goldstein’s (1987) REML
programs ML2 and ML3; and Fisher scoring, as implemented in Longford’s
(1987) FML program VARCL. These programs can easily produce somewhat
different answers on the same data set. -

There are two curiosities in how the subject of fitting HMs has evolved
so far. First, although an excellent study of GENMOD, HLM, ML2, and
VARCL—documenting their design philosophies, implementation details,
underlying models, software routines, data formats, user friendliness, and
idiosyncrasies, and comparing their results on several data sets—has been
available for the last few years (Kreft, de Leeuw, & Kim, 1990), the definitive
investigation, probably involving extensive simulation, in which the four
approaches and implementations are compared to known truth, has yet to
see the light of day. A recent simulation study by Rodriguez & Goldman
(1993) of the use of ML3 and VARCL to fit random-effects logistic regression
models (which contains some disquieting findings®) is a good beginning, but
considerable comparative territory of great relevance to applied practice
remains unexplored.

Second, during the same period in which general-purpose implementations
of FML and REML have arrived and have begun to receive widespread use
in practice, a leading alternative to these methods—a fully Bayesian treatment
of hierarchical models, involving Gibbs sampling or other MCMC tech-
niques—has been under intense development in the statistics community and
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yet has received little attention in many of the social sciences, particularly
education.

The first of these curiosities should take care of itself over the next few
years as investigators like Rodriguez and Goldman add more pieces to the
comparative puzzle. The second curiosity is more interesting for what it
reveals about the present state of the old Bayesian/frequentist dichotomy,
as follows.

Using Seltzer, Wong, and Bryk (1993) and Seltzer (1993) as a starting
point, consider the Gaussian two-level HM

y = XJBJ + €; (Level l),

()
B =Wy + v (Level 2),
where y; is the n; X 1 vector of outcomes for, say, the students in, say, school
Jj» Xjis an n; X P matrix of (known) student-level predictors at school j, W;
is a P X K matrix of (known) school-level predictors, the components of €
are IID N(0, 0?), the u; are P-variate normal with mean vector 0 and covariance
matrix T, and there is independence across j at both levels of the model.
Since the advent of least squares 200 years ago, it has been standard in
the regression framework of Level 1 in model (6) to include what might be
thought of as individual-level latent variables (the ¢;), but the inclusion of
the school-level latent variables u; in Level 2 (to increase the realism of the
modeling, by accounting for between-school heterogeneity of the regression
relationship in Level 1) creates problems for standard frequentist methods
such as ML. The likelihood function in this fully Gaussian formulation can
be written down in closed form (although this is not true for versions of model
(6) with Bernoulli outcomes), but the MLEs must be searched for iteratively.
Each of the existing fitting approaches tries to solve this problem in its
own way, and each approach has its pluses and minuses:

® The EM algorithm produces full or restricted ML estimates by regarding
the fitting of model (6) as a missing data problem, in which the B, play
the role of missing data. A big plus for EM is that it always converges,
no matter what starting values it is given; a big minus is that it often
reaches the MLEs sufficiently slowly that users may become impatient
and stop it before it has converged. In fact, there is good evidence from
Kreft, de Leeuw, & Kim (1990) that this has been happening with the
package HLM. A natural improvement would be to switch over from
EM to Newton-Raphson iterations after a while; perhaps future releases
of the EM packages will try this.

® IGLS and Fisher scoring are closely related methods that treat the
estimation of the regression coefficients y and the variance/covariance
unknowns o2 and T as separate but related problems, alternating the
estimation of each using current guesses for the other. These methods
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have the advantage of much quicker convergence than EM, and VARCL’s
implementation of Fisher scoring has as an additional plus: the ability
to base its iterations on the Gaussian sufficient statistics rather than the
raw data, so that it can accommodate quite large data sets. A minus for
these approaches is that convergence to the global MLEs is not guaran-
teed unless the starting values are sufficiently good.

The principal drawback of all three of these methods, though, is generic
to the reliance on the maximum of the likelihood function when this may be
unwise. An example is provided by Rubin’s (1981, 1989) meta-analysis of
data gathered by Alderman & Powers (1979) to assess the effectiveness of
high school coaching programs that attempt to raise the verbal Scholastic
Aptitude Test (SAT) scores of enrolling students. The data arose from parallel
‘randomized experiments at k = 8 high schools (labeled A-H) on a total of
559 students, with an average of about 30 treatment and 40 control students
at each school. The estimated treatment effects ranged across the eight schools
from about —1 to about +28 points, with SEs for these estimates on the
order of 9-16 points (to assess the practical significance on these differences,
SAT verbal scores in college-bound students might average about 600 with
an SD of about 75 points).

In addition to conducting a fully Bayesian analysis of these data based
on model (5) above, Rubin also examined the usual empirical Bayes
solution that produces inferences about the Level 2 regression parameter(s)
(in this case, just an intercept term) by conditioning on the MLEs of the
variance parameters. He summarized the empirical Bayes fitting of model
(5) in a splendid plot, reproduced below as Figure 1, in which the dotted
line is the marginal likelihood for T and the eight solid lines track the
usual shrinkage estimates W;y; + (1 — W)ji. of the “true” treatment effects
0; of Programs A-H as a function of 7, where fi is the grand mean
2k Wy,/Zk, W; (which here came out to about 8 SAT verbal points)
and W; = IV, + 7). It is evident from this plot that there is some
heterogeneity in the effects of the coaching programs: viewing the marginal
likelihood of 7 as its posterior distribution with a diffuse prior, Rubin’s
fully Bayesian analysis implies a summary value of T of about 7 SAT
verbal points. However the MLE of 7 is zero, which poorly summarizes
the evidence for heterogeneity.

The problem is that the marginal likelihood functions for variance parame-
ters in hierarchical models fitted to data sets with small numbers of Level 2
units may be highly skewed, as in Figure 1. The main solution to this problem
in general with model (6) is the one Rubin adopted with model (5): a fully
Bayesian analysis that propagates the uncertainty in the variance parameters
through to the uncertainty about the regression parameters. This approach
rewrites model (6) and adds a layer to the hierarchy for the specification of
prior information:
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FIGURE 1. Shrinkage estimates of coaching effects in the Alderman & Powers (1979)
study as a function of the parameter 1, which quantifies heterogeneity across the
eight experiments (from Rubin, 1981)

(yj|Bj9 02) -~ Nnj(ijjy 0'21,.1-) '(Level 1),
(Bj!y, T) ~ Np(W;v, T) (Level 2), Q)

@, T, 6 ~ p(¥)p(T)p(c?) (prior),

The goal is computation and marginalization of the posterior distribution
pB, v, T, o*ly), and—as with the three ML methods—no closed-form
solution is possible.

Four approaches to fitting model (7) are available, at least in principle:
methods based on Laplace approximations (e.g., Tiemey & Kadane, 1986),
quadrature (e.g., Naylor & Smith, 1982), Monte Carlo integration with impor-
tance sampling (e.g., Hammersiey & Handscomb, 1964), and simulation from
the posterior distribution, for instance, using MCMC techniques such as
Gibbs sampling (e.g., Smith & Roberts, 1993). Of these, the most naturally
tailored to the hierarchical structure of model (7) is Gibbs: the idea is to
iteratively sample from the four conditional posterior distributions p(a?ty,
B, v, T), pBly, v. T, 0, p(Tly, v, B, 02, and p(yly, T, B, ¢ all of
which do have closed-form expressions with standard, relatively flexible
choices for the prior level in (7). The main disadvantages of Gibbs sampling
are that it is highly computationally intensive and that it can be hard to figure
out if it has converged, although decent diagnostics are finally beginning to
emerge (e.g., Tanner, 1993). Its main advantages are that you get more
accurate uncertainty assessments for the fixed-effects regression parameters
in model (7), and that it is easy to answer just about any relevant question
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using simple descriptive summaries of the simulated draws from p(B, ¥,
T, o?ly).

I conjecture that 10 years from now the industry standard in fitting hierarchi-
cal models will be one or another of the fully Bayesian methods, probably
some sort of MCMC, to avoid the problems that maximum likelihood runs
into with highly skewed marginal likelihood functions for the variance param-
eters. (In advocating fully Bayesian solutions, Rubin, 1989, offers the rather
vague advice that “As problems become harder, it becomes more important
to be more fully Bayesian,” but it is the skewness of the likelihood function—
and the sharp underpropagation of uncertainty about the regression parameters
resulting from pretending that the posterior uncertainty about the variance
parameters is zero—that are the real diagnostics for the need to be fully
Bayesian here.) This will create an apparently new problem of its own—
specification of the prior distribution at the top level of the hierarchy—and,
indeed, it is possible that investigators have been avoiding Gibbs because of
this. However, this problem is not really new, since all of the existing methods
are, in effect, fully Bayesian with one implicit prior or another (quite possibly
not a very sensible prior, at that), and, in any case, the way you deal with
prior specification in practice is through (a) detailed subject-matter study
followed by (b) sensitivity analysis, both of which are part of good analyses
already. This statement is a bit facile in making the elicitation of informative
prior distributions in complicated problems sound easier than it actually is,
but considerable progress has already been made (e.g., Kadane, Dickey,
Winkler, Smith, & Peters, 1980) and, in any case, increasing the average
level of experience in the analytic community in this important activity will
be a net gain.

Discussion

Multilevel models have unquestioned usefulness in the social sciences,
particularly in education, for at least two good reasons. First, such models
permit the direct framing of theories about the effects of structural change
at each of a variety of levels in the educational hierarchy, and second, HMs
at last offer the promise of routine and accurate adjustments to the standard
uncertainty assessments based on simple random sampling, when the data
are gathered in a hierarchical fashion in the presence of large. intracluster
correlations. However, the use of these models represents a net increase in
the complexity of statistical modeling in the social sciences, and whenever
such an increase has occurred in the past (see, e.g., Gould, 1981, on factor
analysis), it has opened up the possibility of interpretive confusion and over-
statement of what may be validly concluded from a given body of evidence.

I have used this article in part as an occasion to question the uncritical
use of statistical models—not just HMs, and not just in education—with
data from observational studies and samples whose exchangeability with the
unsampled portion of the target population is uncertain. It is possible to
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interpret this as an overly harsh attack on both hierarchical methods and
observational data, but that is not my intent. Perhaps it would be good in
closing to clarify the scope of my criticism, and the role I believe each of
these things—multilevel models, and the design and analysis of observational
studies and UE sampling plans—may constructively play in social science
research.

Stochastic models for “nonstochastic” data? The main point I have tried
to make about the modeling of observational data is that it would be a net
gain for investigators to make a greater effort to justify the fitting of models
involving random variables with such data. When the data-gathering process,
either in experimental design or in sample surveys, involves the planned
introduction of randomization, it is both natural and appropriate in the model-
ing of the resulting data—from either a frequentist or a Bayesian view-
point—to regard the observations as the realizations of random variables,
and ideally to identify the parameters in such models as population values
of scientifically relevant quantities that may be estimated from the data. But
what is the logical basis for the use of stochastic models with observational
studies and UE samples? :

For concreteness, consider again the growth-curve analysis employing
model (1) by Huttenlocher et al. (1991) of data on mothers and children from
22 families in the Chicago area, self-selected by responding to newspaper
ads. If you had gathered these data yourself, you would have every right to
fit a parabola to each child’s vocabulary growth curve, to let ¢, stand for the
lack of fit of such a parabola for child i at time ¢, to notice that the quadratic
slopes from least squares do not appear to be the same for each child, to
attempt to relate these slopes linearly to some function of the amount the
child’s mother spoke to him or her, and to call the lack of fit of this second
equation U;. But what would give you the right to regard the €, and U, as
realizations of IID random variables?

The usual frequentist answer involves thinking of the data as randomly
sampled values from a population, either (a) literally chosen at random from
the collection of people of direct scientific or policy relevance, which would
both justify what I have called sampling inference and animate the parameter
estimates in model (1) and their standard errors with clear scientific meaning;
or (b) hypothetically chosen from the collection of all possible data values
you could get if you were to repeat your data-gathering activity forever,
which would justify calibration inference arising from Fisher’s hypothetical
sampling model as described above, but would lend relevance only to the p
value(s) at the heart of that inference. In the frequency interpretation of
probability, the first of these options is not available with UE samples,
leaving calibration as the only justifiable mode of inference with such data
for frequentists.

In the Bayesian paradigm, you are always free to use probability to quantify
your uncertainty about things you do not know for sure, so the Bayesian
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story looks more promising as a basis for the “random variables” part of the
phrase “IID random variables” above; and the device of de Finetti's Theorem
(e.g., Draper, Hodges, et al., 1993) allows you to pass from exchangeability
assumptions to IID. But just because you judgmentally assert exchangeability
of sampled and unsampled units or of treatment and control people (apart
from treatment status) does not make your assertion any more correct, when
the available data are gathered in a nonrepresentative fashion from the target
population or the treatment and control people differ with respect to relevant
PCFs. Being a Bayesian permits you more freedom in attempting to move
out of the top left corner of Table 2 with observational data and UE samples,
but it does not provide a guarantee that any such movement is justified.

