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A comparison of Bayesian and likelihood-based

methods for fitting multilevel models

William J. Browne∗, and David Draper†

Abstract. We use simulation studies, whose design is realistic for educational
and medical research (as well as other fields of inquiry), to compare Bayesian and
likelihood-based methods for fitting variance-components (VC) and random-effects
logistic regression (RELR) models. The likelihood (and approximate likelihood)
approaches we examine are based on the methods most widely used in current ap-
plied multilevel (hierarchical) analyses: maximum likelihood (ML) and restricted
ML (REML) for Gaussian outcomes, and marginal and penalized quasi-likelihood
(MQL and PQL) for Bernoulli outcomes. Our Bayesian methods use Markov
chain Monte Carlo (MCMC) estimation, with adaptive hybrid Metropolis-Gibbs
sampling for RELR models, and several diffuse prior distributions (Γ−1(ε, ε) and
U(0, 1

ε
) priors for variance components). For evaluation criteria we consider bias

of point estimates and nominal versus actual coverage of interval estimates in re-
peated sampling. In two-level VC models we find that (a) both likelihood-based
and Bayesian approaches can be made to produce approximately unbiased esti-
mates, although the automatic manner in which REML accomplishes this is an
advantage, but (b) both approaches had difficulty achieving nominal coverage in
small samples and with small values of the intraclass correlation. With the three-
level RELR models we examine we find that (c) quasi-likelihood methods for esti-
mating random-effects variances perform badly with respect to bias and coverage
in the example we simulated, and (d) Bayesian diffuse-prior methods lead to well-
calibrated point and interval RELR estimates. While it is true that the likelihood-
based methods we study are considerably faster computationally than MCMC,
(i) steady improvements in recent years in both hardware speed and efficiency of
Monte Carlo algorithms and (ii) the lack of calibration of likelihood-based methods
in some common hierarchical settings combine to make MCMC-based Bayesian fit-
ting of multilevel models an attractive approach, even with rather large data sets.
Other analytic strategies based on less approximate likelihood methods are also
possible but would benefit from further study of the type summarized here.
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1 Introduction

Multilevel models, for data possessing a nested hierarchy and—more generally—for
the expression of uncertainty at several levels of aggregation, have gained dramati-
cally in scope of application in the past 15 years, in fields as diverse as education and
health policy (e.g., Goldstein et al. (1993), Draper (1995), Goldstein and Spiegelhalter
(1996)). Statisticians and substantive researchers who use such models now have a vari-
ety of options in approaches to inference, with a corresponding variety of computer pro-
grams: to mention four, the maximum-likelihood (ML) Fisher-scoring approach in VARCL

(Longford (1987)); ML via iterative generalized least squares (IGLS) and restricted
IGLS (RIGLS, or REML) for Gaussian outcomes, and quasi-likelihood methods (MQL
and PQL) for dichotomous outcomes, in MLwiN (Goldstein (1986, 1989), Rasbash et al.
(2005)); empirical-Bayes estimation using the EM algorithm in HLM (Raudenbush et al.
(2005)); and fully-Bayesian inference in WinBUGS (Spiegelhalter et al. (2003)) and MLwiN.
This variety of fitting methods can lead to confusion, however: ML and Bayesian anal-
yses of the same data can produce rather different point and interval estimates, and the
applied multilevel modeler may well be left wondering what to report.

1.1 Example 1: The Junior School Project

The Junior School Project (JSP; Mortimore et al. (1988), Woodhouse et al. (1995)) was
a longitudinal study of about 2,000 pupils from 50 primary schools chosen randomly
from the 636 Inner London Education Authority (ILEA) schools in 1980. Here we will
examine a random subsample of N = 887 students taken from J = 48 schools. A
variety of measurements were made on the students during the four years of the study,
including background variables (such as gender, age at entry, ethnicity, and social class)
and measures of educational outcomes such as mathematics test scores (on a scale from 0
to 40) at year 3 (math3) and year 5 (math5). Both mathematics scores had distributions
with negative skew due to a ceiling effect, with some students piling up at the maximum
score, but transformations to normality produced results almost identical to those using
the raw data (we report the latter). A principal goal of the study was to establish
whether some schools were more effective than others in promoting pupils’ learning and
development, after adjusting for background differences.

Two simple baseline analyses that might be undertaken early on, before more com-
plicated modeling, are as follows.

• Thinking (incorrectly) of the data as a simple random sample (SRS) from the
population of ILEA pupils in the early 1980s, the mean mathematics score β0 at
year 5 would be estimated as 30.6 with a repeated-sampling standard error (SE) of
0.22, but this ignores the large estimated intraclass (intracluster; within-school)
correlation of ρ̂ = +0.12 for this variable. The correct SE, from standard survey-
sampling results (e.g., Cochran (1977)) or the Huber-White sandwich estimator
(Huber (1967), White (1980), as implemented in the package Stata: StataCorp
(2006)), is 0.43, almost double the SRS value. There is clearly scope for multilevel
modeling here to account correctly for the nested structure of the data. (0.12 may
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Table 1: A comparison of ML, REML, and Bayesian fitting (with a diffuse prior) in model

(1) applied to the JSP data. Figures in parentheses in the upper table are SEs (for the ML

methods) or posterior SDs (for the Bayesian method). Bayesian point estimates are posterior

means, and 95% central posterior intervals are reported.

Point Estimates Parameter
Method β0 σ2

u σ2
e

ML 30.6 5.16 39.3
(0.400) (1.55) (1.92)

REML 30.6 5.32 39.3
(0.404) (1.59) (1.92)

Bayesian with 30.6 6.09 39.5
diffuse priors (0.427) (1.91) (1.94)

95% Interval Estimates Parameter

Method β0 σ2
u σ2

e

REML (Gaussian) (29.8, 31.4) (2.22, 8.43) (35.5, 43.0)

Bayesian (29.8, 31.5) (3.18, 10.6) (35.9, 43.5)

not seem like a large value for ρ, but (a) despite its name the intraclass correlation
is in fact comparable to a regression-style R2 value (e.g., Donner (1986)), and
(b) the design effect (e.g., Cochran (1977)) for estimating β0 in this problem is(

0.43
0.22

)2 .
= 3.8, meaning that the cluster sample of 887 students was equivalent in

information content for β0 (because of the relatively high degree of within-school
similarity of student achievement) to an SRS of only 887

3.8

.
= 230 students.)

• Consider next a variance-components (VC) model,

yij = β0 + uj + eij , i = 1, . . . , nj , j = 1, . . . , J,∑J
j=1 nj = N, uj

IID
∼ N(0, σ2

u), eij
IID
∼ N(0, σ2

e),
(1)

where yij is the math5 score for pupil i in school j; this model would generally
be fit before a random-slopes regression model relating math5 to math3 is exam-
ined. (In our terminology i indexes level 1 of the model and j level 2. (1) is
sometimes referred to as a mixed linear model for its combination of fixed effects

(β0) and random effects (the uj and eij).) As noted above, the parameters in this
model may be estimated in at least two ways: likelihood-based and Bayesian ap-
proaches. Maximum likelihood (ML) in turn may be based on iterative generalized
least squares (IGLS, or some other equivalent method), or approximately unbi-
ased estimation with restricted maximum likelihood (REML, based for instance
on RIGLS) (Goldstein (1986, 1989)) may be preferred. Table 1 presents the re-
sults of ML, REML, and Bayesian fitting of model (1), in the latter case using a
diffuse prior to be discussed in Section 2.3.1 (U

(
0, 1

ε

)
on the variance scale).

While there is little difference in the three methods on point estimates for β0 and
σ2
e and on SEs/posterior standard deviations (SDs) for the latter quantity, (a) the

posterior SD for β0 is about 5% larger than the SE from ML and REML (note
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that the Bayesian uncertainty assessment essentially coincides with the cluster-
sampling SE 0.43 mentioned earlier), (b) the Bayesian estimate of σ2

u is 14–17%

larger than the likelihood estimates, and (c) the posterior SD for σ2
u is 18–21%

larger than the ML/REML SEs. Moreover, the default likelihood results (point
estimates and estimated asymptotic SEs) in the ML computer programs in most
widespread current use do not include interval estimates, encouraging investigators
either to report no intervals at all (a practice to be frowned upon) or to use large-

sample 95% Gaussian intervals of the form (estimate ±1.96 ŜE). The bottom part
of Table 1 compares Gaussian intervals based on REML estimates with Bayesian
95% posterior probability intervals, and it may be seen that in particular the two
methods give quite different answers for σ2

u. What should someone trying to arrive
at substantive conclusions based on the JSP data report?

1.2 Example 2: The Guatemalan Child Health Study

The 1987 Guatemalan National Survey of Maternal and Child Health
(Pebley and Goldman (1992)) was based on a multistage cluster sample of 5,160 women
aged 15–44 years living in 240 communities, with the goal of increased understanding
of the determinants of health for mothers and children in the period during and af-
ter pregnancy. The data have a three-level structure—births within mothers within
communities—and one analysis of particular interest estimated the probability of re-
ceiving modern (physician or trained nurse) prenatal care as a function of covariates
at all three levels. Rodŕıguez and Goldman (1995) studied a subsample of 2,449 births
by 1,558 women who (a) lived in the 161 communities with accurate cluster-level infor-
mation and (b) had some form of prenatal care during pregnancy. The random-effects
logistic regression (RELR) model they examined is

(yijk | pijk)
indep

∼ Bernoulli(pijk) with
logit(pijk) = β0 + β1x1ijk + β2x2jk + β3x3k + ujk + vk,

(2)

where yijk is a binary indicator of modern prenatal care or not and where ujk ∼ N(0, σ2
u)

and vk ∼ N(0, σ2
v). In this formulation i = 1, . . . , Ijk, j = 1, . . . , Jk, and k = 1, . . . K

index the level 1, 2, and 3 units, respectively, corresponding to births, mothers, and
communities, and the variables x1, x2, and x3 are composite scales, because the orig-
inal Pebley-Goldman model contained many covariates at each level. The original
Rodŕıguez-Goldman data set is not publicly available; however, these authors simu-
lated 25 data sets with the same structure but with known parameter values, and they
have kindly made these simulated data sets available to us.

As in Example 1, several likelihood-based and Bayesian fitting methods for model
(2) are available: the main (approximate) likelihood alternatives (e.g., Goldstein (2002))
currently employed with greatest frequency by multilevel modelers in substantive fields
of inquiry (based upon empirical usage in the recent literature) are marginal quasi-
likelihood (MQL) and penalized (or predictive) quasi-likelihood (PQL), in both of which
the investigator has to specify the order of the Taylor-series approximation, and a variety
of prior distributions may be considered in the Bayesian approach. Table 2 summarizes
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Table 2: A comparison of first-order MQL, second-order PQL and Bayesian fitting (with a

diffuse prior) in model (2) applied to the Rodŕıguez-Goldman simulated Guatemalan child health

data set number 1. Figures in square brackets in the upper table are true parameter values;

figures in parentheses in the upper table are SEs (for the ML methods) or posterior SDs (for the

Bayesian method). Bayesian point estimates are posterior means, and 95% central posterior

intervals are reported.

Point Estimates Parameter

Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 0.491 0.791 0.631 0.806 0.546 0.000
(0.149) (0.172) (0.081) (0.189) (0.102) —

PQL2 0.641 0.993 0.795 1.06 0.883 0.486
(0.186) (0.201) (0.099) (0.237) (0.159) (0.145)

Bayesian with 0.675 1.050 0.843 1.124 1.043 0.921
diffuse priors (0.209) (0.225) (0.115) (0.268) (0.217) (0.331)

95% Interval Estimates Parameter

Method β0 β1 β2 β3 σ2
v σ2

u

PQL2 (Gaussian) (0.276, (0.599, (0.601, (0.593, (0.571, (0.202,
1.01) 1.39) 0.989) 1.52) 1.19) 0.770)

Bayesian (0.251, (0.611, (0.626, (0.586, (0.677, (0.334,
1.07) 1.50) 1.078) 1.62) 1.52) 1.63)

a comparison between first-order MQL, second-order PQL, and Bayesian fitting—again
with a particular diffuse prior to be discussed in Section 2.3.1 (U

(
0, 1

ε

)
on the variance

scale for small ε)—on the Rodŕıguez-Goldman simulated data set number 1 (the true
values of the parameters are given in the first row of this table). Here the differences
are much more striking than those in Table 1: many MQL estimates are badly biased,
and—although PQL does achieve some improvements—its estimates of β2 and the vari-
ance components are still substantially too low, leading to dramatically different (and
inferior) intervals for the variances. Because we have the luxury of knowing the right
answer in this simulation context, it is easy to see which fitting method has produced
better results on this one data set (and Section 4.2 will demonstrate that this table
accurately reflects the superiority of Bayesian methods in models like (2) when com-
pared with quasi-likelihood approaches, at least in settings similar to the Guatemalan
Health study), but—if the data analyzed in Table 2 arose as the result of an actual
sample survey—a researcher trying to draw substantive conclusions about variability
within and between mothers and communities would certainly wonder which figures to
publish.

1.3 Outline of the paper

Our interest is in comparing likelihood-based and Bayesian methods for fitting variance-
components and random-effects logistic regression models, using bias and interval cov-
erage behavior in repeated sampling as evaluation criteria. Following a brief literature
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review below, Section 2 describes the fitting methods we compare; Sections 3 and 4 cover
simulation study details and results for VC and RELR models, respectively; and Section
5 offers some conclusions and discussion. Browne and Draper (2000) and Browne et al.
(2002) contain results that parallel those presented here for random-slopes regression
models and multilevel models with heteroscedasticity at level 1, respectively.

We focus in this paper on the likelihood-based (and approximate likelihood) meth-
ods most readily available (given current usage patterns of existing software) to statis-
ticians and substantive researchers making frequent use of multilevel models: ML
and REML in VC models, and MQL and PQL in RELR models. Other promis-
ing likelihood-based approaches—including (a) methods based on Gaussian quadra-
ture (e.g., Pinheiro and Bates (1995); see Section 5 for a software discussion); (b)
the nonparametric maximum likelihood methods of Aitkin (1999a); (c) the Laplace-
approximation approach of Raudenbush et al. (2000); (d) the work on hierarchical gen-
eralized linear models of Lee and Nelder (2001); and (e) interval estimation based on
ranges of values of the parameters for which the log likelihood is within a certain distance
of its maximum, for instance using profile likelihood (e.g., Longford (2000))—are not
addressed here. It is evident from the recent applied literature that, from the point of
view of multilevel analyses currently being conducted to inform educational and health
policy choices and other substantive decisions, the use of methods (a–e) is not (yet) as
widespread as REML and quasi-likelihood approaches. In particular, methods such as
Gaussian quadrature may produce poor results in RELR models if not used carefully
(see Lesaffre and Spiessens (2001) for a striking example); we intend to report elsewhere
on a thorough comparison of quadrature with the methods examined here.

Statisticians are well aware that the highly skewed repeated-sampling distributions
of ML estimators of random-effects variances in multilevel models with small sample
sizes are not likely to lead to good coverage properties for large-sample Gaussian ap-
proximate interval estimates of the form σ̂2 ±1.96 ŜE

(
σ̂2

)
, but with few exceptions the

profession has not (yet) responded to this by making software for improved likelihood
interval estimates for variance components widely available to multilevel modelers. In
Sections 3 and 4 we document the extent of the poor coverage behavior of the Gaussian
approach, and we offer several simple approximation methods, based only on informa-
tion routinely output in multilevel software, which exhibit improved (although still not
in many cases satisfactory) performance. Note that we are not advocating interval es-
timates for random-effects variances based on normal approximations in small samples;
we are merely documenting how badly these intervals—which are all that will be read-
ily available to many users of popular likelihood-based software packages—may behave,
even with a variety of improvements to them.

The paper has been constructed so that readers interested in a fast path through it
can proceed directly from this point to Section 5, where a summary of our conclusions
is available.
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1.4 Previous literature on comparisons between multilevel fitting
methods

The literature on Bayesian and likelihood-based methods for fitting VC and RELR
models is vast, e.g., Aitkin (1996, 1999b), Besag et al. (1995), Bryk and Raudenbush
(1992), Corbeil and Searle (1976), Daniels and Gatsonis (1999),
Gelfand and Smith (1990), Goldstein (2002), Harville and Zimmermann (1996),
Kahn and Raftery (1996), Kass and Steffey (1989), Lee and Nelder (1996), Longford
(1987, 1997), and Searle et al. (1992) (for a competing approach based on best linear
unbiased prediction, see, e.g., Henderson (1950) and Robinson (1991)). Comparisons
between multilevel fitting methods are less abundant, but some theoretical work has
been done to demonstrate the equivalence of several of the leading approaches to fitting
multilevel models: for instance, Raudenbush (1994) showed that Fisher scoring is equiv-
alent to ML, and empirical-Bayes estimates based on the EM algorithm may be seen
to coincide with maximum likelihood results in many Gaussian models (e.g., Goldstein
(2002)). Fewer studies are available comparing the performance of the approaches in
terms of bias of point estimates and calibration of interval estimates.

In the VC model (1), Box and Tiao (1973) reviewed results of Klotz et al. (1969)
and Portnoy (1971) which contrast the mean squared error (MSE) behavior of the
following estimators of σ2

u: the classical unbiased estimator based on mean squares (e.g.,
Scheffé (1959)), the ML estimator, and the mean and mode of the marginal posterior
distribution for σ2

u with several choices of relatively diffuse priors. They found, over

all values of the intraclass (intracluster) correlation ρ =
σ2
u

σ2
u+σ2

e
they examined, that (a)

the MSEs of the ML and posterior-mode estimators are comparable and much smaller
than that of the unbiased estimator, and (b) the posterior mean is, by a substantial
margin, the worst estimator on MSE grounds. Box and Tiao criticized MSE as an
arbitrary criterion for performance assessment, and resisted the distillation of an entire
posterior distribution down to a single point estimate. We are sympathetic with their
position—from the Bayesian viewpoint the choice of posterior summaries should ideally
be based on decision criteria arising from possible actions when using models like (1)
and (2) to solve real-world problems—but we nevertheless find it relevant, particularly
in the context of general-purpose multilevel modeling software (where the eventual use
of the output is far from clear), to examine operating characteristics such as bias and
interval coverage. See Rubin (1984) for a good discussion of the relevance of repeated-
sampling properties in Bayesian inference, and Chapter 4 of Carlin and Louis (2001) for
an evaluation in the spirit of the one presented here for some simpler non-hierarchical
Gaussian and binary-outcome models.

Hulting and Harville (1991) compared frequentist and Bayesian methods of fitting
the mixed-effects linear model

y = Xβ + Zs+ e, (3)

where y is an n× 1 vector of quantitative outcomes, β is a p× 1 vector of fixed effects,
X and Z are known matrices, si ∼ N(0, σ2

s), and ei ∼ N(0, σ2
e); the VC model (1) is

a special case of (3). These authors obtained results which have points of contact with
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some of our findings in Section 3.2 below, although Hulting and Harville focused on
predictive inferences about quantities of the form W = λ′β+δ′s and examined different
frequentist estimators than the ones we consider. Chaloner (1987) carried out a similar
frequentist/Bayesian comparison in model (1); however she used different diffuse prior

distributions, focused on the variance ratio τ =
σ2
u

σ2
e

= ρ
1−ρ

in her results on interval

estimation, and conducted a less extensive simulation study than that reported here.
See Swallow and Monahan (1984), Brown and Burgess (1984) and Huber et al. (1994)
for additional simulation results comparing various non-Bayesian estimation methods
in VC models, and Singh et al. (1998) for Bayesian and non-Bayesian comparisons in
small-area estimation.

In model (2), Rodŕıguez and Goldman (1995) used the structure of the Guatemalan
child health study to examine how well quasi-likelihood methods compare with fit-
ting a standard logistic regression model and ignoring the multilevel structure. As
noted in Section 1.2, their approach involved creating simulated data sets based on
the original structure but with known true values for the fixed effects (the βl in model
(2)) and variance parameters. They considered the MQL method and showed that
estimates of the fixed effects produced by MQL were even worse, in terms of bias,
than estimates produced by standard logistic regression disregarding the hierarchical
nature of the data. Goldstein and Rasbash (1996) considered the same problem but
used the PQL method, and showed that the results produced by second-order PQL
estimation were far better than for MQL, but still biased, in the Rodŕıguez-Goldman
problem. Breslow and Clayton (1993) presented some brief comparisons between quasi-
likelihood methods and a version of rejection Gibbs sampling in RELR models proposed
by Zeger and Karim (1991); also see Natarajan and Kass (2000) for simulation results
in a RELR model fit by the Zeger-Karim approach. Rodŕıguez and Goldman (2001)
obtained results that parallel ours (in Section 4.2) with respect to bias of PQL random-
effects variance estimates in REML models (and showed that a parametric bootstrap
approach yields considerable improvement), but they have no corresponding findings on
interval estimates.

2 Methods for fitting multilevel models

2.1 Iterative generalized least squares (IGLS/ML) and restricted ML
(RIGLS/ REML)

Iterative generalized least squares (IGLS/ML; Goldstein (1986)) is a sequential refine-
ment procedure based on GLS estimation. The method can fit all Gaussian multilevel
models, and has been described in detail elsewhere (e.g., Goldstein (2002)). Briefly,
equations such as (1) are expressed in the usual general linear model form Y = Xβ+ e∗

(for example, in (1) X is a vector of 1s, β = β0, and e
∗
ij = uj + eij), in which the vector

e∗ has mean 0 and covariance matrix V ; and then the observation is made that (i) if

V were known, β could be estimated by GLS, yielding β̂, and (ii) if β were known, one
could form the residuals Ỹ = Y −Xβ, calculate Y ∗ = Ỹ Ỹ T , stack the columns of Y ∗

into one long column vector Y ∗∗, and define a linear model Y ∗∗ = Z∗θ+ ε, where Z∗ is
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the design matrix for the random-effects parameters θ (in (1) θ =
(
σ2
u, σ

2
e

)T
). Another

application of GLS then yields θ̂. Starting with an initial estimate of the fixed effect(s)
β from ordinary least squares, IGLS iterates between steps (i) and (ii) to convergence,
which is judged to occur when two successive sets of estimates differ by no more than a
given tolerance (on a component-by-component basis). As with many ML procedures,
IGLS produces biased estimates in small samples, often in particular underestimating
random-effects variances because the sampling variation of β̂ is not accounted for in the

algorithm above. Defining the residuals instead as Ỹ ∗ = Y −Xβ̂ and Ŷ ∗ = Ỹ ∗
(
Ỹ ∗

)T

,

Goldstein (1989) showed that

E(Ŷ ∗) = V −X
(
XTV −1X

)−1
XT , (4)

so that the ML estimates can be bias-adjusted by adding an estimate of the second term
on the right-hand side of (4) to Ŷ ∗ at each iteration. This is restricted IGLS (RIGLS),
which coincides with restricted maximum likelihood (REML) in Gaussian models such
as (1). Estimated asymptotic standard errors of ML and REML estimates are based on

the final values at convergence of the covariance matrices for β̂ and θ̂, expressions for
which are given by Goldstein (2002).

2.2 Marginal and penalized quasi-likelihood (MQL and PQL)

ML and REML are relevant to linear multilevel models with Gaussian outcomes; differ-
ent likelihood-based methods are needed with models for dichotomous outcomes, such as
(2). Following Goldstein (2002), in the simpler case of a two-level structure a reasonably
general multilevel model for the binary outcome yij has the form

(yij | pij) ∼ Bernoulli(pij) with

pij = f
(
Xijβ + Z

(1)
ij eij + Z

(2)
ij uj

)
,

(5)

where f(l) has a nonlinear character such as logit−1(l) =
(
1 + e−l

)−1
. One approach

to the fitting of (5) is through quasi-likelihood methods, which proceed (e.g.,
Breslow and Clayton (1993)) by linearizing the model via Taylor series expansion; for
instance, with Ht as a suitably chosen value around which to expand, the f(·) expression
in (5) for the ijth unit at iteration (t+ 1) may be approximated by

f(Ht) +Xij (βt+1 − βt) f
′(Ht)+(

Z
(1)
ij eij + Z

(2)
ij uj

)
f ′(Ht) +

1
2

(
Z

(1)
ij eij + Z

(2)
ij uj

)2

f ′′(Ht)
(6)

in terms of parameter values estimated at iteration t. The simplest choice, Ht = Xijβt,
the fixed-part predicted value of the argument of f in (5), yields the marginal quasi-
likelihood (MQL) algorithm. This can be improved upon by expanding around the

entire current predicted value for the ijth unit, Ht = Xijβt + Z
(1)
ij êij + Z

(2)
ij ûj , where

êij and ûj are the current estimated random effects; when this is combined with an
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improved approximation obtained by replacing the second line in (6) with
[
Z

(1)
ij (eij − êij) + Z

(2)
ij (uj − ûj)

]
f ′(Ht)+

1
2

[
Z

(1)
ij (eij − êij) + Z

(2)
ij (uj − ûj)

]2

f ′′(Ht) ,
(7)

the result is the penalized or predictive quasi-likelihood (PQL) algorithm. The or-
der of an MQL or PQL algorithm refers to how many terms are used in the Taylor
expansion underlying the linearization; for example, (6) is based on expansion up to
second order and leads to MQL2 and PQL2 estimates. Estimated asymptotic standard
errors for MQL/PQL estimates typically derive from a version of observed Fisher in-
formation based on the quasi-likelihood function underlying the estimation process; see
Breslow and Clayton (1993) for details.