The overall point here is that conceptual issues about the meaning of
inferential outputs come first, and have often been bypassed in the rush to
complex modeling in social science research. This has negative consequences
of both a process and an outcome character: the reification of hypothetical
population parameters (process), and the overstatement of scope of findings
(outcome). I am sure that the investigators mentioned above in the sections
“Interpreting Hierarchical Analyses” and “A Taxonomy of Inferential Strength
in Statistical Modeling” are keenly aware of the limitations of their data, and
consequently of their results, but they do not aiways communicate these
limitations effectively. If teaching and methodological research in statistics
were sufficiently good, readers of these papers would be able to figure out
the limitations for themselves, but it is probably unwise to count on this.

Making good use of observational data. 1 am not against the retrospective
analysis of data from UE samples and observational studies when that is all
one has. What I am against is (a) loose summaries of what has been learned
from analyzing them, and (b) a prospective over-reliance on them when
stronger designs are possible. When they are not possible (e.g., as noted by
Goldstein [1994, personal communication], a randomized trial at one level
~ of an educational hierarchy can often be no more than an observational study
at other levels of the hierarchy), the emphasis shifts to identifying, measuring,
and adjusting. for all relevant PCFs to better justify the assumption of
strong ignorability.

The other good use for observational data is in generating causal theories,
to be subjected later to verification or falsification with stronger research
designs. Raudenbush (1993, personal communication) identifies the tradeoff
between representative sampling and concern for intensive measurement,
and suggests that “Moving from nationally representative data with ‘thin’
measurement to local data with ‘thick’ measurement and then back to nation-
ally representative data with new insights about measurement is a sensible
way for science to evolve.” Problems arise in this approach only when people
forget to note that the results of exploratory analyses are tentative, and when
nobody bothers to do the confirmatory follow-up studies. Both of these
situations are disturbingly commonplace.
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Prediction is key. When it is working best, the scientific method has a
built-in feedback loop. You (a) formulate a theory, (b) use it to generate
testable predictions of observable quantities, together with uncertainty assess-
ments for those predictions, and (c) see how close these predictions come to
observable reality. If the fit is bad, you modify the theory; if it is good, you
think of a more stringent predictive test. Either way, you go back to the
second step. With unfortunate encouragement from the majority of statistical
practice and pedagogy over the last 50 years, the social sciences have lagged
behind other disciplines (e.g., astronomy) in the application of this formula,
and education is no exception. In the 25 or so substantive articles, book
chapters, and books on HMs in education I studied while preparing this
article, prediction was mentioned rarely and almost always only in passing.

HMs provide a natural technical framework for generating predictive distri-
butions that can help to validate or falsify educational theories: in longitudinal
analyses, by guessing at the future and waiting for it to unfold; in internal
validation of ctoss-sectional analyses, by setting aside data values and trying
to predict them from the rest; in external validation of cross-sectional studies,
by predicting what will happen in the next sampled classroom. There is a
golden opportunity for HM software developers and users to tighten up
the feedback loop by shifting some of the emphasis from inference about
unobservable parameters to prediction of observables on scales of direct
educational relevance. What will become of this opportunity?

Notes

'By comparison, the SE from an OLS model that does not include random classroom
effects is .074, a value that is misleadingly small because it does not account for the
positive intracluster correlation arising from the nesting of students within classes.

2Acwally, model (5) is not fully satisfactory, either: AMIS is so discrepant that it
is necessary to give up either normality or unconditional exchangeability in attempting
an analysis like that based on this model.

3Rodriguez & Goldman found “that the estimates of fixed effects and variance
components produced by [VARCL and ML3] are subject to very substantial downward
bias when the random effects are sufficiently large to be interesting.”
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The use of hierarchical models in statistical applications, and for educational
data, is a promising but still underutilized approach. However, because
these models are more complicated than many standard methods, it is
important that we, as users and developers, not rush 1o use them before we
understand them. We emphasize here, in support of the views on hierarchical
models expressed in the 3 preceding papers by Draper, by Rogosa and
Saner, and by de Leeuw and Kreft, the need to not diminish hard thinking
about data and iterative model checking when fitting hierarchical models,
the need for more and better software, the need to test methods to assure
their proper calibration, and the need to produce supporting materials to
aid analysts and users of hierarchical modeling methods.

The RAND conference convened researchers knowledgeable of and inter-
ested in the theory and application of hierarchical models, especially for
education data. Their concemns involved the proper use and interpretation of
such models, and the availability and quality of software.

Hierarchical models are extremely promising tools for data analysis. As
hierarchical modeling has become better understood and better supported,
its applications have proliferated in such diverse fields, besides education,
as health and medicine, quality assurance, demography, and remote sensing.
Hierarchical models are the source of considerable excitement now, with
the computing environment making their use widespread in this decade.
Nevertheless, there is the danger that these fascinating but complex models
will be oversold before their performance is adequately understood, and that
their nominal operating characteristics may not be achieved in particular
applications.

The author is grateful to the Center for Advanced Study in Behavioral Sciences
(CASBS) at Stanford University for hosting his sabbatical, 1993-1994, and to the
NSF Grant SES 9022192 at CASBS. This work was supported also by AHCPR Grant
HS 07118-02 at Harvard Medical School, which aids the development of hierarchical
models and their applications to medical and health policy data.

I also appreciate comments made by Cindy Christiansen, Ree Dawson, and Phil
Everson. :
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Hierarchical model is an umbrella term that I use here for two separate
statistical objectives described by one multilevel model. The first objective
concerns inferences about the model’s structural parameters, which govern
the Level 2 distributions (Level 2 is defined in Equation 2, below). These
are also called the random effects, the mixing distribution, the random coeffi-
cients, or the hyperparameters, from various statistical perspectives. The
second objective concerns inferences about the individual parameters. The
individual parameters are the quantities to be estimated in empirical Bayes
inference, in methods for borrowing strength, for Stein estimation, and for
multiparameter inference. Both inference problems are addressed in the “hier-
archical Bayes” literature, a term adopted and emphasized by Lindley and
Smith (1972).

The theory for inferences about the structural parameters tends to be less
complicated than for the individual parameters, and there is more commer-
cially available software for that purpose. Educational applications of hierar-
chical models—for example, those discussed at the RAND conference—tend
to emphasize inferences about the structural regression parameters. Because
the theory for structural parameter inference is easier, although not easy, the

‘models considered sometimes can be more complicated than those adopted
for individual parameter inferences.

I began my interest in hierarchical models jointly with Brad Efron, origi-
nally because we were inspired by the now celebrated work of Charles Stein,
and our work resulted in extensions of Stein’s formulation to cover more
applications (e.g., Efron & Morris, 1975). Now my interest stems from
wanting to facilitate a more general perspective of statistics required to make
hierarchical models work in practice. The original Stein setting does not
allow making certain inferences from hierarchical models—for example,
interval estimates—and it inhibits applications to distributions other than the
Normal. Still, a great practical advantage of Stein’s perspective is that it
avoids large sample asymptotics in &, the number of individual parameters,
by establishing exact operating characteristics for fixed-size samples—for
example, minimaxity for summed squared-error loss functions—and it
encourages the search for optimum estimators. The calculations in James and
Stein (1961) show that when k is moderate or small, as is common, including
in some of the example applications at this conference, maximum likelihood
and other large sample techniques provide inaccurate inferences. Examples
are provided below to illustrate the bias for small k toward overstating
precision in hierarchical models. That is, the estimates of the k individual
parameters are biased, and the precisions calculated by statistical packages
that are based on maximum likelihood are overstated when k is small. The
problem of biased variance estimates is diminished for estimating the struc-
tural parameters (random effects), but even there, variability is understated.

Because maximum likelihood procedures are used widely for variance
component estimation in the commercially available hierarchical modeling
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software, testing and evaluation of methods for analysis of hierarchical models
is needed to determine when the software provides estimates that have approx-
imately the operating characteristics claimed. Such tests will almost certainly
show for all the existing packages that estimating means is fairly robust, but
that variance estimates are too small, and that confidence intervals cover
insufficiently. These concerns will be magnified as the dimension p of the
unknown covariance matrix of the structural parameters increases (only the
case of p = 1, when 72 is a real number, is discussed here or by the conference
participants), and they will almost assuredly worsen if the number of levels
of the hierarchical model increases beyond the two levels discussed here.
Little such testing has been reported, despite Stein’s legacy.

Robustness to departures from the assumed model also needs to be under-
stood better. In particular, model checking methods must be integrated into
software. Appropriate diagnostic methods are analogous to procedures already
used standardly for regression modeling, but they must be extended to check
with data the additional assumptions made when fitting hierarchical models.

The Model and an Example

The main hierarchical models treated in the papers by Draper and by
Rogosa and Saner address Normally distributed data with regression models
for the data at Level 1, and another regression model governing the distribu-
tions of the individual parameters at Level 2 (cf. Draper’s section “Fitting
HMs in Education . .. ,” de Leeuw & Kreft's section “Multilevel Models,”
Rogosa & Saner’s section “Straight-Line Growth Curve Formulation”). Many
applications can be handled by a special case that has been widely researched
by denoting sufficient statistics as the observed data for different individuals
(e.g., classrooms or schools), the Level 1 units.

At Level 1, the data Y; follow Normal distributions

Y,~N@®,V) indep. i=1,...,k : 1

where k is the number of individuals, ; the true individual parameter, and
V; the known variance of individual i. In practice, the variances might be
unknown, but with V; estimated quite accurately from the within-individual
sum of squares, or as o%/n;, with o2 estimated by pooling all the data, and
n; the number of observations for the ith individual.

Level 2 of this model specifies the unknown distributions for 6, which
also are assumed Normally distributed.

0; ~ N(B'x;, 7 indep. i=1,... k. )

In this case, x; is an r-dimensional vector of covariates specific to the ith
individual, including any constant term. The regression coefficients for this
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structural model are denoted B = (), . . ., B,)’, and 72 is the between-groups
variance. B and 7* are the hyperparameters, or the random effects. In many
educational applications the main objective is estimating these random effects,
but there are other important applications in which estimating the vector
8y, ..., 6 of unknown individual parameters is the main interest. By
combining (1) and (2) we derive

Y, ~ NB'x, V; + 1) indep. i=1,... .k 3)

From the likelihood function for this distribution the unknown B and 72 can
be estimated, provided k is at least r + 1. Methods for estimating these
unknown random effects include method of moments, maximum likelihood,
and Bayesian methods. When k is large, any consistent method may be used,
but for small values of k the estimation may be delicate and care must be
taken to use accurate methods.

To estimate the individual parameter 9;, one has the conditional distribution
for known B and 1% '

6,|Y., B, 7 ~ NI(1 — B)Y; + B, Vi(1 — B)) C)

where B; = V/(V; + 7% and p; = B'x;. Here B, is the shrinkage factor. Values
of B; near zero indicate little shrinkage for that individual component and,
therefore, little benefit to using a hierarchical model. Values of B; near one
provide nearly full shrinkage to the mean p;, so that familiar weighted least
squares regression methods can be used to approximate the analysis. Values
of B; not near the two extremes, zero and one, give results that are substantially
different from those given by standard regression methods, and thereby justify
the use of hierarchical modeling methods. Thus, the individual values B;, or
an average of their values, serve as a diagnostic to decide when the hierarchical
model must be fitted.

This notation and a fuller description of the analysis for this Normal model
is provided in Morris (1983b). A special case, of key theoretical importance,
occurs for equal variances V; = V (James & Stein, 1961). While the assump-

‘tions of equal V; are too restrictive, rarely applying to real data, the rat data
discussed by Draper fits this model.

In this special case, the shrinkage constant B (the shrinkage values are
equal for equal variances) is estimated by maximum likelihood as k- V/ S,
subject to this value not exceeding one, where § is the residual sum of squares
of the ¥; values, taken around their fitted mean. The James-Stein estimator
uniformly dominates the maximum likelihood estimator, multiplying the max-
imum likelihood estimator by (k — r — 2)/k. This factor, always less than
unity, accounts for a bias due to using maximum likelihood in this case. The
bias is small when & is large, as in some of the examples, but it is quite
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severe in Draper’s and in Rogosa and Saner’s discussions of growth curves
with k = 22 and k = 10, respectively. For example, the Rogosa and Saner
rat data has k = 10 and r = 2, so the mle of the shrinkage factor is nearly
double the best estimate.

Moreover, most estimates use the mle of the variance V(1 — B)) in (4) as
the estimate of variance for the hierarchical modeling estimate of 6,. Not
only does using an overly large estimate of B; cause underestimation of this
variance, but even more importantly, this formula V(1 — B)) is valid only
when the hyperparameters § and 12 are known. Additional terms need to be
tacked on otherwise (see Morris, 1983b).

Let us now consider an example (Bryk & Raudenbush, 1991) for estimating
individual effects, for which the model (1)-(4) is assumed to apply. These
are the teacher expectancy data (Bryk & Raudenbush, chap. 7), which involve
k = 19 classroom studies. The 19 effect sizes Y,, ..., Yo are assumed
distributed as (1). A covariate, the number of weeks of prior teacher-student
contact, is available, as used in (2). When analyzed by HLM, or any other
commercially available package based on maximum likelihood methods, the
variances reported for the standard errors of the effect estimates 0,, when the
covariate is not used, are given by (4). All variances reported are too small,
substantially so, as shown next.