2.3 Markov chain Monte Carlo

The Bayesian fitting of both VC and RELR models involves, as usual in the Bayesian
approach, the updating from prior to posterior distributions for the parameters via
appropriate likelihood functions; but in both of these model classes closed-form exact
expressions for most or all of the relevant joint and marginal posterior distributions
are not available (see Chapter 5 of Box and Tiao (1973) for some limited analytical
results in the VC model (1)). Instead we rely here on sampling-based approximations
to the distributions of interest via Markov chain Monte Carlo (MCMC) methods (e.g.,
Gilks et al. (1996)): we use a Gibbs sampling approach in the VC model (cf. Seltzer
(1993)) and an adaptive hybrid Metropolis-Gibbs method for random-effects logistic
regression.

2.3.1 Diffuse priors for multilevel models

As with the Bayesian analysis of all statistical models, broadly speaking two classes of
prior distributions are available for multilevel models: (a) diffuse and (b) informative,
corresponding to situations in which (a) little is known about the quantities of interest
a priori or (b) substantial prior information is available, for instance from previous
studies judged relevant to the current data set. In situation (a), on which we focus
in this paper, it seems natural to seek prior specifications that lead to well-calibrated
inferences (e.g., Dawid (1985)), which we take here to mean point estimates with little
bias and interval estimates whose actual coverage is close to the nominal level (in both
cases in repeated sampling).

There is an extensive literature on the specification of diffuse priors (e.g.,
Bernardo and Smith (1994), Kass and Wasserman (1996), Spiegelhalter et al. (1997),
Gelman et al. (2003)), leading in some models to more than one intuitively reasonable
approach. It is sometimes asserted in this literature that the performance of the resulting
Bayesian estimates is broadly insensitive, with moderate to large sample sizes, to how
the diffuse prior is specified. In preliminary studies we found this to be the case for fixed
effects in both the VC and RELR model classes, and in what follows we use (improper)
priors that are uniform on the real line R for such parameters (these are functionally
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equivalent to proper Gaussian priors with huge variances). As others (e.g., DuMouchel
(1990)) have elsewhere noted, however, we found large differences in performance across
plausible attempts to construct diffuse priors for random-effects variances in both model
classes. Intuitively this is because the effective sample size for the level–2 variance in
a two-level analysis with J level–2 units and N total level–1 units (typically J << N)
is often much closer to J than to N ; in other words, in the language of Example 1,
even with data on hundreds of pupils the likelihood information about the between-
school variance can be fairly weak when the number of schools is modest, so that prior
specification can make a real difference in such cases.

The off-the-shelf (improper) choice for a diffuse prior on a variance in many Bayesian
analyses is p(σ2) ∝ 1

σ2 , which is equivalent to assuming that log
(
σ2

)
is uniform on R.

This is typically justified by noting that the posterior for σ2 will be proper even for very
small sample sizes; but (e.g., DuMouchel and Waternaux (1992)) this choice can lead
to improper posteriors in random-effects models. We avoid this problem by using two
alternative diffuse (but proper) priors, both of which produce proper posteriors:

• A locally uniform prior for σ2 on (0, 1
ε
) for small positive ε (Gelman and Rubin

(1992), Carlin (1992)), which is equivalent to a Pareto(1, ε) prior for the precision
λ = 1

σ2 (Spiegelhalter et al. (1997)); and

• A Γ−1(ε, ε) prior for σ2 (Spiegelhalter et al. (1997)), for small positive ε.

Both of these priors are members of the scaled inverse chi-squared χ−2(ν, s2) family
(e.g., Gelman et al. (2003)); this is equivalent to an inverse gamma Γ−1

(
ν
2 ,

ν
2 s

2
)
distri-

bution, where ν is the prior effective sample size and s2 is a prior estimate of σ2. The
U(0, 1

ε
) and Γ−1(ε, ε) priors above are formally specified by the choices (ν, s2) = (−2, 0)

and (2ε, 1), respectively (in the former case in the limit as ε→ 0). We have found that
results are generally insensitive to the specific choice of ε in the region of 0.001 (the
default setting in Spiegelhalter et al. (1997)); we report findings with this value. (We
also studied the effects of a gently data-determined prior for σ2—χ−2(ε, σ̂2) for small
ε, with REML or PQL estimates used for σ̂2—but found that its results were indis-
tinguishable from those of the Γ−1(ε, ε) prior.) See, e.g., Natarajan and Kass (2000,
2006) and Gelman (2006) for alternatives to the diffuse priors for variance parameters
in hierarchical models which we examine here. Some of these priors (e.g., approximate
uniform shrinkage and default conjugate priors (Natarajan and Kass), or uniform priors
on standard deviations instead of random-effects variances (Gelman)) may have better
repeated-sampling characteristics than the priors we study; our interest here is in re-
porting on the performance of two of the most widely-used approaches to diffuse-prior
specification in current practice in multilevel modeling.

2.3.2 Gibbs sampling in the VC model

The unknown quantities in the VC model can be split into four groups: the fixed
effect β0, the level–2 residuals uj , the level–2 variance σ2

u, and the level–1 variance σ2
e .

Typically the parameters (β0, σ
2
u, σ

2
e) are of principal interest, but Gibbs sampling in
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this model proceeds most smoothly by treating the level–2 residuals as latent variables
and sampling in turn from the full conditional distributions p(β0|y, σ

2
u, σ

2
e , u), p(uj |y, σ

2
u,

σ2
e , β0), p(σ

2
u|y, β0, u, σ

2
e), and p(σ

2
e |y, β0, u, σ

2
u) (here y and u are the N– and J–vectors

of responses and residuals, respectively).

With χ−2(νu, s
2
u) and χ−2(νe, s

2
e) priors for σ2

u and σ2
e , respectively, the full con-

ditionals for model (1) have simple and intuitively reasonable Gaussian and inverse
gamma forms (cf. Seltzer et al. (1996)):

(
β0|y, σ

2
e , u

)
∼ N

[
1
N

∑
ij (yij − uj) ,

σ2
e

N

]
,

(
uj |y, σ

2
u, σ

2
e , β0

)
∼ N

[
D̂j

σ2
e

∑nj
i=1 (yij − β0) , D̂j

]
,

(
σ2
u|u

)
∼ Γ−1

[
J+νu

2 , 1
2

(
νus

2
u +

∑J
j=1 u

2
j

)]
, and

(
σ2
e |y, β0, u

)
∼ Γ−1

[
N+νe

2 , 1
2

(
νes

2
e +

∑
ij e

2
ij

)]
,

(8)

where D̂j =
(
nj
σ2
e
+ 1

σ2
u

)−1

and eij = yij − β0 − uj .

It is possible to improve upon the Monte Carlo efficiency of the simple Gibbs sam-
pler (8) in VC models with re-parameterization (e.g., Roberts and Sahu (1997)), and
Metropolis-Gibbs hybrids based on block updating of the residuals (as in
Browne and Draper (2000) for RELR models) may also lead to Monte Carlo accelera-
tion; we do not pursue these possibilities here. It is worth noting in this context that the
hierarchical centering parameterization introduced by Gelfand et al. (1995) only leads
to better mixing in VC models if σ2

e < σ2
u, which rarely occurs with educational and

medical data.

2.3.3 Adaptive hybrid Metropolis-Gibbs sampling in RELR models

Gibbs sampling in RELR models is not straightforward. For example, in the simple
model

(yij | pij) ∼ Bernoulli(pij), where
logit(pij) = β + uj , uj ∼ N(0, σ2

u),
(9)

and assuming uniform priors for illustration, the full conditional for β is

p(β|y, u) ∝
∏

ij

(
1 + e−β−uj

)−yij (
1 + eβ+uj

)yij−1
. (10)

This distribution does not lend itself readily to direct sampling. Rejection sampling
(Zeger and Karim (1991)) is possible, and the software package WinBUGS
(Spiegelhalter et al. (2003)) employs adaptive rejection sampling (ARS; Gilks and Wild
(1992)). In this paper we use a hybrid Metropolis-Gibbs approach in which (a) Gibbs
sampling is employed for variances and (b) univariate-update random-walk Metropolis
sampling with Gaussian proposal distributions is used for fixed effects and residuals; see
Browne (1998) for details. As with VC models we take uniform priors on R for fixed
effects and χ−2(ν, s2) priors for the variances of random effects. The fixed effects and
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residuals may also be block-updated using multivariate normal proposal distributions;
Browne and Draper (2000) describes comparisons between these two Metropolis alter-
natives and documents the pronounced Monte Carlo efficiency advantage of the hybrid
Metropolis-Gibbs approach over alternatives such as ARS in RELR models, where the
former (with block updating) was 1.7 to 9.0 times faster than the latter in achieving the
same accuracy of posterior summaries in the examples studied.

Metropolis sampling with univariate normal proposals requires specification of the
variances of the proposal distributions. We use scaled versions of the estimated co-
variance matrices of REML or PQL estimates to set the initial values of the proposal
distribution variances, but optimal scaling factors for many multilevel models are not
known (Gelman et al. (1995) contains useful results in simple non-hierarchical settings).
Our preferred method for specifying the proposal distribution variances is adaptive (see,
e.g., Müller (1993) and Gilks et al. (1998) for other approaches to adaptive Metropolis
sampling). From starting values based on the estimated covariance matrices, we first
employ a sampling period of random length (but with an upper bound) during which
the proposal distribution variances are adaptively tuned and eventually fixed for the re-
mainder of the run; this is followed by the usual burn-in period (see Section 2.3.4); and
then the main monitoring run from which posterior summaries are calculated occurs.
The tuning of the proposal distribution variances is based on achieving an acceptance
rate r for each parameter that lies within a specified tolerance interval (r − δ, r + δ).

The algorithm examines empirical acceptance rates in batches of 100 iterations, com-
paring them for each parameter with the tolerance interval and modifying the proposal
distribution appropriately before going on to the next batch of 100. With r∗ as the
acceptance rate in the most recent batch and σp as the proposal distribution SD for a
given parameter, the modification performed at the end of each batch is as follows:

If r∗ ≥ r, σp → σp

[
2−

(
1− r∗

1− r

)]
, else σp →

σp(
2− r∗

r

) . (11)

This modifies the proposal standard deviation by a greater amount the farther the
empirical acceptance rate is from the target r. If r∗ is too low, the proposed moves
are too big, so σp is decreased; if r∗ is too high, the parameter space is being explored
with moves that are too small, and σp is increased. If the r∗ values are within the
tolerance interval during three successive batches of 100 iterations, the parameter is
marked as satisfying its tolerance condition, and once all parameters have been marked
the overall tolerance condition is satisfied and adapting stops. After a parameter has
been marked it is still modified as before until all parameters are marked, but each
parameter only needs to be marked once for the algorithm to end. To limit the time spent
in the adapting procedure an upper limit is set (we typically use 5,000 iterations) and
after this time the adapting period ends regardless of whether the tolerance conditions
are met (in practice this occurs rarely). Values of (r, δ) = (0.5, 0.1) appear to give
near-optimal univariate-update Metropolis performance for a wide variety of multilevel
models (Browne and Draper (2000)).
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Table 3: Summary of study designs for the VC model (1) simulations.

Total
Design number of
(J) Number of pupils per school (nj) pupils (N)

1 (6) 5 10 13 18 24 38 108
2 (6) 18 18 18 18 18 18 108

3 (12) 5 8 10 11 11 12 13 15 20 24 26 61 216
4 (12) 18 18 18 18 18 18 18 18 18 18 18 18 216

5 (24) 5 7 8 10 10 11 11 12 12 13 13 14 432
15 16 18 19 20 21 23 24 26 29 34 61

6 (24) (18 for all schools) 432

7 (48) 5 6 7 8 8 10 10 10 11 11 11 11 864
12 12 12 12 13 13 13 13 14 14 15 15
16 16 17 18 18 19 19 20 20 21 21 21
23 24 24 24 25 26 27 29 34 37 38 61

8 (48) (18 for all schools) 864

2.3.4 Starting values and burn-in strategy

In MCMC sampling with multilevel models it is natural to use as starting values the like-
lihood and quasi-likelihood results from ML/REML in VC models and from MQL/PQL
in REML models. We have found that marginal posteriors in multilevel models of data
sets with all but the tiniest sample sizes, even with diffuse priors, are almost invariably
unimodal (but see Liu and Hodges (2003) for a cautionary note); this encourages a rel-
atively short burn-in period without fear of missing significant posterior mass in all but
the most unusual of situations. We have found burn-ins of 500 iterations to be more
than adequate in both the VC and RELR model classes when likelihood-based starting
values are used.

3 Variance-components models

3.1 Simulation study design

We have conducted a large simulation study of the properties of Bayesian and likelihood-
based estimation methods in the VC model (1). The design of this study was based
on the JSP data set introduced in Section 1.1. The numbers nj of pupils per school in
the subsample of N = 887 students described in that section averaged 18.5, with an SD
of 10.3 and a range from 5 to 61 (i.e., the sampling design across the J = 48 schools
was quite unbalanced). To examine the effects of J and the distribution of the nj in
the simulations, we removed one pupil at random from each of the 23 largest schools
to yield N = 864 students, an average of 18 per school. We then varied the number of
schools included in the study, with schools chosen so that the average number of pupils
per school was maintained at 18 and the sizes of the individual schools were well spread
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out. We considered four sizes of sampling experiment—6, 12, 24 and 48 schools—with
a total of 108, 216, 432 and 864 pupils (respectively), and examined one balanced and
one unbalanced design in each case. The resulting 8 study designs are given in Table 3.
The school-level sample sizes in the cases with unequal nj were chosen to resemble the
actual (highly positively skewed) distribution of class size in the JSP data.