An alternative and preferable method that acknowledges and provides for
uncertainty due to estimating the hyperparameters is one based on a fully
Bayesian model, essentially that described by Draper: assigning flat distribu-
tions to the hyperparameters B and 72. (Using a flat distribution on [0, ©)
for 72 provides proper posterior distributions, and gives good properties in
the equal variance situation, where the method can be studied theoretically
[cf. Morris, 1983a].) This method, which makes the posterior density propor-
tional to the likelihood for 72, as in Figures 1 and 2, provides results quite
similar to those in Morris (1983b). When no covariate is used, the variances
for this preferred method range from 39% to 197% larger in the 19 cases
than those obtained using maximum likelihood. Use of the covariate provides
further shrinkage. In this case, the preferred analysis provides variance ratios
for the individual estimates that range from 2% to 535% larger, with a median
of 217%. That is, correct variances are triple the values given by maximum
likelihood estimation.

Estimating random effects for these data with k = 19 leads to less underesti-
mation of variances, but it still is quite noticeable. When no covariate is
used, the preferred method provides a variance that is 71% larger than the
mle does for the mean .. When the covariate is included, the variances of
the estimates of By and B, (2) are reported as 15% and 18% higher by the
preferred analysis than the corresponding values for the mle.

Figure 1 shows the likelihood function, based on (3), for the unknown
variance 72, for these 19 observations and fitting the covariate. Even though
% = 0O is the modal value, substantial likelihood is present for values of 7 up

194



Hierarchical Models for Educational Data

(=}
e B
o
-]

£ s

©

x

- o
<
o
~N
o 4
2 00 0.01 0.02 0.03 0.04 0.05 0.06

FIGURE 1. Likelihood graph (restricted likelihood, B integrated out) for 7°, teacher
expectancy data (Bryk & Raudenbush, 1991). Covariate fitted, mle is £ = 0.00. All
the likelihood lies to the right of 0, which indicates that variation is underassessed
by the mie.

to 0.15. The modal value, which is the maximum likelihood estimate, under-
states the likely values of 72. Figure 2 is the corresponding likelihood, fitted
by assuming no covariates. Note again that much more of the likelihood, as
indicated by area under the curve, lies to the right of the mode. These graphs
are the same as two equivalent ones published by Raudenbush and Bryk
(1985) except that we also think of these graphs as posterior densities on

72. Draper’s Figure 1 provides a second such example with &k = 8 (the
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FIGURE 2. Likelihood graph (restricted likelihood, B integrated out) for 1%, teacher
expectancy data (Bryk & Raudenbush, 1991). Without covariate, mle is £ = 0.14.
Most of the likelihood lies to the right of 0.14, which suggests that variation is
underassessed by the mle.
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example was originally presented in Rubin, 1981) where the likelihood for T
is maximized at zero, but larger values, in that case up to T = 15, are quite
plausible. These examples show that maximum likelihood estimation for
estimating variance components often provides estimates that understate 72,
the between-individuals variance, and therefore that understate variances.

If the purpose of hierarchical modeling is to give a more adequate measure
of uncertainty and, especially, to provide better variances of estimates, then
we still have not adequately done this when we use maximum likelihood
methods and the number of individuals k is small. The commercially available
hierarchical modeling packages provide more general analyses than those
just described for (1)~(2), including when each observation ¥; = (¥}, ...,
Y,) is a p-dimensional vector. See, for example, the models described in
Draper’s section “Fitting HMs in Education . . . ” and de Leeuw and Kreft’s
section “Multilevel Models.” The concerns about severe biases for small &
that have been raised here are likely to be more severe for higher dimensions
when p exceeds 1. More testing is needed to show, when the models are
correct, that the procedures being provided have approximately the operating
characteristics (coverage probabilities, mean squared error, etc.) suggested
by the values provided nominally. It is easy to see that this does not happen
for small k& with maximum likelihood methods.

Discussion of Three Papers

The conference was convened partly to bring together researchers involved
in a range of hierarchical modeling topics, including the proper use and
appropriate applications of hierarchical modeling. A key impetus was pro-
vided by the National Center for Educational Statistics (NCES), which asked
a range of questions about hierarchical models, four of which are addressed
by de Leeuw and Kreft. These questions imply that considerable interest and
attention is being paid to hierarchical modeling methods. That must please
those of us who have helped to foster its development and implementation,
but we must be concerned that such methods can be oversold, or are so
complicated that researchers will lose sight of practical issues. Draper reminds
us of these points with his discussion of observational data and of the different
levels of their scientific validity. The first concern in applied statistics is to
gain a deep understanding of the data and their relationships before cramming
them into some package that provides sophisticated answers. If the data lack
the basic information needed, no analysis, however cleverly done, can provide
accurate answers.

In their paper, de Leeuw and Kreft have provided simple and helpful
answers to four of the questions (relisted here in the Appendix) posed by
NCES. Further comment follows.

Question 1 presumes fitting of a “correct” model. Obviously, use of an
ill-fitting hierarchical model that recognizes two levels but that fails to capture
the essential distributions and relationships in the data could be harmful. The
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value of fitting a two-level model can be partly measured, as mentioned in
the preceding section, by computing the typical amount of shrinkage, B;.
Note that 1 — B; is akin to the reliability, as Rogosa notes in his Appendix
C. While the conference and the accompanying papers have focused almost
entirely on Normal data, hierarchical models cover other distributions, too,
including Poisson, Binomial, etc. These extensions would be needed for such
data. Besides commercial software, other researchers have been developing
free software for hierarchical analyses. Examples in the Splus program include
methods for the Normal, Poisson, and Binomial distributions now available
from Harvard (you may find out about the anonymous ftp request by writing
morris@stat.harvard.edu), and there is an Splus program for the Normal
distribution by W. DuMouchel available by E-mail at dumouch@bayes.cpmc.
columbia.edu. These programs account for all levels of uncertainty in the
models, including uncertainty in the hyperparameters.

Question 2 corresponds here, for example, to the equivalence of Equations
3-4 to Equations 1-2. As de Leeuw and Kreft note, different versions are
valuable for different reasons. I call (1)—(2) the “descriptive model,” because
it is most valuable for thinking about applications. But (3)-(4), called the
“inferential model,” is a mathematically equivalent version that enhances the
role of making appropriate inferences, also called “estimation” by de Leeuw
and Kreft. De Leeuw and Kreft provide and recommend simple, not fully
efficient methods for estimating two-level models, as do Rogosa and Saner
with their SFYS (smart first-year student) example. These approaches are
motivated by the need for simply understood results that assure one that a
more complicated analysis is valid, or that make it possible to substitute
methods based on standard software for more complicated ones. Draper takes
a very different view by predicting that Markov-chain Monte Carlo (MCMC)
methods will be widely preferred and dominant within a decade. I do not
know what direction we are headed in, but I have preferred something more
intermediate, by favoring iterative methods that compute fully efficient esti-
mates, but which converge quickly enough so that most analyses can be
obtained in a few seconds, in today’s computer environment. This is easily
done for the model (1)~(4), but it becomes much more difficult to do for
even the more general Normal models considered by de Leeuw and Kreft
and by Draper. MCMC methods have several awkward features. They cur-
rently require enormous computing time, and they do not replicate upon
recalculation because they use simulation techniques. Of course, computers
will become much faster, but even then many applications, especially for
simpler hierarchical models, can be handled adequately by the simpler models.
Another advantage of faster programs is that they can be used repeatedly to
calibrate by simulation the operating characteristics of hierarchical modeling
methods. This is an extremely important undertaking that has thus far been
mostly ignored.

Question 3 has been answered in several ways by de Leeuw and Kreft. I
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note again that the average shrinkage factor is a crucial summary that governs
‘the reduction in variance (see (4)), in addition to being the amount of shrink-
age. The variance ratio (maximum V/minimum V) is another important diag-
nostic because hierarchical models work better when this ratio is small (near
1, which is the Stein setting). To know whether any model works well requires
the use of model checking methods.

Little has been said about model checking for hierarchical models in these
papers. Standard model checking methods can be used to validate the Level
1 model, but the new requirement for hierarchical modeling is to validate
the Level 2 model (Equation 2). This can be done, subject to the validity of
(1), by making tests based on the model (3), when relates the data to the
hyperparameters. In particular, as Draper emphasizes, there are crucial
exchangeability judgments embraced in (2) that sometimes are not carefully
considered in applications, see Morris (1983b) for more on this.

Usually, good applied modeling is conducted iteratively, as one fits a model
and then checks it against the data. That iterative process is no different for
hierarchical models than for more familiar cases; it is more complicated
simply because it involves checking the Level 2 model.

Question 4 is answered with an emphatic yes by de Leeuw and Kreft, and
by Rogosa and Saner. I agree that more than HLM software is needed, partly
because of the failure of maximum likelihood methods for small data sets
when k, the number of individuals, is not large. (Note that it is irrelevant if
n;, the number of observations that comprise each of the individual data sets, .
is large; it is k that matters.) Beyond that, Rogosa and Saner note some
specific problems with the reliability of the HLM software. I will add to
those concerns by saying that we purchased HLM Version 3.0 in September,
1993. Though it performed as expected for the examples we tried with p =
1, it failed in our first example for p > 1. The program, which is based on
EM methods, did not cause the likelihood function to increase monotonically
at each step, as the EM method is required to do. Thus, we were not confident
of its convergence. Moreover, the printed results included a nonsymmetric
correlation matrix with numerous correlations not between —1 and 1. When
this example was reported to HLM, we were notified that a newer version
would not have these errors. That version, 3.01, was recently provided, and
though we have not checked it thoroughly, it does not have the problem just
mentioned for the same data. '

Summary and Recommendations

I am not sure what the limits of the topic “statistics” are, but uncertainty
and its quantification are at the core. Hierarchical modeling is an approach
that enhances our ability to assess uncertainty. I offer the following recommen-
dations as we strive together to make hierarchical modeling a widely available
and useful tool.

(1) Fitting hierarchical models is no substitute for thinking hard about data
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and its structure, and for intimate involvement in understanding and in the
careful analysis of all components of the data. As beneficial as hierarchical
modeling may be, it must not be allowed to distract the analyst’s attention
away from gaining a basic understanding of the data.

(2) Fitting hierarchical models must, like any other form of statistical
analysis, be combined with model checking efforts.

(3) For small k, maximum likelihood estimation can be distorted. In particu-
lar, hierarchical modeling methods must account for uncertainty in hyperpara-
meter estimates, which maximum likelihood estimation ignores. Bayesian
methods provide a natural way to do this. However they are derived, the
resulting inferential methods must be checked to insure when and whether
they perform well in repeated sampling.

(4) There still is much software development to be done to support hierar-
chical modeling. It must be extended to cover a variety of distributions, it
must provide formal and graphical model checking support, it must be accurate
and error free, and the operating characteristics must be tested and calibrated
to the nominal values.

(5) More research is needed on the power analysis for studies that will
use hierarchical methods. This information and methods for experimental
design and survey design need to be available to those proposing and planning
such studies.

(6) We must train users to recognize when multilevel features are present
in their data. They must be sensitive to the additional hierarchical model
requirements, including, especially, exchangeability in Level 2 of the model.
Journal and grant referees also need this information to know better if hierar-
chical models have been used properly, and to good effect. More books,
courses, and user-friendly software will help to insure proper interpretation
of analytical results and the inferences being made.

APPENDIX .
Questions posed by NCES and discussed by de Leeuw and Kreft

Question 1: Is some form of hierarchical linear model always preferable when
conducting analysis with independent variables from two levels of a hierarchical
data set?

Question 2: Some analysts are more comfortable presenting HLM results in terms
of a combined model, i.., a single regression equation containing interaction terms.
Others prefer to discuss the coefficients without recourse to a single regression
equation. Are the two approaches equally valid?

Question 3: Most discussion of HLM results centers on the individual coefficients:
the betas and gammas. There is, of course, some interest in the overall measures,
such as the proportion of variance explained. What is the best way to obtain and
present overall measures when using HLM?
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Question 4: Are there alternatives to the HLM software that NCES should con-
sider using?
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The last 10 years of active research in the area of hierarchical, multilevel
data modeling has brought problems as well as benefits. The three conference
papers reflect well both the potentialities of the new procedures and some
of the dangers we need to guard against. As in all statistical modeling of the
real world, our inferences are no better than the data upon which they are
based and the adequacy of the assumptions we are prepared to make.

The paper by de Leeuw and Kreft sounds some useful wamnings, and I
will discuss that one first. The paper by Rogosa and Saner focuses in detail
on a repeated measures application and one software package, and asks
questions about the usefulness of the available analysis procedures. I shall
have some general remarks about ways of handling repeated measures data,
but leave comments about the HLM software to Professor Raudenbush to
respond to. The paper by Draper is concerned with causal inference and ways
in which this can be strengthened by using multilevel models. He also places
these models in their historical context, and his discussion of competing
estimation procedures raises some interesting topics for future research.

de Leeuw and Kreft

This paper considers the relatively simple linear two-level model with a
continuous response variable. It provides a useful introduction by taking the
reader from a series of separate equation regressions to a random coefficients
model. The authors are right to emphasize the need to provide interpretational
guidance for users, but, in my view, tend to exaggerate some of the difficulties.
For example, the Level 2 covariance matrix of random coefficients can be
used to provide estimates of the between-school variance as a function of
the predictor variables, and this can be plotted to give insights into how, say,
the school level variation changes with social background or gender. In
addition, by calculating posterior means of the coefficients for each school,
the individual (estimated) school relationships can be plotted—remembering,
of course, that these are “shrunken” estimates. )

While the use of a relatively simple model has advantages, it ignores some
interesting extensions. It is a pity that the authors, having got as far as
considering a two-level random coefficient model, do not discuss, for exam-
ple, the modeling of the Level 1 variance. In many educational data sets we
find heteroscedasticity at Level 1. Thus, boys tend to have higher variances
for test scores than girls, and in a longitudinal study one often finds that
those students with low pretest scores have smaller variance on a posttest
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score than those with high pretest scores. Indeed, in some cases, fitting
complex variation at Level 1 considerably improves the overall explanatory
power of the model and the stability of other parameters. It is also the case,
of course, that there is now considerable interest in nonlinear multilevel
~ models, especially generalized linear models for proportions and count data,
but I shall return to that below.

The distinction drawn between simple noniterative estimation procedures
and iterative maximum likelihood (ML) or restricted maximum likelihood
(REML) is now, I think, rather artificial. The standard advantages of ML or
REML in terms of efficiency are important and the computational penalty is
not usually very severe. The simpler methods are, however, sometimes more
robust—a property shared with the iterative generalized estimating equation
(GEE) approach (Liang & Zeger, 1986). This property may be useful, for
example, when we suspect that multivariate Normality does not hold, but for
most social scientists it is the structure of the model which requires explication
rather than the details of the estimation procedure.

I'am, of course, delighted that the authors, in their final section on software,
speak well of the flexibility of the ML3 software. This flexibility was designed
from the outset because we wished to have an open general system that could
easily incorporate new developments. This has allowed us to add facilities,
such as the ability to handle random cross-classifications, measurement errors,
and nonlinear, especially generalized linear, models, as the relevant estimation
theory has been developed. This is currently coming to fruition in the form
of the next, many-level version, MLn.

There is a danger, and this paper reminds us of it, that multilevel modeling
will become so fashionable that its use will be a requirement of journal
editors, or even worse, that the mere fact of having fitted a multilevel model
will become a certificate of statistical probity. That would be a great pity.
These models are as good as the data they fit: they are powerful tools, not
universal panaceas.

Rogosa and Saner

Repeated measures data constitutes a very good example of a situation in
which a two-level model is really essential, because most of the variation
typically is at the higher level. The literature on fitting repeated measures
data, especially from growth studies, has a long history (see, for example,
Goldstein, 1979) and its formulation as a two-level model immediately solves
a great number of outstanding problems.

One of these is that previous models, based upon a multivariate formulation,
were able to handle only measurements made at discrete times, possibly with
some missing responses. In the two-level formulation, this requirement is
completely unnecessary and we can have any pattern and number of repeated
measurements per individual, including individuals who contribute only one
measurement, and obtain fully efficient (ML or REML) estimates using any
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of the existing multilevel software packages. It is a pity, therefore, that the -
authors stick with discrete time data sets, because their conclusions about
comparisons among estimation procedures rely heavily on the fact that their
example data sets are highly balanced.

The authors make a useful point about data description and presentation.
Nevertheless, after fitting a two-level model we can estimate residuals (poste-
rior means) and plot their standardized values in a number of ways, which
generally will be more reliable than the simple OLS plots when the number
of measurements per individual is small. The authors are also right to point
to the little work that has been done on study design.

Finally, it is worth pointing out that the basic two-level repeated measures
model can be extended in a number of useful directions. At the Institute of
Education, we have recently completed work on fitting models where the
Level 1 residuals have an additional time series structure, which often occurs
in growth data with measurements taken close together in time (Goldstein,
Healy, & Rasbash, 1994). The models can also be extended to multivariate
responses and can be used to provide efficient methods for growth prediction
(Goldstein, 1995).

- Draper

David Draper’s discussion of justifiable inference is clear and a further
useful reminder that we should pay as much attention to the source of our
data as to the methods of their analysis. The discussion of Huttenlocher’s
analysis, however, raises a further issue which is not discussed.

When researchers use convenience samples, they sometimes do so because
they have evidence (or a view based on their professional experience) which
leads them to believe that there is a close correspondence between their
convenience population and the real population of interest. The problem is
that this correspondence is uncertain and difficult to quantify and is often
not made explicit. Yet it does sometimes happen that inferences based upon
formally inadequate samples give accurate inferences or predictions—voting
intention surveys are a case in point and this may be more than just luck.
Of Draper’s examples, some fall into this category. Among them is one on
fitting growth curves to London children which I used in my book (Goldstein,
1987). This is an interesting case because I was clearly guilty of improperly
contextualizing the study which produced the data. In fact, that study was
one of a series of collaborative studies across Europe of which one of the
intentions was to see whether growth patterns could be replicated. It tumns
out that in the area of child growth there is indeed a considerable uniformity
of pattern across different population groups (Tanner, 1962) so that there is
good reason to feel confident about the generalizability of the results. From
a scientific point of view, it is the replicability of findings in very different
contexts that is usually more convincing than the evidence from a single
representative sample. The moral would seem to be that investigators should
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be more explicit about all their sources of evidence when they attempt to
produce generalizable statistical inferences. This could be added to Draper’s
list of desiderata in his section “The Value of Explicitness in Inferential
Conclusions.”

From my point of view, the main reason for producing the Guardian value-
added survey was to counter the misuse by the British government of raw
school examination results to produce league tables. The intention was to
demonstrate that both adjusting for intake achievement and presenting uncer-
tainty intervals were necessary, although not sufficient, conditions for valid
comparisons. We were not primarily interested in causal inferences, although
I believe that the data are adequate enough for that, and we are currently
pursuing it.

The emergence of Markov-chain Monte Carlo (MCMC) methods such as
Gibbs sampling is clearly very important for a wide range of estimation
problems, especially where there are small numbers of units. It is not at all
surprising, of course, that in Rubin’s example with eight Level 2 units, the
likelihood estimate of the variance is zero and that the inclusion of prior
information gives a positive estimate. In a likelihood framework this empha-
sizes the importance of procedures such as bootstrapping, which, like MCMC
methods, allows accurate assessment of parameter uncertainty.

It is interesting that Draper quotes Rodriguez’s findings on the bias in
estimation for multilevel models with binary responses. This has led to
collaborative methodological work resulting in a considerable improvement
(Goldstein, 1995) and is an example of the kind of critical evaluation of
techniques which Draper emphasizes.

References

Goldstein, H. (1979). The design and analysis of longitudinal studies. London: Aca-
demic Press. '

Goldstein, H. (1987). Multilevel models in educational and social research. Lon-
don: Griffin.

Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London: Edward Amnold;
New York: Halstead Press.

Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models
with applications to repeated measures data. Statistics in Medicine, 13, 1643-55.

Liang, K., & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear
models. Biometrika, 73, 45-51.

Tanner, J. M. (1962). Growth at adolescence. Oxford: Blackwell.

Author

HARVEY GOLDSTEIN is Professor, Institute of Education, 20 Bedford Way, London,
WCIHOAL, England; hgoldstn@ioe.ac.uk. He specializes in the modeling of
hierarchical data structures.

204



Journal of Educational and Behavioral Statistics
Summer 1995, Vol. 20, No. 2, pp. 205-209

Hierarchical Models and Social Sciences

Nicholas T. Longford
Educational Testing Service

Key words: educational process, noninformative allocation, observational study,
uncertainty

The view is presented that multilevel methods are just one element in a
hypothetical complete analysis of observational data on human subjects.
In most contexts several sources of uncertainty, in addition to those captured
by a multilevel analysis, are present, and so the confidence placed in the
results of a typical multilevel analysis is unrealistically optimistic. A “soft-
ware-free"” analysis of longitudinal data with rectangular design is outlined.
Questions posed by the National Center for Education Statistics and elabo-
rated by de Leeuw and Kreft are briefly discussed.

Sources of Uncertainty

Multilevel models have, in recent years, provided a powerful impetus for
methodological developments in statistics with orientation toward applica-
tions in social sciences. The relevance of multilevel models to several promi-
nent problems in educational research, such as school effectiveness studies
and longitudinal surveys, is well established. Researchers are invited to apply
these methods by several software packages, and there is a burgeoning list of
references illustrating and offering advice on their use. However, substantive
products, in the form of contributions to understanding or to improvement
of educational processes, are few, if any.

Multilevel methods are commonly credited with improved estimation, espe-
cially of the standard errors of the model parameters. The core of the argument
about the improvement is the more realistic nature of the model in comparison
with its by-now outdated ‘alternatives. A finer issue is the extent of the
improvement afforded by the multilevel models. Optimism about this issue
is widespread, although, in my view, not always justified or well qualified.
I believe that in any study involving students and their mental performance,
there are numerous sources of uncertainty which have a nontrivial impact
on the conclusions of the analysis.

By way of illustration, consider a study in which students in a number of
classes are given a test at the beginning of an academic year, and another
test, for the same domain of knowledge, at the end of the academic year, We
are interested in the “population-average” improvement and in the differences
in the mean improvement across the classes.

Bob Mislevy’s comments on an earlier version of this paper are acknowledged.
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First, the representation of the tested domain in the test form(s) or other
measurement instruments used is bound to be imperfect because there are
no well-established standards for assessment of the representation, and, in any
case, the domain itself does not have an unambiguous definition. Reference to
large sample size is out of place because for the relevant kind of “averaging,”
we need a large number of test forms. Next, instead of students’ abilities,
we can, at best, measure their performances, which are subject to temporal
variation, and affected by motivation and other everyday influences. Further,
each test has a finite length, and so it is associated with imperfect reliability,
even after conditioning on performance. For comparing classes, we want to
extract the net contributions of the instruction by teaching staff and the
classroom/school environment (further uncertainties about what this means
.. .); the pretest score is an important variable to condition on, but it is far
from sufficient. In principle, additional conditioning (background) variables
may isolate the classroom effects as certain adjusted differences. These back-
ground variables have to be such that the allocation of students to classes be
conditionally noninformative. Unfortunately, it is rarely possible to assess
how close we are to this state of affairs. Although each additional conditioning
variable takes us closer to the noninformative assignment, it also contributes
to model complexity and ill-conditioning, especially in modeling between-
cluster differences.

Some of these problems would disappear if students were assigned to
classes at random, or by a noninformative design. Such an allocation is
unrealistic, though, and the impact of the realized allocation cannot be
assessed. The elegant but dishonest approach we tend to exercise is to ignore
this and other sources of uncertainty. Such dishonesty, or economy of integrity,
catches up with us collectively when we realize that the conclusions of any
study apply to an extremely narrow context, and that in a slightly different
context, radically different conclusions have been arrived at using different

_measurement instruments, testing conditions, conventions for modeling, and
software. Hutchison sounded the waming most eloquently in discussing the
controversy over the teaching styles study of Bennett (1976):

If the reading public interested in education, and in this I include politicians

and administrators, as well as teachers and parents, are to become used to

a pattern of publication of clear-cut results followed by their complete

dismissal by some apparently equally eminent authority, then the credibility

of any educational research and its statistical foundations will be, at least,

very seriously eroded. (Hutchison, 1981, p. 443)

This criticism may invite a whole spectrum of responses. One extreme,
exemplified by Freedman (1988), is to dismiss any results or conclusions of
observational studies as of little practical relevance, referring to a too primitive
description and incomplete understanding of the processes underlying the
imperfectly recorded observations of imperfectly defined quantities. The other
extreme, to ignore these problems and present an optimistic picture of
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unequivocal conclusions, is strongly encouraged by the desire to deliver
goods (reports, publications, or the like) and the hope, in most circumstances
a realistic one, that their quality and integrity will escape close scrutiny.

I do not wish to stake out my position in this spectrum because I believe
that any position is poorly informed. A way out can yet be found by the
balance of a formal approach, of which multilevel methods are a component,
and informal assessment of the sources of uncertainty associated with the
features of the analyzed study that are not modeled formally. Although it is
hard to admit to more uncertainty than what is indicated by the “correct”
standard errors obtained using the “appropriate” software, we have to combat
the prospect of uncertainty being calibrated by the reader (“Oh yes, the
standard errors are quite small, but it is only a study”). Unbiased and efficient
estimation of uncertainty about the quantity of interest is almost as important
as efficient estimation of the quantity itself.

Inertia and the widespread but ill-conceived notion of statistical signifi-
cance as the raison d’étre of analysis in much of social science statistics
stand in the way of integrity. How can an analyst admit to uncertainty and
lack of significance when highly significant results are the norm in our field
and imply good study design? In view of the considerable resources that
were invested in the survey design and data collection, any mention of
uncertainty may be met with incredulity. This reaction is, to a large extent,
conditioned by the partisan and therefore questionably qualified justification
for high expenditure on educational surveys.

Mislevy (in press) presents a critique of the studies comparing educational
achievement across countries. Several points he raises, not all of them elabo-
rated here, carry directly over to large-scale national or statewide surveys.