The other factors that varied in our simulations were the true values given to the
parameters of model (1): β0, σ

2
u, and σ2

e . The fixed effect, β0, is typically of lesser
importance in VC models; we fixed it at 30 throughout all runs. The two variances
are more interesting; we chose three possible values for each of these parameters. The
between-schools variance, σ2

u, took the values 1, 10 and 40, and we set the between-
pupils variance σ2

e to 10, 40 and 80. For realism in the educational context of the JSP
data we only examined cases in which σ2

e ≥ σ2
u.

A full-factorial experiment varying both size/balance of the classroom samples and
true parameter values was both computationally prohibitive and unnecessary (prelimi-
nary investigation revealed little or no interaction between these two factors), so we (a)
made one set of runs varying the sample sizes as in Table 3, while holding the param-
eters fixed at values similar to those in the JSP data (β0 = 30, σ2

u = 10, and σ2
e = 40),

and (b) held the sample sizes constant at the values specified by design 7 in Table
3 (the layout most similar to the JSP data), and varied the parameters across seven
settings—(σ2

u, σ
2
e) = (1, 10), (1, 40), (1, 80), (10, 10), (10, 40), (10, 80), (40, 80), giving rise

to intraclass correlation values from 0.012 to 0.5—in all cases with β0 = 30. We created
1,000 simulated data sets in each cell of the experimental grid; see the Appendix for
additional simulation details.

3.2 VC results

3.2.1 Estimator bias

All methods of estimating β0 we examined yielded negligible bias values; for brevity we
omit details. Tables 4 and 5 present Monte Carlo estimates of the relative bias of eight
methods of estimating σ2

u and σ2
e in the VC model (1), and Figures 1 and 2 graphically

summarize some aspects of these tables. Two of the methods studied are likelihood-
based (ML and REML), the other six Bayesian: two priors for the variances (Γ−1(ε, ε)
and U(0, 1

ε
)) crossed with three methods of summarizing the posterior distribution for

the purpose of point estimation (mean, median, mode). In Table 4 σ2
u and σ2

e were
held constant at 10 and 40, respectively, with the results varying across the eight study
designs in Table 3; in Table 5 study design 7 was maintained while (σ2

u, σ
2
e) varied

across seven settings. All methods were close to unbiased for the pupil-level variance
σ2
e , because—even in the smallest study designs—data on 108 or more pupils were

available (in particular all relative bias estimates for σ2
e in the simulations summarized

in Table 5 were less than 1%, and we omit these values for brevity). A number of clear
conclusions emerge from these tables; we describe the results in the language of schools
and pupils, with obvious extension to other settings.

• Bias for all methods drops steadily with increasing N , and tends to be somewhat
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Table 4: Estimates of relative bias for the variance parameters in VC model (1) with a variety

of methods and study designs. The true values of σ2
u and σ2

e were 10 and 40, respectively.

Figures in parentheses are Monte Carlo SEs.

σ2
u Relative

Bias (%)
Number of Level–2 Units J (U = unbalanced, B = balanced)

Estimation
Method

6–U 6–B 12–U 12–B 24–U 24–B 48–U 48–B

ML –22.6 –20.1 –11.9 –9.8 –2.4 –4.1 –2.1 –2.0
(2.1) (2.0) (1.6) (1.4) (1.1) (1.1) (0.9) (0.8)

REML –1.0 0.0 –1.0 0.4 3.1 1.0 0.5 0.5
(2.5) (2.4) (1.7) (1.5) (1.2) (1.2) (0.9) (0.8)

Mean 49.1 51.4 18.4 20.3 12.0 9.7 4.7 4.8
(4.1) (4.0) (2.2) (2.1) (1.3) (1.3) (0.9) (0.9)

Γ−1(ε, ε) Median –6.7 –0.6 –1.9 1.1 3.5 1.7 0.9 1.0
Prior (2.9) (2.8) (1.9) (1.8) (1.2) (1.2) (0.9) (0.8)

Mode –33.6 –31.6 –27.3 –24.1 –12.8 –13.4 –7.7 –7.1
(1.9) (1.9) (1.5) (1.4) (1.1) (1.1) (0.8) (0.8)

Mean 481 450 74.9 70.9 30.8 26.7 12.5 12.0
(10.2) (9.7) (2.7) (2.6) (1.4) (1.4) (1.0) (0.9)

U(0, 1
ε
) Median 140 133 40.6 39.0 20.1 16.9 8.3 8.0

Prior (5.1) (4.9) (2.3) (2.2) (1.5) (1.3) (0.9) (0.9)
Mode 107 94.3 1.2 0.4 0.8 –1.1 –1.0 –0.8

(3.8) (3.6) (1.7) (1.6) (1.2) (1.2) (0.9) (0.8)

σ2
e Relative

Bias (%)
Number of Level–2 Units J (U = unbalanced, B = balanced)

Estimation
Method

6–U 6–B 12–U 12–B 24–U 24–B 48–U 48–B

ML –0.42 –0.45 –0.02 –0.16 –0.31 –0.15 –0.04 –0.09

REML –0.42 –0.41 –0.03 –0.16 –0.31 –0.15 –0.04 –0.09

Mean 2.8 2.8 1.6 1.4 0.3 0.4 0.3 0.2
Γ−1(ε, ε) Median 1.1 1.4 0.9 0.7 –0.0 0.1 0.1 0.1

Mode –1.2 –1.2 –0.4 –0.6 –0.7 –0.6 –0.2 –0.3

Mean 3.5 3.6 2.0 1.9 0.7 0.8 0.4 0.4
U(0, 1

ε
) Median 1.8 2.3 1.4 1.3 0.3 0.5 0.3 0.3

Mode –0.6 –0.5 0.0 –0.1 –0.3 –0.2 –0.1 –0.1

Note: The Monte Carlo SEs for all rows in the σ2
e portion of this table

were 0.5 (designs 1 and 2), 0.3 (designs 3 and 4) and 0.2 (designs 5–8).
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Table 5: Estimates of relative bias for the variance parameter σ2
u in VC model (1) with a variety

of methods and true parameter values. All runs use study design 7. Figures in parentheses

are Monte Carlo SEs. Column headings record the true values of σ2
u, σ

2
e , and the intraclass

correlation ρ.

σ2
u Relative Bias (%) σ2

u;σ
2
e/ρ

Estimation Method
1; 80/
0.012

1; 40/
0.024

1; 10/
0.091

10; 80/
0.111

ML –3.4 –6.5 –3.1 –2.8
(3.0) (2.1) (1.1) (1.0)

REML 7.2 0.3 0.4 0.4
(3.2) (2.1) (1.1) (1.0)

Mean –22.8 –18.5 3.2 3.7
(2.5) (2.1) (1.2) (1.1)

Γ−1(ε, ε) Median –47.9 –31.7 –1.7 –0.8
Prior (2.5) (2.2) (1.2) (1.1)

Mode –60.0 –50.1 –15.1 –12.7
(1.7) (1.7) (1.1) (1.0)

Mean 84.5 39.6 15.9 14.8
(3.1) (2.2) (1.2) (1.1)

U(0, 1
ε
) Median 61.0 27.1 10.5 9.8

Prior (3.1) (2.1) (1.2) (1.1)
Mode 15.7 –4.2 –3.9 –2.9

(2.4) (1.8) (1.1) (1.0)

σ2
u Relative Bias (%) σ2

u;σ
2
e/ρ

Estimation Method
10; 40/
0.200

40; 80/
0.333

10; 10/
0.500

ML –2.1 –1.9 –1.7
(0.9) (0.8) (0.7)

REML 0.5 0.5 0.5
(0.9) (0.8) (0.7)

Mean 4.7 4.9 4.9
(0.9) (0.8) (0.8)

Γ−1(ε, ε) Median 0.9 1.4 1.6
Prior (0.9) (0.8) (0.7)

Mode –7.7 –5.5 –4.5
(0.8) (0.7) (0.7)

Mean 12.5 11.2 10.6
(1.0) (0.9) (0.8)

U(0, 1
ε
) Median 8.3 7.4 6.9

Prior (0.9) (0.8) (0.8)
Mode –1.0 –0.1 0.4

(0.9) (0.8) (0.7)
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Figure 1: Relative bias (a visual analogue of Table 4) in estimating σ2
u as a function of the

number of level–2 units J for each of eight estimation methods (likelihood-based estimates are

plotted with solid lines, Bayesian estimates with Γ−1(ε, ε) priors appear as long dotted lines,

and Bayesian estimates with with U(0, 1
ε
) priors are indicated with short dotted lines). Verti-

cal jumps at constant values of J indicate the effects of balanced versus unbalanced sampling

designs.
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smaller with balanced designs than when substantial imbalance is present. In
Table 5 the magnitude of the bias of estimates of σ2

u generally decreases as the
intraclass correlation ρ increases from near 0 to 0.5.

• ML estimates of σ2
u are biased low with the smallest designs; this is effectively

remedied by the REML bias correction except when ρ is close to 0.

• Posterior means with the Γ−1(ε, ε) prior for the school-level variance σ2
u are sharply

biased high with small sample sizes; this largely disappears when posterior medians
are used with this prior. The exception to this pattern occurs when σ2

e is 40–80
times larger than σ2

u, a situation which gave all of the methods trouble but which
arguably casts doubt on the need for random effects at level 2 in the first place.
Posterior modes with the Γ−1(ε, ε) prior are uniformly biased on the low side,
sometimes substantially.

• The U(0, 1
ε
) prior can produce huge positive biases when attention focuses on the

posterior mean, but has good bias properties with all but the smallest sample sizes
when the mode is used as a point estimate. There is clearly a trade-off between
choice of prior distribution and choice of posterior summary; the need for these
choices gives REML the advantage on bias grounds in small samples.

• The behavior of the two priors is understandable given their shape on the σ2

scale: Γ−1(ε, ε) priors have a sharp spike near 0, which has no effect when the
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Figure 2: Relative bias (a visual analogue of Table 5) in estimating σ2
u as a function of the

intraclass correlation ρ (in an unbalanced design with J = 48 level–2 units and a total of 864

level–1 units) for each of eight estimation methods (likelihood-based estimates are plotted with

solid lines, Bayesian estimates with Γ−1(ε, ε) priors appear as long dotted lines, and Bayesian

estimates with with U(0, 1
ε
) priors are indicated with short dotted lines).
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likelihood is concentrated away from 0 but which can create appreciable negative
bias when the data evidence for positive σ2 is weak. By contrast U(0, 1

ε
) priors

do not have this defect, but claiming in the prior that σ2 is as likely to be 500
(say) as it is to be 10 creates substantial positive bias when the true value is near
10 but sample sizes are small, leading to a relatively diffuse likelihood. Gelman
(2006) makes similar criticisms of the Γ−1(ε, ε) prior and offers useful suggestions
for alternatives.

3.2.2 Interval performance

We also monitored the coverage and length of interval estimates for the parameters in
the VC model (1). To construct Bayesian 100(1 − γ)% intervals we simply used the
100γ

2% and 100
(
1− γ

2

)
% quantiles of the relevant posterior distributions (as estimated

by MCMC). With the likelihood methods we examined six approaches: the first was
intended (as in Examples 1 and 2) to reflect the behavior of many practitioners of
multilevel modeling who are presented in the output of the standard computer programs
with nothing more than an estimate and a standard error; the second through fifth are
simple computationally inexpensive small-sample adjustments to the first for variance
components; and the sixth is an idealized version of likelihood interval estimation for
variances, assuming knowledge of the sampling distribution which would not be available
with a single sample. For brevity we present ML results only for the first method.

• Method 1 used intervals of the form
[
σ̂2 ± Φ−1

(
1− γ

2

)
ŜE

(
σ̂2

)]
based on asymp-

totic normality of the MLE.
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• In the case of variance parameters, method 2 approximates the sampling distri-
bution of the likelihood estimate by a Γ(α, β) distribution (preliminary work sug-
gested that this approximation was reasonable for moderate to large sample sizes).
In this approach we equated the mean α

β
of the gamma distribution to σ̂2 and the

variance α
β2 to V̂

(
σ̂2

)
, obtaining [α̂, β̂] =

[
σ̂4/V̂

(
σ̂2

)
, σ̂2/V̂

(
σ̂2

)]
, and then used

quantiles of the corresponding gamma distribution to generate the interval end-
points. (In the smaller study designs the distribution of the REML estimate is a
mixture of a point mass at 0 and an approximate gamma distribution conditional
on being positive. Any attempt to achieve further improvement in a small-sample
likelihood-based approximation would have to cope with the spike at 0.)