Longitudinal Data
When each subject i = 1, ..., I is observed at times j = 1, ..., J, the
observed vectors y; = (¥, . . . , ) are arandom sample. Assuming normality,

the distribution of this sample is fully described by its expectation p = E(y,)
and variance matrix 2 = var(y;). Imposing no structure, that is, fitting the
saturated model, i and 3 are estimated straightforwardly:

X

b -
"
] —

[
Il

1 1
T 0 - T
i=1

with the sampling variance matrix for {i estimated by /~'S. Any structure
on the mean p or the variance matrix % can be imposed by suitable averaging
of the estimates from the saturated model; it is easy to see that, in essence,
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this is what the Fisher scoring and generalized least squares iterations do.
This approach is not wedded to covariance structures arising from multilevel
models; structures arising in times series or graphical models can be fitted
with equal ease, even in the presence of subject-level explanatory variables
(see Longford, 1993, chap. 4).

NCES Questions

The questions posed by the National Center for Education Statistics (NCES)
acknowledge the complexity of the hierarchical linear models and their soft-
ware implementations. What Question 1 refers to as “forms” of the models
are best perceived as conventions or ways of presenting the models. The user
will do best service to the data by being acquainted with several forms, so
that the models can be inspected and discussed from a variety of perspectives.
This applies also to Question 2. Any reasonable model has a description in
both forms; any lack of invariance should be viewed with utmost suspicion.

A particular software package may rely on one form, but that may be no
reflection on the merit of the other forms or on the merit of the software.
The software should not dictate the terms on which the analysis is to be
performed, but rather should humbly serve the purpose of the analysis. Dedi-.
cated use of a single specialized package, even in a narrow range of applica-
tions, is a recipe for the software to impose on the analyst the questions to
which it provides the answers.

The importance of the user’s control over the data handling and estimation
process is generally underrated. The most suitable software package is the
one that affords most control, but that control cannot be effectively exercised
without expertise. Some deficiencies in software can be compensated for, but,
when dealing with complex problems, deficiencies in (statistical) expertise are
much more difficult to overcome.

The “proportion of variation explained” is an anathema when we are unable
to do any explanation. At best, we can identify some patterns in the data,
but cannot infer directly (carry out a test) why these patterns arise. There
are straightforward extensions of the R? familiar from ordinary regression.
Simply, we compare the reduction of the variance component at each level
due to the covariates; see Longford (1993, sec. 2.11) for details.

Software

Software packages for multilevel analysis are regarded by many users as
embodiments of the implemented methodology. All too frequently I have
been addressed the self-dismissing comment, “I am only a user ... who
wants to do a correct analysis.” Paying more attention to features of software
packages than to features of methods implies predominance of technological
aspects over theoretical ones in applications of statistics. I do not regard this
as a desirable trend in social statistics because it promotes a trivial mechanical
approach to statistical analysis.
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It has now been 14 years since Leigh Burstein’s (1980) influential review
of the profound inferential difficulties associated with prior quantitative
inquiry on schools and classrooms. That far-ranging discussion focused on
the mismatch between conventional statistical models and the realities under
investigation. Models were single-level, founded on the naive assumption
that persons respond independently to educational practices. This atomistic
conception of social life, unsatisfying as a conceptual framework to guide
inquiry, also produced a host of statistical difficulties: forced choice of unit
of analysis; unnecessary trade-offs between misestimated precision and weak
power; aggregation bias; and unexamined heterogeneity of regression.
Burstein argued that more sensible statistical models were essential to progress
in conceptualization, measurement, design, and analysis, and called for a
comprehensive reform in statistical practice based on multilevel models. For
similar views, see Cronbach and Webb (1975), Cronbach (1976), and Aitkin,
Anderson, and Hinde (1981), among others. '

This special issue of JEBS marks how far the field has advanced in the
14 years since Burstein’s review. Motivating the special issue is a sea change
in statistical analysis during that time:

® It is now routine to formulate coherent and quite general models for
cross-sectional data having two levels (e.g., students within schools),
three levels (students within classrooms and schools), longitudinal panel
models, longitudinal models for students nested within social settings,
and cross-classified models for cross-sectional data (e.g., students nested
within neighborhood-by-school cells) or for longitudinal data (e.g., stu- -
dents migrating across social contexts such as classrooms).

® Efficient estimation procedures are now readily available and rapidly
becoming computationally fast for each of the designs mentioned above,
allowing for covariates at each level having fixed or random effects and
unbalanced designs.

® Significant changes in streams of inquiry parallel—and are facilitated
by—changes in modeling perspective. Rather than looking at schools
as adding a constant to each student’s knowledge, schools are viewed
as modifying the entire social distribution of outcomes within them
(e.g., Lee & Bryk, 1989), consistent with the best thinking in sociology
of education (e.g., Bidwell & Kasarda, 1980; Barr & Dreeben, 1983).
School effects are increasingly conceptualized as effects on learning
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rates rather than on status, as evidenced by the planned Early Childhood
Longitudinal Study sponsored by the National Center for Education
Statistics.

® When the data are hierarchical, naive applications of marginal indepen-
dence models (models assuming independence given only the fixed
effects), which previously enjoyed a near monopoly, are no longer
acceptable in the minds of journal reviewers in education, psychology,
sociology, and allied fields. These reviewers now assume, as did Burstein
in 1980, that we can do better. Now, in fact, we can.

The three articles before us can be only be appreciated or even understood
in the context of the sea change described above. Rapid change must provoke
critical reexamination. A novel approach can quickly become the new ortho-
doxy, drowning the critical spirit that produced it. It is a mark of the maturity
of the multilevel movement that this time has come, and the spirit of reexami-
nation is served well by the articles in this special issue. It is our loss that
Leigh Burstein’s untimely death has prevented his seeing this special issue
and sharing his insights on it. '

Statistical Inference and Scientific Judgment: A Response to Draper

We are indebted to David Draper for stimulating a needed discussion about
the logical basis for statistical and scientific inference in social science. The
topic of hierarchical models (HMs) serves as the occasion for this broader
discussion; his criticism of particular applications using HMs could apply
equally to any number of nonrandomized studies using convenience samples,
regardless of analytic technique. :

Methodologists differ in their beliefs about the requisite conditions for
valid statistical inference. There are strict constructionists, who view statistical
inference as meaningful only when a probability sample has been selected
from a well-defined population. A second, broader perspective is that any
collection of data is a sample from some population, and that, although the
target population for inference remains tentative, statistical inference is useful.
A third, Bayesian perspective views probability as subjective uncertainty
about the process that produces data rather than relative frequency in a
population. The notion of exchangeability (de Finetti, 1964) is often function-
ally equivalent to assuming the data arise from a simple random sample. The
advantage is that exchangeability lays the basis for rational decision making
under uncertainty even when no formal sampling mechanism is involved. In
the Bayesian view, conclusions from empirical research combine new data
with prior information to produce a new synthesis. If we adopt the essence
of the Bayesian learning model in forming scientific judgments, we find that
when the design of the study is weak, we must lean more heavily on prior
information, including, for example, the stream of research of which the
latest study is only one part. This learning model avoids unproductive dichoto-

211



Raudenbush

mies (a scientific inference either is or is not justified), leaving a role for
degrees of belief and scientific judgment.

Although Draper describes three levels of inference, when the rubber hits
the road, he’s a strict constructionist. Because Huttenlocher et al.’s (1991)
study involves a convenience sample of mother-infant pairs and because
random assignment of mothers to speech conditions was not employed, Draper
writes, “I find no scientific meaning in the parameter estimates and SEs
Huttenlocher et al. report.” Elsewhere, he makes clear that he expects uncer-
tainty about scientific conclusions to be quantified by a confidence interval
(he criticizes a classroom study for failing to modify a confidence interval
to reflect “uncertainty about the validity of causal inferences”).

Although my own applications of hierarchical models and those of Anthony
Bryk have mostly involved probability samples from well-defined popula-
tions, we both tend to be broad constructionists. To me, a statement that two
groups “differ significantly” (p < a) is a statement about the probability of
obtaining a difference of a given magnitude between two groups randomly
sampled from the same population. The statement that two groups “differ
significantly” never by itself implies that this difference generalizes to a
defined population, nor, contrary to Draper’s assertion, should the finding of
a statistically significant difference between groups by itself imply the exis-
tence of a causal relationship. A small p value or a short confidence interval
(a statistical inference) can only supply one piece of evidence in favor of a
particular scientific inference. Random sampling and random assignment
strengthen the case. However, I believe there are many examples in educa-
tional work where intensive investigation of teaching and learning processes,
even though based on convenience samples, has substantial scientific merit.
Given limited resources for research, there is often a trade-off between a
concern for nationally representative sampling and the concern for intensive
measurement. It is too facile to say that sampling is always primary in science.

Statisticians like to think that causal inference and causal generalization
can usually or should always be based on methodological grounds alone. I
doubt, however, that science works this way most of the time. Rather, causal
assertions, such as the assertion that smoking causes lung cancer, likely
require a case based on a web of evidence from a variety of sources interpreted
in the light of the best available theory. In the case of smoking, evidence
has accumulated over time: correlational evidence on humans; experimental
evidence on animals; mechanistic evidence based, for example, on the lung
tissues of smokers and nonsmokers. Over time, the burden of proof gradually
shifted from the proponents to the skeptics of the assertion that smoking
caused lung cancer. The skeptics could invent alternative theories for the
elevated incidence of lung cancer among smokers, but their theories were
less plausible and fit less well with the entire body of evidence (which was
undoubtedly made up of individually flawed studies). The case in favor of
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the causal inference was more coherent theoretically and fit better with
relevant streams of research.

To make an analogy with smoking and lung cancer, many of the best
educational researchers are now doing research that is more like looking at
lung tissue than like computing correlations between smoking and lung cancer
or conducting smoking experiments on animals. When I raise with my col-
leagues in educational psychology the arguments Draper raises about the
importance of representativeness (which I do frequently!), they often say that
to study classes, kids, teachers, and processes in the depth they feel is
necessary is difficult or impossible in a large probability sample.

In defense of my colleagues, I doubt if too many cell biologists take a
random sample of lung cells from a nationally representative sample of
citizens in order to study the mechanisms by which smoking putatively affects
the probability of lung cancer. Yet, such mechanistic research has apparently
been decisive in creating a consensus among experts about this causal linkage
and its generalization.

We cannot wait for the perfect social science study that randomly selects
subjects from a large and well-defined population and then randomly assigns
subjects to treatments, employing valid measures to allow unquestionable
and generalizable causal inferences. Such a vision is useful to promote better
research practice, but not as a description of how social science or epidemiol-
ogy has typically advanced or will typically advance (see Kuhn’s [1962]
discussion of the myth of the single decisive study). To adopt such rigid
expectations will inevitably lead to discounting the value of each individual
study, undermining the possibility of recognizing contributions of streams of
necessarily imperfect social research.

Let us apply the broad constructionist view to the Huttenlocher et al. (1991)
study. Although Draper, a statistician, “finds no scientific meaning” in the
relationship between maternal speech and acceleration of language develop-
ment found in this study, Huttenlocher, a developmental psychologist inti-
mately familiar with theory and prior research in the area, does find scientific
meaning, as do the reviewers of Developmental Psychology. Draper criticizes
the study for failing to control nonverbal communication, but Huttenlocher
and the reviewers apparently find no prior theory or evidence that such
nonverbal communication is related to vocabulary development, and perhaps,
given the small size of the sample, worry about overfitting the model. Draper
sees as too unqualified Huttenlocher et al.’s assertion that “The present study
provides the first direct evidence that amount of exposure [to maternal speech]
is important to vocabulary growth”; he is perhaps concerned about the use
of the word “important.” In contrast, Huttenlocher et al. emphasize the word
“first” in that sentence (Bryk, personal communication); they know that it
will take a number of replication studies on diverse samples to strengthen
confidence in its generalizability. Although I admittedly have adopted the
voice of the scientist in this dialogue with the statistician (how else would
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that voice be heard here?), I view the dialogue as useful. Textbook discussions
of design do not end scientific disputes.

Choice of model (HM versus other) is orthogonal to one’s stance as a
strict versus broad constructionist; whatever the stance, one might love or
hate HMs for a given study. The utility of HMs to summarize evidence in
the “Cognitive Strategies in Writing” example depends on their capacity to
produce a more precise estimate of an adjusted mean difference (than would
be found in an aggregated analysis) with an honest confidence interval (as
compared to a conventional student-level analysis assuming marginal inde-
pendence). Whether such a statistical inference should be interpreted causally
depends on scientific judgment which must be informed by an elaborate set
of analyses and substantive considerationis that have little to do with the
modeling issues at hand in chapter 5 of Bryk and Raudenbush (1992). To
set the record straight, no causal inference was made in the original exposition:
A statement that one group of children scored higher than another is not a
causal inference; such an inference requires an explanation of the observed
difference between the two groups and not merely a recognition of its
existence.

I found the last four sections of Draper’s paper quite satisfying. Partly this
response reflects self-gratification, in that Raudenbush and Willms (in press)
have proposed a way of thinking about the estimation of school effects that
I view as entirely consistent with Draper’s section on “The Use of HMs in
School Effectiveness Studies,” while his section “Hierarchical Models and
Meta-Analysis” is consistent with my past work on meta-analysis. Moreover,
the algorithmic work Draper proposes (e.g., finding sensible combinations
of EM and Fisher scoring/IGLS') is well under way in a beta version of
HLM. Bayesian estimation via Gibbs sampling is especially appealing when
there are small numbers of higher-level units. An example is Seltzer’s (1993)
reanalysis of the Huttenlocher et al. data with a ¢-prior with 5 df. (By the
way, this analysis gave stronger evidence of a link between maternal speech
and vocabulary acceleration than was found in the original analysis). However,
the Bayesian approach runs somewhat counter to the spirit of de Leeuw and
Kreft’s advice, to which I now turn.

de Leeuw and Kreft: Choice of Models, Methods, Algorithms,
Software—and Interpretations

This article provides an exceptionally lucid response to commonly asked
questions about HMs for multilevel analysis. Its essential strength is in
separating choice of model from choice of estimation method, choice of
method from choice of algorithm, and choice of algorithm from choice of
software. It is essential for analysts to understand that each choice involves
a wide set of options—wider than many have realized. Increasing the recogni-
tion of this fact alone makes the article useful. The authors adroitly explain
how issues of interpretation are embedded in modeling, in particular, how
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the “two-step” approach to model specification can enhance understanding
of the model parameters.

I wish, however, that the article had clarified the final sentence in the
abstract. Even if the researcher is interested only in the fixed regression
coefficients of studies having two-level designs with large groups and small
intraclass correlations (a setting that seems exceptional in educational
research), it is not clear to me which “traditional techniques perform as well
or better” than “multilevel models.” In fact, the comparison of “traditional
techniques” and “multilevel models” seems to violate the useful distinction
between choice of model and choice of method of estimation. I trust that by
elaborating on this concern I will not conceal my overriding applause for
the article. »

Under the now standard model of de Leeuw and Kreft’s Equations 18 and
19, the ordinary least squares (OLS) estimator of their Equation 22 is a
consistent (though not efficient) estimator of y. As the authors mention, it
is trivial to compute consistent standard errors for their Equation 24 as
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This approach combines OLS point estimates with a robust “Huber-corrected”
sampling variance estimate. However, following Zéger, Liang, and Albert
(1988), we can compute the generalized least squares (GLS) estimate of
Equation 26, or, equivalently in the case of full-rank data, Equation 27,
based on efficient variance-covariance estimates, and then compute robust
sampling variances:
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This approach also provides robust standard errors, that is, standard errors
that are insensitive to assumptions about the covariance structure. However,
when model assumptions are sensible, the approach yields asymptotically
efficient point estimates of the fixed effects and covariance components along
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with empirical Bayes estimates of B, for each unit j, and readily extends to
the rank deficient case and to three-level or cross-classified structures. The
only price to pay is more intensive computation, a small price given increas-
‘ingly efficient hardware and software and the asymptotic superiority and
generality of generalized least squares with variance estimates (2) as compared
to OLS with variance estimates (1).

It should be emphasized that even Equation 1 is based on a “multilevel
model,” specifically, a two-level structure. Robust standard errors for OLS
estimates in a three-level setting would require a different algorithm. Thus,
the estimates are not robust to misspecification of the number of levels in
the structure. This should be emphasized lest readers view the endorsement
of “traditional techniques” or “unweighted least squares™ as support for
marginal independence models. _ :

Finally, a note on algorithms: HLM uses the Aitken accelerator (Laird,
Lange, & Stram, 1987) to speed convergence. A beta version now uses Fisher
scoring and EM with good results to combine the advantages these authors
have skillfully identified. Apparently there are no “older” packages with which
the new packages can compete, just old labels for ever-changing programs.

Rogosa and Saner: Demystifying the Demystification

Rogosa and Saner describe as “their main expository purpose” to “demys-
tify” HM analyses of longitudinal panel data by comparing results obtained
from the HLM program to those obtained from simpler approaches using
comparatively simple examples. Extensive reanalyses of balanced data sets
using straight-line growth models reveal that HLM gives identical results to
those obtained in a two-step OLS analysis. The authors find this equivalence
“surprising if not disconcerting,” but I find it neither.

It is well-known that restricted maximum likelihood (REML), the method
of estimation used in HLM, duplicates the standard mixed-model ANOVA
results for the classical balanced experimental designs. Raudenbush (1993b)
shows equivalence in the case of one-way random effects, the two-factor
mixed hierarchical design (e.g., students within classes within treatments),
randomized blocks design (with repeated measures on students or longitudinal
panel models as a special case), and the mixed model for two-way cross-
classification (e.g., children within treatments implemented at each of many
day-care centers). The article shows how estimates and exact ¢ or F tests for
fixed effects and variance parameters can be recovered from the HLM output.
Canonical examples are those simple data sets in the chapters of Kirk (1982)
corresponding to these research designs. Complete raw data, classical ANOVA
results, and HLM results are presented with detailed specification of how to
reproduce the classical results using the more general approach. Similarly,
the three-level model allows analysis for the three-factor hierarchical design
and several more complex split-plot designs (e.g., persons changing over
time and nested within classrooms that are, in turn, nested within treatments).
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Crossed random effects models (e.g., Raudenbush, 1993a) map to a variety
of designs having cross-classified random factors. Goldstein (1987) has shown
how HMs can duplicate standard multivariate results.

Thus, HMs based on REML duplicate the familiar balanced data results
for the classical designs while facilitating generalization to the more complex
data characteristic of educational field research having unbalanced designs,
covariates at each level (e.g., time-varying predictors), and continuous and
discrete responses. These models therefore combine the virtues of the experi-
mental design literature (which emphasizes the need to understand sources
of variation in data and how these sources affect inference) with the key
virtue of the general linear model (flexibility in incorporating continuous and
discrete covariates in linear models). ‘

Features of Rogosa and Saner’s article that I found most valuable included
an emphasis on description, graphical display, and model checking using
simple diagnostics. Although these have been underemphasized in many
methodological discussions, the HLM program includes a residual file that
can be used for a variety of model-checking and data exploration procedures
described in detail in chapter 9 of Bryk and Raudenbush (1992) and in the
current HLM manual (which uses data from High School and Beyond rather
than the “rat data”). Included in this file are least squares equations for each
unit having full-rank data and empirical Bayes equations for all units. Rogosa
and Saner’s emphasis on better uncertainty estimation for variance compo-
nents and random effects is also well placed. Large-sample standard errors
based on the information matrix are least useful when such estimates are
most needed—when the number of higher-level units is small. The bootstrap
as implemented in Timepath appears to be an attractive alternative for bal-
anced data. However, for unbalanced designs, resampling must be multilevel
and is computer-intensive (Laird & Louis, 1987; see Bagakas, 1992, and
Raudenbush & Willms, in press, for educational applications). Bayes estima-
tion via Gibbs sampling (e.g., Seltzer, 1993) provides posterior distributions
for parameters and functions thereof. However, the approach imposes new
assumptions in the form of prior distributions, which may not be friendly to
Rogosa and Saner’s perspective.

There are many specific issues raised in Rogosa and Saner’s article to which
I could respond in detail.? Conditional reliability estimates and correlations
between random effects, for example, have clear meanings (see Raudenbush &
Bryk, 1985, p. 66, with application to studies of school differences controlling
demographic background). Space limitations forbid such a detailed response.
It seems more useful in any case to focus in the future on the useful issues
Rogosa and Saner raise concerning description, model checking, and uncer-
tainty estimation for variance-covariance components. In pursuing these,
simulations and model comparisons are likely to be most useful when the
data are unbalanced and the number of higher-level units small.
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Morris’s Overview

Carl Morris has made seminal contributions to the theory of hierarchical
models and his comments on applications of these models in education are
most helpful. While I agree entirely with his recommendations, I offer a few
qualifying remarks designed to discourage readers from overgeneralizing his
criticism of maximum likelihood (ML).

Morris correctly points out that when the number of Level 2 units, k, is
small, inferences about individual effects, 8;, and Level 2 regression coeffi-
cients, 8, conditional on ML point estimates of the Level 2 variance, 72, can
be misleading. He reanalyzes data from Raudenbush and Bryk (1985) to
illustrate this point and recommends a Bayesian approach that fully takes
into account uncertainty about 72. I certainly agree with this analysis and
view it as entirely consistent in spirit with the purpose of Raudenbush and
Bryk (1985). Rather than employing a Bayesian analysis, that article plotted
the likelihoods Morris plots in his Figure 12 and examined the sensitivity of
all inferences to likely errors of estimate of 12 Our conclusion was that
inferences about the Level 2 regression coefficients were less sensitive than
inferences about the individual effects and relatively insensitive after the
covariate was added. A detailed discussion of this problem along with recom-
mendations similar to those of Morris appears in Bryk and Raudenbush (1992,
pp- 220-222). Does this imply that maximum likelihood should never be
used when k is small?

The answer, in my opinion, is no. When the data are balanced, REML
estimates for hierarchical designs duplicate the classical ANOVA results,
giving exact F tests for the Bs and for 72. When the data are unbalanced, the
sensitivity of inferences about B to errors of estimation of 72 will depend on
the degree of imbalance. This sensitivity is large for the teacher expectancy
data in the case of no covariates not only because of the uncertainty about
7? but also because of the radical imbalance in Level 1 variance across the
19 studies under synthesis. My comment is not in disagreement with Morris’s
view, which primarily concerned inferences about the individual effects, ;.
It is, rather, an elaboration of the conditions under which REML will mislead
with respect to the Level 2 coefficients, B, the focus of interest in many
educational studies. Fotiu (1989) has provided a simulation study comparing
REML and Bayes estimation via Gibbs sampling and shown that inferences
about B estimated via REML and based on a ¢ reference distribution are quite
robust unless the imbalance is very pronounced. Raudenbush, Cheong, and
Fotiu (1994) compare REML and Bayes estimates in cross-national compari-
sons of reading literacy.

A final word on software: Knowing that the HLM software had been
thoroughly evaluated in simulation studies by Bassiri (1988) and Fotiu (1989),
and having been involved in extensively checking HLM3.0, I was concerned
to read about Morris’s experience with HLM3.0. An inquiry with Scientific
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Software (SSI) revealed that the errors he described were introduced when
~ SSI ported HLM3.0 to the Sun Workstation. Flawed versions of HLM were
distributed to four Sun users, all of whom were subsequently sent HLM3.01,
which cormrected the flaw. The much more widely used PC version was not
affected. This experience reinforces Morris’s recommendations for the most
painstaking and extensive testing of software even after seemingly minor
modifications. I apologize to him and anyone else inconvenienced by this
error.

Notes

'Fisher scoring can be shown to be mathematically equivalent to iterative general-
ized least squares (IGLS) in the case of normal data and normal random effects
(Raudenbush, 1994).

" ?For example, Rogosa has claimed for years to have an early version of HLM that
produced “wild results,” but, despite repeated attempts at correspondence, I have not
been able to obtain this version of the program or the data he analyzed. Nor have their
been any data-destroying fires or reported fires in the Raudenbush or Bryk residences.

¥These likelihoods are equivilant to posteriors if 72 is a priori uniform on the
nonnegative real line.

References

Aitkin, M., Anderson, D., & Hinde, J. (1981). Statistical modeling of data on teaching
styles. Journal of the Royal Statistical Society, Al144, 419-461.

Bagakas, J. G. (1992). Twwo level nested hierarchical linear model with random
intercepts via the bootstrap. Unpublished doctoral dissertation, Michigan State
University, East Lansing.

Barr, R,, & Dreeben, R. (1983). How schools work. Chicago: University of Chi-
cago Press.

Bassiri, D. (1988). Large and small sample properties of maximum likelihood estimates
Jor the hierarchical linear model. Unpublished doctoral dissertation, Michigan
State University, East Lansing.

Bidwell, C., & Kasarda, J. (1980). Conceptualizing and measuring the effects of
school and schooling. American Journal of Education, 88, 401-430.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models in social and
behavioral research: Applications and data analysts methods. Newbury Park,
CA: Sage.

Burstein, L. (1980). The analysis of multi-level data in educational research and
evaluation. Review of Research in Education, 8, 158-233.

Cronbach, L. J. (1976). Research on classrooms and schools: Formulation of ques-
tions, design and analysis. Occasional paper of the Stanford Evaluation Consortium,
Stanford University.

Cronbach, L. J., & Webb, N. (1975). Between and within-class effects in a reported
aptitude-by-treatment interaction: Reanalysis of a study by G. L. Anderson. Journal
of Educational Psychology, 6, 717-724.

de Finetti, B. (1964). Foresight: its logical laws, its subjective sources. In H. E.
Kyburg, Jr., & H. E. Smokler (Eds.), Studies in subjective probability (93-158).
New York: Wiley.

219



Raudenbush

Fotiu, P. R. (1989). A comparison of the EM and data augmentation algorithms on
simulated small sample hierarchical data from research on education. Unpublished
doctoral dissertation, Michigan State University, East Lansing.

Goldstein, H. (1987). Multilevel models in educational and social research. London:
Oxford University Press.

Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early vocabu-
lary growth: Relation to language input and gender. Developmental Psychology,
27, 236-248.

Kirk, R. E. (1982). Experimental design: Procedures for the behavioral sciences.
Belmont, CA: Wadsworth.

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of
Chicago Press.

Laird, N., Lange, N., & Stram, D. (1987). Maximum likelihood computation with
repeated measures: Application of the EM algonthm Journal of the American
Statistical Association, 82, 97-105.

Laird, N. M., & Louis, T. A. (1987). Empirical Bayes confidence intervals based on
bootstrap samples. Journal of the American Statistical Association, 82, 739-756.

Lee, V., & Bryk, A. S. (1989). A multilevel model of the social distribution of
educational achievement. Sociology of Education, 62, 172-192.