• Methods 3 and 4 use Taylor series and transformations to normality. Suppose that
the sampling distribution of g

(
σ̂2

)
is approximately Gaussian for some invertible

function g, and σ̂2 is approximately unbiased. Then by the ∆–method g
(
σ̂2

)

has approximate mean g
(
σ2

)
and variance

[
g′
(
σ2

)]2
V
(
σ̂2

)
, and an approximate

100(1− γ)% confidence interval for σ2 is therefore of the form

g−1
[
g
(
σ̂2

)
± Φ−1

(
1−

γ

2

) ∣∣g′
(
σ̂2

)∣∣ ŜE
(
σ̂2

)]
. (12)

Method 3 takes the sampling distribution of g
(
σ̂2

)
to be approximately lognormal

and uses g(·) = ln(·), and method 4 employs the Wilson and Hilferty (1931) opti-

mal transformation to normality for gamma random variables, g(·) = (·)
1
3 . Both

of these methods fail when σ̂2 = 0 because of division by zero in the derivative
calculation in (12).

• Method 5, which uses a variance-stabilizing (VS) transformation, is based on
the observation by Longford (2000) that (a) the ML estimate of the variance

ratio τ =
σ2
u

σ2
e
is highly correlated with its estimated asymptotic standard error

ŜE (τ̂), and (b) this dependence is removed asymptotically by working instead
with η = ln

(
n̄−1 + τ

)
, where n̄ is a suitably chosen mean of the numbers nj of

level–1 units per level–2 unit (we found that harmonic means work best). This
suggests building a Gaussian interval estimate on the η scale, relying on the large-
sample result V (η̂ML) =

2
J
, and back-transforming to obtain an interval for τ . We

then convert this into an interval for σ2
u by using the REML estimate of σ2

e in
place of σ2

e , which should yield good performance in our context because the total
number N of level–1 units in our simulations never drops below 108. The resulting
intervals for σ2

u have the form

σ̂2
e

{
exp

[
ln

(
n̄−1 +

σ̂2
u

σ̂2
e

)
± Φ−1

(
1−

γ

2

)√ 2

J

]
− n̄−1

}
. (13)

These intervals may have a negative left endpoint when σ2
u is small in relation to

σ2
e ; in many uses of model (1) this is undesirable, but (as Longford points out)

reformulations of the model exist in which negative values of τ are sensible subject
to a positive-definite constraint on the implied covariance matrix of y.
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Figure 3: Actual coverage of nominal 95% intervals (a visual analogue of Table 6) for σ2
u as a

function of the number of level–2 units J for each of eight estimation methods (ML intervals

are plotted with long dotted lines, Bayesian intervals with Γ−1(ε, ε) priors appear as solid lines,

and a variety of REML-based intervals are indicated with short dotted lines). Vertical jumps

at constant values of J indicate the effects of balanced versus unbalanced sampling designs.
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• To estimate “best possible” (idealized) performance of the likelihood intervals for
variances (method 6), we reasoned as follows. As in method 2, the sampling
distribution for a likelihood estimate such as σ̂2

u should be approximately gamma,

with parameters (α̂, β̂) which depend on the study design and underlying model

parameters, and if these (α̂, β̂) values were known an interval estimate for σ2
u could

be formed by analogy with the usual result with an IID Gaussian sample of size n:
(n−1)σ̂2

σ2 ∼ χ2
n−1, i.e., σ̂

2 ∼ Γ
(
n−1

2 , n−1
2σ2

)
. In each of the cells of our simulation grid

we therefore used maximum likelihood (e.g., Johnson et al. (1994)) to estimate

(α̂, β̂) from the 1,000 simulation replications, set n̂ = 2α̂ + 1, and constructed
1,000 idealized interval estimates of the form

[
(n̂− 1)

χ2
n̂−1,1− γ

2

σ̂2,
(n̂− 1)

χ2
n̂−1, γ

2

σ̂2

]
, (14)

where χ2
k,γ is the γ quantile of the χ2

k distribution. This method also fails when

σ̂2 = 0 because the MLEs of the parameters of a gamma distribution are undefined
if any of the data values are zero.

Tables 6–9 present the actual coverage and mean length of nominal 95% interval
estimates for σ2

u, and Figures 3 and 4 graphically summarize the interval-coverage in-
formation in these tables. The following conclusions are evident from the tables and
figures, and from other simulation results not presented here (for more details see Browne
(1998), which is available on the web at www.ams.ucsc.edu/∼draper).
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Table 6: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and study designs: actual coverages of nominal 95% intervals. The true values of σ2
u and σ2

e

were 10 and 40, respectively. Values in square brackets report the percentage of time REML

yielded variance estimates of zero, and values in curly brackets record the percentage of time

the VS intervals had a negative left endpoint (LE).

σ2
u Coverage (%)

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 6 (U) 6 (B) 12 (U) 12 (B)

ML Gaussian 71.9 73.3 80.9 83.0

Gaussian 78.5 80.4 86.2 87.1
Gamma 84.1 85.9 90.0 91.0

REML Lognormal∗ 99.1 98.7 98.4 98.2
Cube Root∗ 99.3 98.3 93.1 94.5

VS 90.7 89.1 92.9 93.3
Idealized∗ 94.5 93.6 95.5 95.7

REML % zero σ̂2
u [4.8%] [3.6%] [0.4%] [0%]

VS % LE < 0 {43%} {27%} {12%} {3.9%}

Γ−1(ε, ε) Prior 88.9 88.5 92.2 93.7

Uniform(0, 1
ε
) Prior 91.5 90.7 94.2 93.0

σ2
u Coverage (%)

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 24 (U) 24 (B) 48 (U) 48 (B)

ML Gaussian 89.5 88.5 91.4 90.7

Gaussian 91.2 90.2 92.4 91.1
Gamma 93.1 92.3 93.8 92.4

REML Lognormal∗ 95.0 94.8 94.5 93.9
Cube Root∗ 93.9 93.5 94.0 93.5

VS 90.7 93.4 94.8 93.1
Idealized∗ 93.7 94.5 94.7 94.8

REML % zero σ̂2
u [0%] [0%] [0%] [0%]

VS % LE < 0 {0.2%} {0.1%} {0%} {0%}

Γ−1(ε, ε) Prior 94.0 93.9 93.8 93.4

Uniform(0, 1
ε
) Prior 93.8 93.5 93.0 93.2

Notes: Monte Carlo SEs for coverage rates ranged from 0.3% (for estimates near 99%) to 1.4% (for
estimates near 70%). ∗In the lognormal, cube-root, and idealized cases, interval coverages were based

only on the replications in which the estimates were nonzero.
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Table 7: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and study designs: mean interval lengths. The true values of σ2
u and σ2

e were 10 and 40,

respectively. Figures in parentheses are Monte Carlo SEs.

σ2
u Interval Length

Number of Level–2 Units J
U = unbalanced, B = balanced)

Estimation Method 6 (U) 6 (B) 12 (U) 12 (B)

ML Gaussian 23.2 (0.5) 22.9 (0.5) 18.6 (0.3) 18.0 (0.2)

Gaussian 28.3 (0.6) 27.4 (0.6) 20.4 (0.3) 19.5 (0.3)
Gamma 27.0 (0.6) 26.3 (0.5) 19.9 (0.3) 19.1 (0.3)

REML Lognormal∗ — — — —
Cube Root∗ 36.9 (3.8) 32.9 (1.2) 21.5 (0.3) 20.5 (0.3)

VS 36.7 (0.7) 33.9 (0.7) 23.4 (0.3) 21.8 (0.3)
Idealized∗ 131 (3.2) 112 (2.6) 43.6 (0.7) 39.7 (0.7)

Γ−1(ε, ε) Prior 59.5 (1.4) 58.1 (1.3) 29.5 (0.4) 28.4 (0.4)

Uniform(0, 1
ε
) Prior 299 (5.0) 273 (4.7) 46.7 (0.6) 44.0 (0.6)

σ2
u Interval Length

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 24 (U) 24 (B) 48 (U) 48 (B)

ML Gaussian 14.1 (0.1) 13.4 (0.1) 9.9 (0.1) 9.6 (0.1)

Gaussian 14.7 (0.1) 13.9 (0.1) 10.2 (0.1) 9.8 (0.1)
Gamma 14.5 (0.1) 13.8 (0.1) 10.1 (0.1) 9.8 (0.1)

REML Lognormal∗ 16.0 (0.1) 15.1 (0.1) 10.6 (0.1) 10.2 (0.1)
Cube Root∗ 15.0 (0.1) 14.2 (0.1) 10.2 (0.1) 9.9 (0.1)

VS 15.8 (0.1) 14.7 (0.1) 10.6 (0.1) 10.1 (0.1)
Idealized∗ 19.7 (0.2) 19.4 (0.2) 12.4 (0.1) 11.8 (0.1)

Γ−1(ε, ε) Prior 17.5 (0.2) 16.6 (0.2) 11.0 (0.1) 10.6 (0.1)

Uniform(0, 1
ε
) Prior 21.0 (0.2) 19.7 (0.2) 11.8 (0.1) 11.5 (0.1)

Notes: The dashes in the lognormal entries replace enormous numbers arising from division by
near-zero values. ∗In the lognormal, cube-root, and idealized cases, interval lengths were based only

on the replications in which the estimates were nonzero (see Table 6).
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Table 8: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and true parameter values: actual coverages of nominal 95% intervals. All runs use study

design 7. Column headings record the true values of σ2
u, σ

2
e , and the intraclass correlation ρ.

Values in square brackets report the percentage of time REML yielded variance estimates of

zero and values in curly brackets record the percentage of time the VS intervals had a negative

left endpoint (LE).

σ2
u Coverage (%) σ2

u;σ
2
e/ρ

Estimation Method
1; 80/
0.012

1; 40/
0.024

1; 10/
0.091

10; 80/
0.111

ML Gaussian 78.5 88.0 90.7 90.1

Gaussian 80.4 89.4 91.8 91.7
Gamma 75.7 88.7 93.7 93.5

REML Lognormal∗ 92.1 94.6 95.5 95.0
Cube Root∗ 95.4 96.9 94.1 94.3

VS 99.2 98.9 94.5 94.6
Idealized∗ 90.7 94.6 94.6 94.9

REML % 0 Estimate [19%] [7.0%] [0.1%] [0%]

VS % LE < 0 {92%} {74%} {1.2%} {0.2%}

Γ−1(ε, ε) Prior 89.5 88.6 92.6 93.5

Uniform(0, 1
ε
) Prior 95.9 95.5 93.0 93.1

σ2
u Coverage (%) σ2

u;σ
2
e/ρ

Estimation Method
10; 40/
0.200

40; 80/
0.333

10; 10/
0.500

ML Gaussian 91.4 92.1 91.4

Gaussian 92.4 92.9 92.7
Gamma 93.8 93.2 93.9

REML Lognormal∗ 94.5 94.3 94.6
Cube Root∗ 94.0 94.3 94.1

VS 94.8 94.4 94.5
Idealized∗ 94.7 95.5 95.8

REML % 0 Estimate [0%] [0%] [0%]

VS % LE < 0 {0%} {0%} {0%}

Γ−1(ε, ε) Prior 93.8 93.8 94.3

Uniform(0, 1
ε
) Prior 93.0 92.9 92.8

Notes: See Table 6.
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Figure 4: Actual coverage of nominal 95% intervals (a visual analogue of Table 8) for σ2
u as a

function of the intraclass correlation ρ (in an unbalanced design with J = 48 level–2 units and

a total of 864 level–1 units) for each of eight estimation methods (ML intervals are plotted with

long dotted lines, Bayesian intervals with Γ−1(ε, ε) priors appear as solid lines, and a variety

of REML-based intervals are indicated with short dotted lines).
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• Intervals for σ2
e (not shown) had close to nominal coverage with all methods,

and will not be discussed further. The coverage of ML/REML intervals for the
fixed effect β0 (also not shown) was below nominal with 6–12 schools and 108–216
pupils (study designs 1–4) but approached nominal levels with larger sample sizes.
Bayesian interval coverage for β0 with both Γ−1(ε, ε) and U(0, 1

ε
) priors for the

variance components was close to nominal in all designs examined (β0 and σ2
u are

correlated in the posterior, so the prior for σ2
u affects inferences about β0).

• The effects of imbalance in the design were small but nonzero, and intuitively
reasonable: holding the total number of pupils constant, balance yielded narrower
intervals and generally better coverage.

• As was the case with bias in the estimation of σ2
u (Table 5), interval performance

generally improved as the intraclass correlation ρ increased away from 0 (Table 8).
Even with data on 48 schools and 864 pupils, both likelihood-based and Bayesian
methods can have difficulty apportioning variation within and between schools
when σ2

e is much larger than σ2
u.

• ML produced Gaussian intervals for σ2
u that were consistently too narrow to

achieve good coverage. REML improved on this but still fell below nominal cov-
erage in all situations examined, using both the Gaussian and gamma intervals.
In the two smallest designs the lognormal and cube root REML intervals failed to
exist 4–5% of the time, and over-covered when they did not fail (and the lognormal
intervals continued to over-cover in designs 3 and 4), but with 24 or more level–
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Table 9: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and true parameter values: mean interval lengths. All runs use study design 7; column headings

record σ2
u and σ2

e . Figures in parentheses are Monte Carlo SEs.

σ2
u Interval Length σ2

u;σ
2
e

Estimation Method 1; 10 1; 40 1; 80 10; 10 10; 40 10; 80 40; 80

ML Gaussian 1.27 2.39 3.49 8.41 9.93 11.8 35.7
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

Gaussian 1.30 2.47 3.66 8.59 10.2 12.1 36.5
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

Gamma 1.29 2.34 3.31 8.56 10.1 12.0 36.2
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

REML Lognormal∗ 1.40 — — 8.86 10.6 12.8 37.8
(0.01) — — (0.1) (0.1) (0.1) (0.3)

Cube Root∗ 1.32 40.3 14.1 8.65 10.2 12.2 36.8
(0.01) (25.5) (4.0) (0.1) (0.1) (0.1) (0.2)

VS 1.41 3.15 5.53 8.83 10.6 12.9 37.7
(0.01) (0.02) (0.03) (0.06) (0.1) (0.1) (0.3)

Idealized∗ 1.81 7.46 13.6 10.0 12.4 16.0 42.9
(0.02) (0.15) (0.3) (0.1) (0.1) (0.2) (0.3)

Γ−1(ε, ε) Prior 1.40 2.28 2.95 9.34 11.0 13.0 39.6
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.3)

Uniform(0, 1
ε
) Prior 1.53 2.99 4.71 9.97 11.8 14.2 42.5

(0.01) (0.03) (0.05) (0.1) (0.1) (0.1) (0.3)

Notes: See Table 7.

2 units (schools) both transformation-based methods improved on the Gaussian
and gamma intervals and achieved coverages close to nominal. The lognormal
and cube root REML intervals failed to exist 7–19% of the time when ρ ≤ 0.024,
but—as mentioned earlier—in such situations the need for VC modeling is unclear.
The VS intervals sharply over-covered when ρ was small and had a negative left
endpoint 4–43% of the time in the smallest designs, but performed well otherwise.

• Bayesian intervals for σ2
u with the U(0, 1

ε
) prior had actual coverages at or close

to nominal levels in all study designs and parameter settings examined. The
Γ−1(ε, ε) intervals undercovered to some extent (actual levels near 90% at nominal
95%) when the number of level–2 units or the variance ratio τ were small, but
performed well in all other situations. Note, however, that the U(0, 1

ε
) intervals

were extremely wide with small samples (Table 7); further work is needed to see
if other prior specifications might yield narrower but still well-calibrated intervals
in such situations.

• In some cases the REML asymptotic standard errors underestimated the actual
sampling variabilities they were meant to estimate. This may be seen from the
substantially improved performance of the idealized intervals over the REML
gamma intervals in small samples, and is also clear from a comparison of the



Browne and Draper 499

mean value of the REML squared standard errors for σ̂2
u with the sample variance

of the 1,000 simulated σ̂2
u values: across studies 1–8 in Table 6, ratios of the form{

mean
[
ŜE

2(
σ̂2

)]
/ V̂

(
σ̂2

)}
came out (0.854, 0.837, 0.920, 0.910, 1.02, 0.933, 0.899,

0.925), respectively, i.e., the REML squared SEs underestimated the sampling vari-
ances on average by 15–16% in studies 1–2 (see Longford (2000) for a theoretical
explanation of this phenomenon).

4 Random-effects logistic regression models

4.1 Simulation study design

We have also conducted a large simulation study of the properties of quasi-likelihood
and Bayesian estimation methods in the RELR model (2). The design of this study
was based on the Rodŕıguez-Goldman data set introduced in Section 1.2. Conditioning
on both the covariates (x1ijk, x2jk, x3k) and the true parameter values (β0 = 0.65, β1 =
β2 = β3 = σ2

u = σ2
v = 1.0) used by Rodŕıguez and Goldman (1995) in their likelihood-

based simulation study, we used model (2) to create 500 simulation replications of the
Rodŕıguez-Goldman data structure, each with 161 communities, 1,558 mothers, and
2,449 births.

For each simulated data set we estimated the six parameters using two quasi-
likelihood methods—MQL1 and PQL2—and Bayesian fitting with two priors. In the
quasi-likelihood estimation we used a convergence tolerance (maximum relative change
in parameter values from one iteration to the next) of 0.01. For Bayesian estimation we
used MCMC with (improper) uniform priors on R on the βl and two prior distributions
on the variance components: Γ−1(ε, ε) and (improper) uniform on (0,∞), functionally
equivalent to a proper U(0, 1

ε
) prior for small ε. We used the adaptive hybrid Metropolis-

Gibbs method described in Section 2.3.3, with a maximum adaptation period of 5,000
iterations, a target acceptance rate of 44%, a burn-in from PQL2 starting values of
500 iterations, and a monitoring run of 25,000 iterations (based on Raftery and Lewis
(1992) default accuracy recommendations).

4.2 RELR results

Tables 10–11 and Figures 5 and 6 present our simulation findings. For each of the six
parameters the tables contrast the mean estimate, and coverage and length of nominal
95% intervals, for the various estimation methods, using posterior means as Bayesian
point estimates (medians and modes gave essentially the same results); the table also
summarizes large-sample Gaussian intervals—and gamma, lognormal, and idealized in-
tervals as in Section 3.2.2 for the variance parameters—based on the quasi-likelihood
methods (the cube root results were inferior to those from the lognormal approxima-
tion, and the VS method is not readily adaptable to this setting since there is no direct
estimate of the level–1 variance). Figures 5 and 6 give calibration plots for the six
parameters (three in each figure), in which nominal and actual coverage of 100(1− γ)%
intervals for γ = 0.01, 0.02, . . . , 0.99 are contrasted for the various estimation meth-
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Table 10: Mean estimates (top table) and coverage (bottom table) of nominal 95% intervals, for

four estimation methods in RELR model (2) with the Rodŕıguez-Goldman data structure. True

values of the parameters are given in square brackets in the top table. 95% central posterior

Bayesian intervals are reported, and figures in parentheses are Monte Carlo SEs.

Mean Estimate Parameter

Estimation Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 0.474 0.741 0.753 0.727 0.550 0.026
(0.007) (0.007) (0.004) (0.009) (0.004) (0.002)

PQL2 0.612 0.945 0.958 0.942 0.888 0.568
(0.009) (0.009) (0.005) (0.011) (0.009) (0.010)

Γ−1(ε, ε) 0.638 0.991 1.006 0.982 1.023 0.964
Bayesian Priors (0.010) (0.010) (0.006) (0.012) (0.011) (0.018)

U(0,∞) 0.655 1.015 1.031 1.007 1.108 1.130
Priors (0.010) (0.010) (0.005) (0.013) (0.011) (0.016)

Actual Coverage (%) Parameter

Estimation Method β0 β1 β2 β3 σ2
v σ2

u

MQL1 Gaussian 76.8 68.6 17.6 69.6 2.4 0.0
(1.9) (2.1) (1.7) (2.1) (0.7) (—)

Gaussian 92.0 96.2 90.8 89.8 77.6 26.8
(1.2) (0.9) (1.3) (1.4) (1.9) (2.0)

Gamma — — — — 81.0 31.4
PQL2 — — — — (1.8) (2.1)

Lognormal — — — — 84.2 37.4
— — — — (1.6) (2.1)

Idealized — — — — 93.6 83.4
— — — — (1.1) (1.7)

Γ−1(ε, ε) 93.2 96.4 92.6 92.2 94.4 88.6
Bayesian Priors (1.1) (0.8) (1.2) (1.2) (1.0) (1.4)

U(0,∞) 93.6 96.4 92.8 93.6 92.2 93.0
Priors (1.1) (0.8) (1.2) (1.1) (1.2) (1.1)
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Table 11: Mean length of nominal 95% intervals, for four estimation methods in RELR model

(2) with the Rodŕıguez-Goldman data structure. True values of the parameters are given in

square brackets. 95% central posterior Bayesian intervals are reported, and figures in paren-

theses are Monte Carlo SEs.

Mean Interval Length Parameter

Estimation Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 Gaussian 0.589 0.681 0.327 0.746 0.404 0.177
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Gaussian 0.735 0.796 0.400 0.930 0.638 0.591
(0.003) (0.002) (0.001) (0.003) (0.005) (0.002)

Gamma — — — — 0.636 0.586
PQL2 — — — — (0.005) (0.003)

Lognormal — — — — 0.641 0.635
— — — — (0.005) (0.004)

Idealized — — — — 0.851 1.25
— — — — (0.009) (0.022)

Γ−1(ε, ε) 0.798 0.875 0.463 1.01 0.878 1.25
Bayesian Priors (0.004) (0.003) (0.002) (0.004) (0.009) (0.015)

U(0,∞) 0.828 0.895 0.476 1.05 0.948 1.32
Priors (0.003) (0.002) (0.002) (0.004) (0.008) (0.011)

ods, using Gaussian intervals for MQL1 and PQL2 for the fixed effects and adding the
PQL2 lognormal intervals for the variance parameters. The following conclusions may
be drawn from these summaries.

• MQL1 yielded sharply biased estimates and very poor coverage properties, es-
pecially for the random-effects variances (e.g., the MQL1 point estimate of the
level–2 variance σ2

u was 0 in 58% of the simulated data sets). PQL2 produced a
considerable improvement, but bias and undercoverage with the Gaussian inter-
vals were still noticeable, especially for σ2

u. The lognormal intervals offered some
improvement but still exhibited substantial undercoverage.

• PQL2 underperformed for the variance estimates both because the PQL estimates
are biased low and because the PQL standard errors are too small (see Engel (1998)
and Lee and Nelder (2001) for theoretical results that support this conclusion).
As was the case with the VC model, this may be seen in two ways: (a) by the
improved performance of the idealized interval estimates and (b) through the

ratios
{
mean

[
ŜE

2(
σ̂2

)]
/ V̂

(
σ̂2

)}
, which were 0.447 and 0.672 for σ2

u and σ2
v ,

respectively, i.e., the typical estimated variance of σ̂2
u in any given simulated data

set was only about 45% of the actual sampling variance across the 500 data sets.
This seems to be largely a small-sample problem for PQL—even though each
simulated data set had 2,449 births, the average number of women per community
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(the most important determinant of the accuracy of σ̂2
u) was only 1,558

161

.
= 9.7—

but note that even with 161 communities the PQL performance for σ2
v was also

unsatisfactory.

• Bayesian estimates with both priors were close to unbiased and well calibrated for
all parameters, with actual coverage values close to nominal at all levels in Figures
1 and 2.

5 Summary and conclusions

In two large simulations studies whose design is realistic for educational and medi-
cal research (as well as other fields of inquiry), we have examined the performance
of likelihood-based and Bayesian methods of fitting variance-components (VC) and
random-effects logistic regression (RELR) models, focusing on the likelihood-based ap-
proaches in most frequent current use in the applied multilevel-modeling literature. Our
main findings are as follows.

• In two-level VC models with a wide variety of sample sizes and true parameter
values,

– Both likelihood-based (ML and REML) and Bayesian (diffuse-prior) methods
can be made to yield approximately unbiased point estimates, in the likeli-
hood case by using REML rather than ML estimates, and in the Bayesian
case by choosing one of several combinations of diffuse priors and posterior
point summaries (specifically, for random-effects variances: posterior medi-
ans for Γ−1(ε, ε) priors and posterior modes for U(0, 1

ε
) priors, in both cases

for small ε; these combinations produce approximate unbiasedness in all but
the smallest designs (i.e., those with fewer than about a dozen cluster units in
the hierarchy)). The automatic nature of REML’s bias correction represents
an advantage for the likelihood-based approach as far as bias is concerned
with small samples (see Section 3.2.1, Tables 4 and 5, and Figures 1 and 2
for details);

– However, both approaches experienced difficulty in attaining nominal cover-
age of interval estimates in two situations: when (i) the number J of level–2

(cluster) units and/or (ii) the variance ratio τ =
σ2
u

σ2
e
between levels 2 and

1 (or equivalently the intraclass correlation ρ = τ
τ+1 ) are small (see Section

3.2.2, Tables 6–9, and Figures 3 and 4 for details on the magnitude of these
effects).

• In the three-level RELR model we studied (which had 161 units at level 3, an
average of 9.7 level–2 units per level–3 unit, and a total of 2,449 level–1 units),

– quasi-likelihood methods performed badly in terms of bias of point estimates
and coverage of interval estimates for random-effects variances (see Section
4.2 and Tables 10 and 11 for details); and
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Figure 5: Actual versus nominal coverage of four estimation methods for the parameters β0, β1

and β2 in the RELR model (2).
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Figure 6: Actual versus nominal coverage of four estimation methods for the parameters β3, σ
2
v

and σ2
u in the RELR model (2).
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– Bayesian methods with diffuse priors were well-calibrated in both point and
interval estimation for all parameters of the model (see Figures 5 and 6 for
a dramatic summary of the calibration picture in RELR models).