Raudenbush, S. W. (1993a). A crossed random effects model for unbalanced data with
applications in cross-sectional and longitudinal research. Journal of Educational
Statistics, 18, 321-349.

Raudenbush, S. W. (1993b). Hierarchical linear models as generallzanons of certain
common experimental design models. In L. Edwards (Ed.), Applied analysis of
variance in behavioral science (459-496). New York: Marcel Dekker.

Raudenbush, S. W. (1994). Equivalence of Fisher scoring to iterative generalized
least squares in the normal case with application to hierarchical linear models.
Unpublished manuscript, Michigan State University College of Education, Program
on Measurement and Quantitative Methods.

Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. Journal
of Educational Statistics, 10, 75-98.

Raudenbush, S. W,, Cheong, Y. F,, & Fotiu, P. R. (1994). Synthesizing cross-national
classroom effects data: Alternative models and methods. In M. Binkley, K. Rust, &
M. Winglee (Eds.), Methodological issues in comparative international studies:
The case of reading literacy. Washington, DC: National Center for Educational
Statistics,

Raudenbush, S. W., & Willms, J. D. (in press). The estimation of school effects.
Journal of Educational and Behavioral Statistics.

Seltzer, M. (1993). Sensitivity analysis for fixed effects in the hierarchical model:
A Gibbs sampling approach. Journal of Educational Statistics, 18, 207-235.

Zeger, S. L., Liang, K-Y., & Albert, P. S. (1988). Models for longitudinal data: A
generalized estimating equation approach. Biometrics, 44, 1049-1060.

Author

STEPHEN W. RAUDENBUSH is Professor, College of Education, Michigan State
University, 461 Erickson Hall, East Lansing, MI 48824. He specializes in multilevel
and longitudinal statistical methods.

220



Journal of Educational and Behavioral Statistics
Summer 1995, Vol. 20, No. 2, pp. 221-227

Comment

William M. Mason
University of California, Los Angeles

My remarks are stimulated by the insightful, informative and rewarding
papers of de Leeuw and Kreft, Draper, and Rogosa and Saner.

From a sociology of knowledge perspective, the intellectual history of the
introduction of multilevel models appears to be running a predictable course:
(1) A new statistical formulation is introduced. (2) The new formulation
seems to answer a widely perceived need. (3) It is enthusiastically developed
and promulgated as The Answer. (4) In response, journeyman practitioners
accord the new methodology high status. Graduate students learn some version
of it. So do young professors. Older ones consider how close they are to
retirement before deciding how much to invest in it. Then comes the reaction:
(5) It is said that the new method is like some other, previously used method
in various ways. (6) Critics begin to ask, “Do we really get different answers
(from the way we used to do it, and already understand)?” Typically, for any
particular methodology, the answer is in some cases no, and in some, yes.
In all instances, though, the new methodology has a generality that previous
approaches lacked. Moreover, it provides a new way of thinking about prob-
lems. (7) Nevertheless, disaffection begins to set in. The assumptions are not
always met and often seem unjustifiable in the context of a particular problem.
Or perhaps the approach becomes identified with a particular school of
substantive thought, and that perspective is found wanting. (8) By now, the
high-water mark has been reached and the tide of enthusiasm begins to ebb.
(9) But the ark comes to rest somewhere on the side of the mountain, at an
elevation that differs from its former resting place, because, in fact, the new
methodology has something genuine to offer, and because it continues to
evolve as generalizations, extensions, and refinements of understanding are
offered. It is not just the same old thing in a new package. Thus, eventually,
the new methodology finds a place in the social science armamentarium.

The process I describe is impressionistically derived, but it seems to
describe fairly well what has happened to many of the heralded statistical
modeling innovations I have witnessed over the past 30 years as a social
scientist: “regression analysis™ (as it was so labeled and taught when I was
a graduate student), path analysis, structural equation models more generally,
the generalization to structural equation models with latent variables, loglinear
models, exploratory data analysis, and, most recently, survival models with
heterogeneity and multilevel models with covariance components. ,

De Leeuw and Kreft’s contribution, and Rogosa and Saner’s, suggest to
me that multilevel analysis is at Stage 7 in the absorption process for a
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statistical innovation. These highly knowledgeable authors, in their own
unique styles, help to dampen unrestrained enthusiasm while providing
insight. Rogosa and Saner demonstrate that under certain circumstances (not
enumerated analytically in their paper), you can get the same answers using
the HLM software package and using other kinds of software. They also
point out the usefulness of “common sense” approaches to obtain checks on
resuits obtained from programs that perform covariance component computa-
tions. It would be incorrect to assert that fixed-effect and random effect
(covariance component) modeling always yield the exact same result, and I
do not read Rogosa and Saner to be making that claim.

De Leeuw and Kreft argue that for many purposes, it suffices not to estimate
* a covariance component model: A fixed effects model will do. In addition,
they suggest, not without evidence, that relatively simple computations will
often suffice, even when one does wish to estimate a covariance component
model. (De Leeuw and Kreft’s comments about the EM algorithm are much
appreciated. Having developed two programs that employ it, I concur.)

They argue against routine acceptance of shrinkage estimates obtained by
multilevel programs that employ empirical Bayes computations. Again, the
point would be to compare the shrinkage estimates not only with the macro
estimates but also with the within-context estimates. For each context, there
are three estimates available. We should not be blinded by the technical
sophistication of a stochastic parameter formulation into uncritically accepting
the empirical Bayes estimates—which depend on the macro model. Moreover,
it is not enough to argue that the systematic component of the macro model
is usually “good enough,” because it may not be, and because the assumption
that the macro errors are Gaussian may be false (when the Gaussian assump-
tion is made, as it typically is). Other assumptions, such as independence of
errors, may also be violated.

De Leeuw and Kreft are also concerned about the realism of the usual
multilevel model with Gaussian errors. They focus in particular on the fixed-
X assumption. This assumption is often reasonable. The story we tell is that
under repeated sampling, we would fix the covariate combinations. The
position I would advocate is that we in fact make or relax the fixed-X
assumption rather flexibly. If, following de Leeuw and Kreft, we are willing
to be flexible about the presence or absence of covariance components, why
not with respect to the stochasticity of the covariates themselves? In any
case, regression models with stochastic regressors and nonspherical distur-
bances are not exactly unknown models.

David Draper’s exceptional paper is like a luscious Christmas cake,
crammed full of goodies that literally fall out on the way to their ultimate
destination. Where to start? I want to air a couple of ruminations stimulated
by this paper. First, “Why not fully Bayesian HMs?” That was actually our
starting point (Lindley & Smith, 1972). It is a safe bet that in the next 10
years, as Draper prophesies, there will be fully Bayesian multilevel software
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packages—a safe bet because some researchers are already doing Bayesian
multilevel analysis. But who in the substantive research community (as distin-
guished from professional statisticians) will be using this software? Unless
journeyman practitioners in the social sciences become knowledgeable of
this approach, they will either be unable to use Bayesian software, or they
will use it blindly. Will the social sciences then be better off than they are
now? The emergent revolution in the teaching of statistics in the past few
years has been the emphasis on interactive, analytic graphics and on careful
description. Examination of commonly used statistics, biometrics, and ecoho-
metrics texts does not suggest that a new cohort of Bayesian scientists will
" soon arrive. The issue is not whether Ph.D. statisticians and a handful of
statistically sophisticated social scientists are or can be Bayesian in the
orientation and practice of their research. The issue is how to change what
is done by practitioners, individuals who have had several statistics courses
at most, and none with substantial Bayesian content.

How to change practice by changing what practitioners do can be thought
of as a “supply side” problem, to borrow from the recent argot of pop political-
economy. There is also a “demand side.” Another musing stimulated by
David Draper’s paper concerns the demand side of how we “do” and report
statistical inference. Two of the coauthors of the Huttenlocher et al. (1991)
article discussed by Draper are none other than Anthony Bryk and Michael
Seltzer, who understand more than a little about statistical inference. Although
these authors will have their own explanation(s) of their inference strategy,
it is not hard to guess what the editorial response would likely have been
had they eschewed standard errors, or indeed done anything unconventional
with respect to statistical inference, despite the self-selected nature of the
sample they used. At the end of the day, reviewers and editors demand
asterisks next to coefficients. Right or wrong, they want p values. Although
this can be changed, the process will be slow. Those responsible for teaching
statistics courses for tomorrow’s reviewers and editors have their marching
orders.

As useful and helpful as these papers are, and as the RAND conference
itself was, those who focus on educational research might benefit from the
recognition that hierarchically structured data are seen in most, if not all,
disciplines. Specialized literatures have developed that deal with seemingly
specific problems using discipline-specific vocabulary and particular bundles
of tools. Recognizing that, to continue the debate over which algorithm to
use in the Gaussian case would appear to be of second-order importance.
We know how to obtain reasonable answers with Gaussian errors, relatively
large numbers of observations per context, and relatively large numbers of
contexts. Change any one of those conditions and our knowledge is not so
complete, although there is a lot of research activity concerning the tools.
Grazing our way through several literatures, here is a (nonrandom) sampling
of points and questions that perhaps bear consideration:
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(a) Can we develop intuition and lore for non-Gaussian cases when the n;
are relatively large and J is relatively large? My own experience suggests that
complex estimation (e.g., Wong & Mason, 1985, 1991) may be unnecessary in
this case. A two-step estimated generalized least squares (EGLS) approach
has not been formally derived for the generalized linear model, for the large
n;, large J case, but how badly does naive two-step EGLS perform compared
to more complex alternatives? And where does it break down?

(b) The hardest case is that of small n; and large J, with non-Gaussian
errors. Here there is a great deal of literature, but no closure. Much of the
work is under the rubric of panel data, but the data structures are inherently
multilevel, even if the vocabulary and concerns of the statistical developers
are not (e.g., Hsiao, 1986).

(c) Survival models—regression models of time to event—are widely used
in the social and biological sciences. It is possible with current software to
estimate what amounts to a survival model with random intercept using data
with a hierarchical structure (Yates, Yi, Honore, & Walker, 1987). For exam-
ple, one can estimate infant mortality allowing for between-family “heteroge-
neity,” and it is possible to carry out the estimation making no parametric
assumption about the form of the heterogeneity, as well as to assume that it
is Gaussian. Doing this requires that a substantial percentage of the families
analyzed have more than one child, else the multilevel structure is lost and
the heterogeneity becomes unidentified (in which case the value of allowing
for it is the subject of contention). And although the results in the literature
are mixed, a judicious conclusion is that currently it cannot be said that
ignoring heterogeneity generally yields answers that are the same as those
obtained when heterogeneity is allowed for. Stochastic covariate coefficients,
a theoretical possibility, are of interest, and work on this case is under way.

(d) How should we deal with situations in which the first-level outcome
and a second-level potential regressor are jointly endogenous? This happens
frequently. For example: (a) Many parents consider the school system, and
particular schools, when choosing where to live. So, although *“good parents”
with “good kids” make for good schools, it is also true that good schools
attract good parents and good kids. (b) Government officials may choose to
place health clinics or family planning clinics based on knowledge of local
conditions. If clinics are placed where they are most needed, and if the
resources to run the clinics are similarly distributed, then cross-sectional
analysis will reveal that where investment is greatest, outcomes are least
favorable. Here the issue is one of modeling, not estimation and not algorithms
(e.g., Frankenberg, 1992; Rosenzweig & Wolpin, 1982; Pitt, Rosenzweig, &
Gibbons, 1993). (c) The same kind of point arises in assessment of the impact
of parochial schools. Parents who value a particular kind of outcome and
environment elect to send their children to parochial schools. Unless the
endogeneity of this social process is modeled, hierarchical models that merely
include a handful of “gross” parental characteristics as covariates will provide
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potentially severely biased estimates of school effects. In economics, the
contemporary solution to this problem typically involves the use of instrumen-
tal variables to identify the coefficients of particular equations. When this is
done, the solutions adopted often preclude the use of a standard multilevel
model, because contextual variables end up being used as instruments. Some
thought needs to be given to how problems that are normally conceived of
as involving cross-level simultaneity can be dealt with in a multilevel
perspective.

() In economics, at least, fixed-effect approaches are regarded as produc-
tive (e.g., Chamberlain, 1980). For example, one way to deal with the endo-
geneity of clinic placement is to use two (or more) waves of panel data.
Under assumptions about error covariance structure that many regard as
reasonable, differences across waves can solve an identification problem
engendered by endogeneity and, at the very least, provide “good” estimates
of first-level covariates. This approach can be thought of as applying to the
case of small n; and large J, and it can be used with binary response variables.

(f) Thoughtful scholars in several disciplines are beginning to question
uncritical acceptance of context as defined by the hierarchical structure of
particular data sets. Owing to my own lack of knowledge of intellectual
ferment among those who do educational research, I do not know whether
this is a concern in the study of school effects. But it seems reasonable to ask
whether individuals in a given putative context all share the same definition of
context, whether there are muitiple, overlapping contexts of relevance, and
whether the impact of context is distributed evenly (or in some other way)
across individuals. Answers to these questions may be highly substance
driven.