Our RELR results, narrowly construed, apply only to the 3–level model (2) with sam-
ple sizes like those in Example 2 of Section 1.2, but our quasi-likelihood conclusions are
consistent with broad theoretical predictions made by Engel (1998) and Lee and Nelder
(2001), and our Bayesian calibration findings are in line with those in other multilevel
settings we have examined (e.g., Browne and Draper (2000), Browne et al. (2002)).

These results bear comment both methodologically and in their practical implica-
tions for applied multilevel modeling in health care, education, and other fields. On the
methodological side,

• Further study is needed to see if alternative diffuse priors (e.g., Daniels (1999),
Natarajan and Kass (2000, 2006), Gelman (2006)) can remedy the undercoverage
of Bayesian intervals (and achieve approximate unbiasedness without the need to
select a method of posterior summary depending on the problem) with small num-
bers of level–2 units in 2–level VC models; we intend to report on this elsewhere.
Likelihood-based intervals of the kind we have studied here underperform in that
situation for a fundamental reason that would be harder to remedy: the insistence
on maximization (rather than integration) over the parameters of a highly-skewed
likelihood surface with its marginal maximum at σ2

u = 0 leads to zero point es-
timates in small samples with some frequency when the true value is well away
from 0;

• The usual quasi-likelihood computer output in RELR models may not be trust-
worthy either for point estimation or uncertainty assessment, in the latter case
because the estimated asymptotic standard errors can be systematically too small
when the mean numbers of level–k units per level–(k+1) unit (and/or the number
of level–M units in an M–level model) are small for k ≥ 1; and

• There is an expectation, expressed formally in the Bernstein-von Mises theo-
rem (e.g., Freedman (1999); also see Samaniego and Reneau (1994) and Severini
(1994)), that likelihood and diffuse-prior Bayesian results will be close in large sam-
ples, and this will typically occur when parametric models with a modest number
of parameters are fit to data not possessing a hierarchical structure. However,

– what looks like a large sample in multilevel modeling may not be so large in
reality, because the effective sample sizes for variances of random effects at
levels greater than 1 in the hierarchy are mainly governed not by the total
number of level–1 units (which will often be large) but by the numbers of
units at the other levels, which are often much smaller; and

– exact-likelihood methods for non-Gaussian multilevel models have until fairly
recently been difficult to implement (because evaluation of the likelihood
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function involves integrating over the random effects), with the result that ap-
proximate methods such as quasi-likelihood techniques in RELR models have
gained widespread use, and the Bernstein-von Mises theorem says nothing
about agreement between Bayesian and approximate likelihood approaches
unless the approximation is good.

On the practical side, as mentioned in Section 1.3, likelihood methods that may prove
superior to quasi-likelihood have recently been under development, based on (a) Gaus-
sian quadrature (e.g., Pinheiro and Bates (1995); see the SAS (SAS-Institute (2006))
procedure MIXED for VC model fitting and the packages EGRET, MIXOR, and LIMDEP,
the SAS procedure NLMIXED, and the SAS macro NLINMIX for examples of quadrature
implementations in RELR models; note however that, since these programs are only
applicable to 2–level designs, they could not be used on the RELR models in this
paper), (b) nonparametric maximum likelihood (Aitkin (1999a), supported by GLIM4

macros written by the author), (c) Laplace approximations (Raudenbush et al. (2000),
available in HLM), (d) hierarchical generalized linear models (Lee and Nelder (2001), as
implemented in GENSTAT macros), and (e) profile likelihood (e.g., Longford (2000));
parametric bootstrapping of PQL estimates (e.g., Rodŕıguez and Goldman (2001), for
instance using MLwiN) may well lead to significant improvement in RELR models as
well. We are not aware of large-scale simulation results on the calibration of these
approaches in small samples; the literature seems particularly silent on the quality of
interval estimates produced by these methods.

One important likelihood-Bayesian comparison we have not addressed is computa-
tional speed, where ML/REML and MQL/PQL approaches have a distinct advantage
(for example, PQL2 fitting of model (2) to the Rodŕıguez-Goldman data set in Table 2
takes less than 3 seconds on a 3GHz PC versus 1.8 minutes using MCMC with 25,000
monitoring iterations). However, (i) steady improvements in recent years in both hard-
ware speed and efficiency of Monte Carlo algorithms and (ii) the lack of calibration
of likelihood-based methods in some common hierarchical settings combine to make
MCMC-based Bayesian fitting of multilevel models an attractive approach, even with
rather large data sets. Other analytic strategies based on less approximate likelihood
methods are also possible but would benefit from further study of the type summarized
here.
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Appendix: Computing details

In the VC simulations, to decide how long to monitor the Gibbs-sampling output we estimated
time per iteration and calculated Raftery and Lewis (1992) diagnostics as a function of the
total number of pupils N . This revealed that the smaller designs in Table 3 needed longer
monitoring runs to satisfy Raftery-Lewis default accuracy constraints but took less time per
iteration, leading to the following monitoring run lengths M : 50,000 in studies 1 and 2, 30,000
in 3 and 4, 20,000 in 5 and 6, and 10,000 in studies 7 and 8. The full set of VC simulations
took 1.8 GHz-months of CPU time on 3 Sun SPARCstations and a Pentium-based PC.

The data sets in Examples 1 and 2, and WinBUGS and MLwiN programs to fit models (1) and
(2) to those examples, are available on the web at www.ams.ucsc.edu/∼draper.
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Prior distributions for variance parameters in

hierarchical models(Comment on Article by

Browne and Draper)

Andrew Gelman∗

Abstract. Various noninformative prior distributions have been suggested for
scale parameters in hierarchical models. We construct a new folded-noncentral-t
family of conditionally conjugate priors for hierarchical standard deviation pa-
rameters, and then consider noninformative and weakly informative priors in this
family. We use an example to illustrate serious problems with the inverse-gamma
family of “noninformative” prior distributions. We suggest instead to use a uni-
form prior on the hierarchical standard deviation, using the half-t family when the
number of groups is small and in other settings where a weakly informative prior
is desired. We also illustrate the use of the half-t family for hierarchical modeling
of multiple variance parameters such as arise in the analysis of variance.

Keywords: Bayesian inference, conditional conjugacy, folded-noncentral-t distri-
bution, half-t distribution, hierarchical model, multilevel model, noninformative
prior distribution, weakly informative prior distribution

1 Introduction

Fully-Bayesian analyses of hierarchical linear models have been considered for at least
forty years (Hill, 1965, Tiao and Tan, 1965, and Stone and Springer, 1965) and have
remained a topic of theoretical and applied interest (see, e.g., Portnoy, 1971, Box and
Tiao, 1973, Gelman et al., 2003, Carlin and Louis, 1996, and Meng and van Dyk, 2001).
Browne and Draper (2005) review much of the extensive literature in the course of
comparing Bayesian and non-Bayesian inference for hierarchical models. As part of
their article, Browne and Draper consider some different prior distributions for variance
parameters; here, we explore the principles of hierarchical prior distributions in the
context of a specific class of models.

Hierarchical (multilevel) models are central to modern Bayesian statistics for both
conceptual and practical reasons. On the theoretical side, hierarchical models allow a
more “objective” approach to inference by estimating the parameters of prior distribu-
tions from data rather than requiring them to be specified using subjective information
(see James and Stein, 1960, Efron and Morris, 1975, and Morris, 1983). At a practi-
cal level, hierarchical models are flexible tools for combining information and partial
pooling of inferences (see, for example, Kreft and De Leeuw, 1998, Snijders and Bosker,
1999, Carlin and Louis, 2001, Raudenbush and Bryk, 2002, Gelman et al., 2003).
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A hierarchical model requires hyperparameters, however, and these must be given
their own prior distribution. In this paper, we discuss the prior distribution for hier-
archical variance parameters. We consider some proposed noninformative prior distri-
butions, including uniform and inverse-gamma families, in the context of an expanded
conditionally-conjugate family. We propose a half-t model and demonstrate its use as
a weakly-informative prior distribution and as a component in a hierarchical model of
variance parameters.

1.1 The basic hierarchical model

We shall work with a simple two-level normal model of data yij with group-level effects
αj :

yij ∼ N(µ+ αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(0, σ2
α), j = 1, . . . , J. (1)

We briefly discuss other hierarchical models in Section 7.2.

Model (1) has three hyperparameters—µ, σy, and σα—but in this paper we concern
ourselves only with the last of these. Typically, enough data will be available to esti-
mate µ and σy that one can use any reasonable noninformative prior distribution—for
example, p(µ, σy) ∝ 1 or p(µ, log σy) ∝ 1.

Various noninformative prior distributions for σα have been suggested in Bayesian
literature and software, including an improper uniform density on σα (Gelman et al.,
2003), proper distributions such as p(σ2

α) ∼ inverse-gamma(0.001, 0.001) (Spiegelhalter
et al., 1994, 2003), and distributions that depend on the data-level variance (Box and
Tiao, 1973). In this paper, we explore and make recommendations for prior distributions
for σα, beginning in Section 3 with conjugate families of proper prior distributions and
then considering noninformative prior densities in Section 4.

As we illustrate in Section 5, the choice of “noninformative” prior distribution can
have a big effect on inferences, especially for problems where the number of groups J is
small or the group-level variance σ2

α is close to zero. We conclude with recommendations
in Section 7.

2 Concepts relating to the choice of prior distribution

2.1 Conditionally-conjugate families

Consider a model with parameters θ, for which φ represents one element or a subset
of elements of θ. A family of prior distributions p(φ) is conditionally conjugate for φ
if the conditional posterior distribution, p(φ|y) is also in that class. In computational
terms, conditional conjugacy means that, if it is possible to draw φ from this class
of prior distributions, then it is also possible to perform a Gibbs sampler draw of φ
in the posterior distribution. Perhaps more important for understanding the model,
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conditional conjugacy allows a prior distribution to be interpreted in terms of equivalent
data (see, for example, Box and Tiao, 1973).

Conditional conjugacy is a useful idea because it is preserved when a model is ex-
panded hierarchically, while the usual concept of conjugacy is not. For example, in the
basic hierarchical normal model, the normal prior distributions on the αj ’s are con-
ditionally conjugate but not conjugate; the αj ’s have normal posterior distributions,
conditional on all other parameters in the model, but their marginal posterior distribu-
tions are not normal.

As we shall see, by judicious model expansion we can expand the class of condition-
ally conjugate prior distributions for the hierarchical variance parameter.

2.2 Improper limit of a prior distribution

Improper prior densities can, but do not necessarily, lead to proper posterior distri-
butions. To avoid confusion it is useful to define improper distributions as particular
limits of proper distributions. For the variance parameter σα, two commonly-considered
improper densities are uniform(0, A), as A→∞, and inverse-gamma(ε, ε), as ε→ 0.

As we shall see, the uniform(0, A) model yields a limiting proper posterior density
as A → ∞, as long as the number of groups J is at least 3. Thus, for a finite but
sufficiently large A, inferences are not sensitive to the choice of A.

In contrast, the inverse-gamma(ε, ε) model does not have any proper limiting poste-
rior distribution. As a result, posterior inferences are sensitive to ε—it cannot simply
be comfortably set to a low value such as 0.001.

2.3 Weakly-informative prior distribution

We characterize a prior distribution as weakly informative if it is proper but is set up
so that the information it does provide is intentionally weaker than whatever actual
prior knowledge is available. We will discuss this further in the context of a specific
example, but in general any problem has some natural constraints that would allow a
weakly-informative model. For example, for regression models on the logarithmic or
logit scale, with predictors that are binary or scaled to have standard deviation 1, we
can be sure for most applications that effect sizes will be less than 10, or certainly less
than 100.

Weakly-informative distributions are useful for their own sake and also as necessary
limiting steps in noninformative distributions, as discussed in Section 2.2 above.

2.4 Calibration

Posterior inferences can be evaluated using the concept of calibration of the posterior
mean, the Bayesian analogue to the classical notion of “bias.” For any parameter θ, we
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label the posterior mean as θ̂ = E(θ|y) and define the miscalibration of the posterior

mean as E(θ|θ̂, y)− θ̂, for any value of θ̂. If the prior distribution is true—that is, if the
data are constructed by first drawing θ from p(θ), then drawing y from p(y|θ)—then the
posterior mean is automatically calibrated; that is its miscalibration is 0 for all values
of θ̂.

For improper prior distributions, however, things are not so simple, since it is im-
possible for θ to be drawn from an unnormalized density. To evaluate calibration in this
context, it is necessary to posit a “true prior distribution” from which θ is drawn along
with the “inferential prior distribution” that is used in the Bayesian inference.

For the hierarchical model discussed in this paper, we can consider the improper
uniform density on σα as a limit of uniform prior densities on the range (0, A), with
A → ∞. For any finite value of A, we can then see that the improper uniform density
leads to inferences with a positive miscalibration—that is, overestimates (on average)
of σα.