(8) In economics, if not in other disciplines, assumptions about the error
structure are taken relatively seriously. This can help to cast new and informa-
tive light on at least one debate that multilivel modelers find consuming:
whether to center the covariates within groups. In particular, suppose that on
substantive grounds you cannot defend the assumption that the micro errors
are uncorrelated with the macro covariates. Then one possible solution is to
carry out within-group differencing of the micro covariates, thus rendering
the micro disturbances orthogonal to the macro covariates. Economists think
of this differencing as implementing a fixed-effects approach. But differencing
can also be fit into the multilevel perspective as a way of meeting one of
the basic assumptions. If you obtain different substantive conclusions
depending on whether you within-group centered (and given appropriate
respecification of the intercept equation in the presence of within-group
centering), you may be staring at evidence of one kind of specification error:
the micro errors may be correlated with the macro variables.

None of my remarks should be taken as “anti” multilevel modeling. We
should use modeling strategies when and where we think they are advanta-
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geous. Multilevel modeling is not a universal tool, but it can be helpful. And
when is that?

(a) In my own work I find it liberating to be able to write coefficients as
response variables and know that, in principle, it is possible to treat them as
such in a coherent statistical framework. In theoretical development, I find
it useful to derive hypotheses about coefficients sometimes using the macro
equations, and sometimes using the combined mixed-model equation. I have
not been able to pin down anything systematic here. Sometimes hypotheses
about the partial derivatives seem more straightforwardly derived one way
than the other. :

(b) I find it helpful to understand the strength of the contribution of macro
variables on micro outcomes through intercept and coefficient variability. If
this sounds faintly like an interest in correlation, it is! Although the primary
usefulness of regression depends on interpretation of regression coefficients
(e.g., Kendall & Stuart, 1973), like many others I still find correlation mea-
sures useful. (Perhaps the Human Genome Project will reveal the reason
why.) Moreover, I find it useful to obtain estimates of the impact of macro
variables on intercepts and slopes adjusted for their sampling variances—
something you can’t do with ordinary least squares (OLS), and something
you can’t do by plugging macro variables into micro equations estimated by
OLS in the case of Gaussian errors.

(c) And finally, I find it useful to work, where feasible and appropriate,
in a framework of considerable generality. Even if the covariance components
are not my primary interest, I still want to estimate them, because they do
provide information about the problem I wish to model.
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Rejoinder

David Draper
University of Bath

I am grateful to the discussants for their interesting comments. With the
exception of some of Raudenbush’s remarks, the only real disagreement I
might have with the discussion is something that did not come up in it:
Nobody seemed interested in pursuing the theme of prediction of observables.
Maybe in the social sciences we are not ready to come face to face with the
likely low quality of many of our individual-level predictions, even though
policy interventions succeed or fail one person at a time, and in spite of the
clear evidence from other sciences that the pace of learning quickens when
inaccurate predictions of important phenomena come to light. The general
movement toward Bayesian analyses of multilevel models I have recom-
mended here will help to put better predictive tools in practitioners’ hands.
With respect to software (and many other things, too), people generally do
what is easy (cf. the third and fourth sections of Longford’s comment), and
supplying options in the HM packages to generate predictive distributions
should go some distance toward making prediction of observables more
routine in multilevel work.

On other topics, Mason is certainly correct that if Bayesian methods are
to be used both widely and responsibly in the social sciences in the long-
range future, there will have to be a sharp increase in the coverage of Bayesian
techniques and outlook in statistics teaching at all levels, both inside and
outside statistics departments, in the short and medium terms. To borrow
his market-forces analogy, perhaps both an effort to move in this direction
pedagogically and continued attempts to publish good Bayesian applied
papers in social science journals (e.g., Seltzer, 1993)—papers which solve
problems that are difficult to crack with other approaches—are needed, so
that readers of such journals will begin to ask for more curriculum coverage
of Bayesian topics.

One point of clarification with respect to Goldstein’s comment about
Rubin’s (1981) example: It is not the incorporation of prior information
that improves on maximum likelihood inference in that example, but the
willingness to integrate over the marginal likelihood for T rather than max-
imize over it. The dotted line in my Figure 1 is a rescaled version of the
marginal posterior distribution for T with a completely flat prior; the positive
estimate of T arises not because the likelihood information is being combined
with prior information tilted away from zero, but because the MLE is a poor
summary of the highly skewed marginal likelihood for 7.

Raudenbush misquotes me on Huttenlocher et al. (1991). To say that I
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find no scientific meaning in the parameter estimates and SEs these authors
report is not to say that I find no such meaning in the relationship between
maternal speech and language development. What meaning, for instance,
would Raudenbush attach to the finding that the SE for the log-exposure
coefficient B, is 0.36? Because of the way the Huttenlocher et al. data were
gathered, this estimate does not accurately quantify our uncertainty about 8,
in any population P of broad scientific interest, unless you are willing to
assert that variance components for both nonexchangeability (of Huttenlocher
et al.’s sample with the rest of P) and nonignorability (of assignment to
matemal speech conditions) are close to zero. Such an assertion would require
an explicit justification (involving, among other things, identification of P)
that neither Huttenlocher et al. nor Raudenbush have fully provided.

Having said this, I am not claiming that nothing of scientific relevance
has been leamed by this study about the relationship between maternal speech
X and child language development Y. In my terminology, Huttenlocher et al.
are entitled to draw a calibration inference; an association between X and Y
has been demonstrated for the 22 mother-child pairs in their study. Whether
that association is causal (Raudenbush also misrepresents my views on this
point) and how it would hold up in other mother-child pairs are interesting
questions that have not been settled by this single study. Despite the tone of
his remarks, I have no disagreement with Raudenbush about the basic nature of
causal inference. Tentative causal conclusions, especially from observational
studies, require both data evidence and a good story about why the data came
out the way they did, and the story may later change when new information
comes in. Ultimately, causality is a judgment about how the world works,
not a property of the world itself. When investigators in one generation decide
provisionally that A causes B, and people 20 years later conclude that C is
really causing A and B to move in tandem, it is typically not the world that
has changed, but rather our understanding of it.

Raudenbush’s lung cancer example supports his argument only because it
has gradually been found over time that the similarities between people in
the nature of the mechanism(s) by which smoking causes lung cancer are
substantially larger than the differences; that is, interactions between treatment
(smoking dose) and subject-specific characteristics (potential confounding
factors [PCFs]), such as gender and age, are small. Unfortunately, people
arrive firmly at this sort of conclusion only retrospectively; I doubt Rauden-
bush would prospectively claim all such interactions to be negligible in
educational interventions. There is a valuable role to be played by what he
calls lung-tissue studies in education (nobody is suggesting that we wait
around for his “perfect social science study”), as long as the amount learned
by each such investigation is not oversold.

This same issue of presence or absence of treatment X PCF interactions
comes up in Goldstein’s comment about “replicability of findings in very
different contexts.” One way to estimate such interactions—a kind of meta-
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analytic, observational-study approach—is, as Goldstein notes, for a variety
of investigators to try to replicate an initial tentative causal finding with a
variety of subject cohorts. Another way is to try to prospectively identify
what the important PCFs are likely to be and to design a single larger study
that stratifies on them, with sufficiently big samples in the cells of the
treatment X PCFs grid to estimate the interactions well. The latter approach
has the advantage of increased explicitness, although from the science-as-a-
career point of view it seems to suffer from the drawback that only one team
of investigators would get credit for the work. However, while one team
would indeed have to be responsible for the meta-planning, other teams could
be conducting parallel studies, one for each cell in the stratification grid, and
there is room in this strategy for lots of credit to accrue to these teams as
well. This is certainly not the place to try to settle the bigger-versus-smaller-
science debate, to which Raudenbush also alludes, but the issue deserves
more discussion than it has so far received (e.g., how should major granting
agencies allocate their funds among “big” and “small” studies to maximize the
rate at which scientific and policy progress unfolds in any given discipline?).

Perhaps the most useful way for me to conclude is to demonstrate concretely
that Bayesian analysis of HMs is—probably for better and for worse, as
Mason fears—about to become considerably more routine. Until recently,
when you wanted to do a hierarchical Markov-chain Monte Carlo (MCMC)
analysis, you had to program up, say, a Gibbs sampler yourself. Recently, a
prototype version of a fairly general-purpose Gibbs-sampling package became
available: the (infelicitously named) program BUGS (Gilks, Thomas, & Spie-
gelhalter, 1994), developed at the MRC Biostatistics Unit in Cambridge, UK
(available by anonymous ftp from ftp.mrc-bsu.cam.ac.uk). As an example of
the use of this program, Figure 2 presents some aspects of an MCMC meta-
analysis of the teacher expectancy data from Bryk and Raudenbush (1992,
chapter 7), mentioned in the fifth section of my article and examined by
Morris in his comment. The data consist of effect size estimates y; (together
with their estimated standard errors, JV,-, assumed known) from k = 19
experiments measuring the influence of teachers’ expectations on pupils’ IQ
scores, together with a study-level predictor x;, the number of weeks of
student-teacher contact prior to each experiment. With the addition of a prior

distribution on the hyperparameters, the HM fit by Bryk and Raudenbush is
(in my notation)

(3:18) "~ NG, V) (Level 1),
©le, B, 0) '~ N + Bl — B, 07 (Level 2), ®)
(@, B, 0% ~ p(a)p(B)p(c?) (prior).

Figure 3 gives a simple program yielding inferences and predictions based
on this model in BUGS, with uninformative priors on a, B, and o? for

230



s1sjpup Koup1aadxa 1342033 (DJWIW) 0D IO WIDYI-40YDH Jo S192dsy T TANOI

Jaquinu uojjeiay 2 = X yum Apnis mau Joj Ajisuap eAalolpaid (o)
000S 000F O0OOE 0002 000! 0 = S0 00 g0-
& F °
%3
(7]
[ -
.ue. o
(=]
© o ]
o 8 N F
o g
° 3 LL° as
K 1 260" uesw } w
op :
>3
elaq 104 10jdOD jewloN (q) (£800° @S '6800° Uesw) gvewbis o) weiboisiH (e)
v 2 0 z - #00 €00 200 100 00
o e it R g
8 . N
(-]
o -
. 8g o 8
¥0' as & it 3
L
91~ ueaw W 8
o p—y
8
o -
o 8




Draper

model igcov;

const
k=19, m= 101;

var
u, pln], sigmasq, tau, x.bar, alpha, beta, mu.new, theta.new,
y(k1, thetalk), precisionfk], =ulxl, x(x);

data in "ig-cov.dat";

inits in "iq-cov.in"; # Prior for sigmasq is (discrete)
{ # uniform on (.0002,.04), the
u " deat(p0)); ) ¢ region in vhich the
sigmasq <- 0.0002 + 0.0398+(u ~ 1.0)/100.0; # 1likelihood is appreciable
tau <- 1.0/sigmasq; # Precision tau = reciprocal variance
alpha ~ dnorm(0.0,1.0E-4); # Uninformative priors for
beta ~ dnorm(0.0,1.0E~4); # alpha and beta

x.bar <- mean(z(});
mu.new <- alpha + betas(2.0 - x.bar);
theta.nev ~ dnorm(am.nevw,tau); # theta for nev study with x = 2
for (i in 1:k) {
y[i] © dnorm(theta(il,precision[i]);
ma(i] <- alpha + betae(x[i] - x.bar);
theta(i) - dnorm(mu([i],tau);
}
}

FIGURE 3. BUGS program to fit the hierarchical model in (8) using Gibbs sampling
in the teacher expectancy study

illustration and comparability with Morris’s results. Gibbs sampling is itera-
tive and requires a strategy for starting and stopping; I used an initial discarded
(“burn-in”) run of 1,000 iterations and a single long run of 5,000 iterations
thereafter to obtain final results (diagnostics not presented here indicate
convergence was achieved with this strategy in this case). The 6,000 total
iterations took about 7 minutes on a SPARCstation 1000. '

The output of the program in Figure 3 is a data set with 5,000 rows, one
for each iteration after burn-in, and 23 columns, one for each quantity of
interest specified by the program: a, B, a2, the 19 6,, and the effect size Onew
to be expected from a future study with x = 2. Consecutive iterations of the
Gibbs sampler are, in general, correlated, in some cases highly so, but as
long as convergence has been achieved, one nice thing about Gibbs is that
you can regard the 5,000 numbers in any column of this data set as random
draws from the marginal posterior distribution for the corresponding quantity,
to be summarized in any way that seems useful. Standard summaries include
means and SDs (note, for instance, that in agreement with Morris’s results,
the posterior variance for B in Figure 2b is 32% larger than the value reported
by Bryk and Raudenbush from their maximum likelihood analysis); distribu-
tional summaries such as histograms (e.g., the marginal posterior for o2 in
Figure 2a, which may be compared with Morris’s Figure ), Gaussian QQplots
to assess posterior normality (as in Figure 2b), and kernel density estimates
(e.g., Figure 2c, which presents the posterior predictive distribution for Onew);
and time series plots to assess convergence as in Figure 2d, which shows a
healthy pattern with relatively little serial correlation.
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There is considerably more work to be done on modeling and convergence
diagnostics, specification of prior distributions in a way that does not introduce
artifacts (e.g., I am indebted to Carl Morris for comments that motivated the
prior for a2 here), and so on, but already BUGS is beginning to permit fuli
Bayesian analysis of complicated models without the drudgery of one-off
programming. It will be interesting to see how this sort of alternative to naive
maximum likelihood fares in the social science marketplace in the next
few years.
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