We demonstrate this miscalibration in two steps. First, suppose that both the true
and inferential prior distributions for σα are uniform on (0, A). Then the miscalibration
is trivially zero. Now keep the true prior distribution at U(0, A) and let the inferential

prior distribution go to U(0,∞). This will necessarily increase θ̂ for any data y (since
we are now averaging over values of θ in the range [A,∞)) without changing the true
θ, thus causing the average value of the miscalibration to become positive.

This miscalibration is an unavoidable consequence of the asymmetry in the param-
eter space, with variance parameters restricted to be positive. Similarly, there are no
always-nonnegative classical unbiased estimators of σα or σ2

α in the hierarchical model.
Similar issues are discussed by Bickel and Blackwell (1967) and Meng and Zaslavsky
(2002).

3 Conditionally-conjugate prior distributions for hierar-

chical variance parameters

3.1 Inverse-gamma prior distribution for σ2
α

The parameter σ2
α in model (1) does not have any simple family of conjugate prior

distributions because its marginal likelihood depends in a complex way on the data
from all J groups (Hill, 1965, Tiao and Tan, 1965). However, the inverse-gamma family
is conditionally conjugate, in the sense defined in Section 2.1: if σ2

α has an inverse-
gamma prior distribution, then the conditional posterior distribution p(σ2

α |α, µ, σy, y)
is also inverse-gamma.

The inverse-gamma(α, β) model for σ2
α can also be expressed as an inverse-χ2 distri-

bution with scale s2α = β/α and degrees of freedom να = 2α (Gelman et al., 2003). The
inverse-χ2 parameterization can be helpful in understanding the information underlying
various choices of proper prior distributions, as we discuss in Section 4.
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3.2 Folded-noncentral-t prior distribution for σ
α

We can expand the family of conditionally-conjugate prior distributions by applying a
redundant multiplicative reparameterization to model (1):

yij ∼ N(µ+ ξηj , σ
2
y)

ηj ∼ N(0, σ2
η). (2)

The parameters αj in (1) correspond to the products ξηj in (2), and the hierarchical
standard deviation σα in (1) corresponds to |ξ|ση in (2). This “parameter expanded”
model was originally constructed to speed up EM and Gibbs sampler computations.
The overparameterization reduces dependence among the parameters in a hierarchical
model and improves MCMC convergence (Liu, Rubin, and Wu, 1998, Liu and Wu, 1999,
van Dyk and Meng, 2001, Gelman et al., 2005). It has also been suggested that the
additional parameter can increase the flexibility of applied modeling, especially in hier-
archical regression models with several batches of varying coefficients (Gelman, 2004).
Here we merely note that this expanded model form allows conditionally conjugate
prior distributions for both ξ and ση, and these parameters are independent in the con-
ditional posterior distribution. There is thus an implicit conditionally conjugate prior
distribution for σα = |ξ|ση.

For simplicity we restrict ourselves to independent prior distributions on ξ and ση.
In model (2), the conditionally-conjugate prior family for ξ is normal—given the data
and all the other parameters in the model, the likelihood for ξ has the form of a normal
distribution, derived from

∑J
j=1 nj factors of the form (yij − µ)/ηj ∼ N(ξ, σ2

y/η
2
j ). The

conditionally-conjugate prior family for σ2
η is inverse-gamma, as discussed in Section

3.1.

The implicit conditionally-conjugate family for σα is then the set of distributions
corresponding to the absolute value of a normal random variable, divided by the square
root of a gamma random variable. That is, σα has the distribution of the absolute value
of a noncentral-t variate (see, for example, Johnson and Kotz, 1972). We shall call this
the folded noncentral t distribution, with the “folding” corresponding to the absolute
value operator. The noncentral t in this context has three parameters, which can be
identified with the mean of the normal distribution for ξ, and the scale and degrees of
freedom for σ2

η. (Without loss of generality, the scale of the normal distribution for ξ
can be set to 1 since it cannot be separated from the scale for ση.)

The folded noncentral t distribution is not commonly used in statistics, and we find it
convenient to understand it through various special and limiting cases. In the limit that
the denominator is specified exactly, we have a folded normal distribution; conversely,
specifying the numerator exactly yields the square-root-inverse-χ2 distribution for σα,
as in Section 3.1.

An appealing two-parameter family of prior distributions is determined by restricting
the prior mean of the numerator to zero, so that the folded noncentral t distribution
for σα becomes simply a half-t—that is, the absolute value of a Student-t distribution
centered at zero. We can parameterize this in terms of scale A and degrees of freedom
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ν:

p(σα) ∝

(
1 +

1

ν

(σα
A

)2
)−(ν+1)/2

.

This family includes, as special cases, the improper uniform density (if ν = −1) and the

proper half-Cauchy, p(σα) ∝
(
σ2
α + s2α

)−1
(if ν = 1).

The half-t family is not itself conditionally-conjugate—starting with a half-t prior
distribution, you will still end up with a more general folded noncentral t conditional
posterior—but it is a natural subclass of prior densities in which the distribution of the
multiplicative parameter ξ is symmetric about zero.

4 Noninformative and weakly-informative prior distribu-
tions for hierarchical variance parameters

4.1 General considerations

Noninformative prior distributions are intended to allow Bayesian inference for param-
eters about which not much is known beyond the data included in the analysis at hand.
Various justifications and interpretations of noninformative priors have been proposed
over the years, including invariance (Jeffreys, 1961), maximum entropy (Jaynes, 1983),
and agreement with classical estimators (Box and Tiao, 1973, Meng and Zaslavsky,
2002). In this paper, we follow the approach of Bernardo (1979) and consider so-called
noninformative priors as “reference models” to be used as a standard of comparison
or starting point in place of the proper, informative prior distributions that would be
appropriate for a full Bayesian analysis (see also Kass and Wasserman, 1996).

We view any noninformative or weakly-informative prior distribution as inherently
provisional—after the model has been fit, one should look at the posterior distribution
and see if it makes sense. If the posterior distribution does not make sense, this implies
that additional prior knowledge is available that has not been included in the model,
and that contradicts the assumptions of the prior distribution that has been used. It is
then appropriate to go back and alter the prior distribution to be more consistent with
this external knowledge.

4.2 Uniform prior distributions

We first consider uniform prior distributions while recognizing that we must be explicit
about the scale on which the distribution is defined. Various choices have been proposed
for modeling variance parameters. A uniform prior distribution on log σα would seem
natural—working with the logarithm of a parameter that must be positive—but it
results in an improper posterior distribution. An alternative would be to define the
prior distribution on a compact set (e.g., in the range [−A,A] for some large value of
A), but then the posterior distribution would depend strongly on the lower bound −A
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of the prior support.

The problem arises because the marginal likelihood, p(y|σα)—after integrating over
α, µ, σy in (1)—approaches a finite nonzero value as σα → 0. Thus, if the prior density
for log σα is uniform, the posterior distribution will have infinite mass integrating to
the limit log σα → −∞. To put it another way, in a hierarchical model the data can
never rule out a group-level variance of zero, and so the prior distribution cannot put
an infinite mass in this area.

Another option is a uniform prior distribution on σα itself, which has a finite integral
near σα = 0 and thus avoids the above problem. We have generally used this nonin-
formative density in our applied work (see Gelman et al., 2003), but it has a slightly
disagreeable miscalibration toward positive values (see Section 2.4), with its infinite
prior mass in the range σα → ∞. With J = 1 or 2 groups, this actually results in an
improper posterior density, essentially concluding σα =∞ and doing no shrinkage (see
Gelman et al., 2003, Exercise 5.8). In a sense this is reasonable behavior, since it would
seem difficult from the data alone to decide how much, if any, shrinkage should be done
with data from only one or two groups—and in fact this would seem consistent with
the work of Stein (1955) and James and Stein (1960) that unshrunken estimators are
admissible if J < 3. However, from a Bayesian perspective it is awkward for the decision
to be made ahead of time, as it were, with the data having no say in the matter. In
addition, for small J , such as 4 or 5, we worry that the heavy right tail of the posterior
distribution would lead to overestimates of σα and thus result in shrinkage that is less
than optimal for estimating the individual αj ’s.

We can interpret the various improper uniform prior densities as limits of weakly-
informative conditionally-conjugate priors. The uniform prior distribution on log σα is
equivalent to p(σα) ∝ σ−1

α or p(σ2
α) ∝ σ−2

α , which has the form of an inverse-χ2 density
with 0 degrees of freedom and can be taken as a limit of proper conditionally-conjugate
inverse-gamma priors.

The uniform density on σα is equivalent to p(σ2
α) ∝ σ−1

α , an inverse-χ2 density with
−1 degrees of freedom. This density cannot easily be seen as a limit of proper inverse-χ2

densities (since these must have positive degrees of freedom), but it can be interpreted
as a limit of the half-t family on σα, where the scale approaches ∞ (and any value of
ν). Or, in the expanded notation of (2), one could assign any prior distribution to ση
and a normal to ξ, and let the prior variance for ξ approach ∞.

Another noninformative prior distribution sometimes proposed in the Bayesian liter-
ature is uniform on σ2

α. We do not recommend this, as it seems to have the miscalibration
toward higher values as described above, but more so, and also requires J ≥ 4 groups
for a proper posterior distribution.

4.3 Inverse-gamma(ε, ε) prior distributions

The inverse-gamma(ε, ε) prior distribution is an attempt at noninformativeness within
the conditionally conjugate family, with ε set to a low value such as 1 or 0.01 or 0.001
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(the latter value being used in the examples in Bugs; see Spiegelhalter et al., 1994,
2003). A difficulty of this prior distribution is that in the limit of ε → 0 it yields an
improper posterior density, and thus ε must be set to a reasonable value. Unfortunately,
for datasets in which low values of σα are possible, inferences become very sensitive to
ε in this model, and the prior distribution hardly looks noninformative, as we illustrate
in Section 5.

4.4 Half-Cauchy prior distributions

The half-Cauchy is a special case of the conditionally-conjugate folded-noncentral-t fam-
ily of prior distributions for σα; see Section 3.2, which has a broad peak at zero and
a scale parameter A. In the limit A → ∞ this becomes a uniform prior density on
p(σα). Large but finite values of A represent prior distributions which we call “weakly
informative” because, even in the tail, they have a gentle slope (unlike, for example, a
half-normal distribution) and can let the data dominate if the likelihood is strong in that
region. In Sections 5.2 and 6, we consider half-Cauchy models for variance parameters
which are estimated from a small number of groups (so that inferences are sensitive to
the choice of weakly-informative prior distribution).

5 Application to the 8-schools example

We demonstrate the properties of some proposed noninformative prior densities with a
simple example of data from J = 8 educational testing experiments described in Rubin
(1981) and Gelman et al. (2003, Chapter 5 and Appendix C). Here, the parameters
α1, . . . , α8 represent the relative effects of Scholastic Aptitude Test coaching programs
in eight different schools, and σα represents the between-school standard deviations of
these effects. The effects are measured as points on the test, which was scored from 200
to 800 with an average of about 500; thus the largest possible range of effects could be
about 300 points, with a realistic upper limit on σα of 100, say.

5.1 Noninformative prior distributions for the 8-schools problem

Figure 1 shows the posterior distributions for the 8-schools model resulting from three
different choices of prior distributions that are intended to be noninformative.

The leftmost histogram shows the posterior inference for σα (as represented by 6000
simulation draws from a model fit using Bugs) for the model with uniform prior density.
The data show support for a range of values below σα = 20, with a slight tail after
that, reflecting the possibility of larger values, which are difficult to rule out given that
the number of groups J is only 8—that is, not much more than the J = 3 required to
ensure a proper posterior density with finite mass in the right tail.

In contrast, the middle histogram in Figure 1 shows the result with an inverse-
gamma(1, 1) prior distribution for σ2

α. This new prior distribution leads to changed



Andrew Gelman 523

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
uniform prior on σα

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (1, 1) prior on σα

2

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (.001, .001) prior on σα

2

Figure 1: Histograms of posterior simulations of the between-school standard deviation,
σα, from models with three different prior distributions: (a) uniform prior distribution
on σα, (b) inverse-gamma(1, 1) prior distribution on σ2

α, (c) inverse-gamma(0.001, 0.001)
prior distribution on σ2

α. Overlain on each is the corresponding prior density function
for σα. (For models (b) and (c), the density for σα is calculated using the gamma
density function multiplied by the Jacobian of the 1/σ2

α transformation.) In models (b)
and (c), posterior inferences are strongly constrained by the prior distribution. Adapted
from Gelman et al. (2003, Appendix C).

inferences. In particular, the posterior mean and median of σα are lower and shrinkage
of the αj ’s is greater than in the previously-fitted model with a uniform prior distribution
on σα. To understand this, it helps to graph the prior distribution in the range for which
the posterior distribution is substantial. The graph shows that the prior distribution
is concentrated in the range [0.5, 5], a narrow zone in which the likelihood is close to
flat compared to this prior (as we can see because the distribution of the posterior
simulations of σα closely matches the prior distribution, p(σα)). By comparison, in
the left graph, the uniform prior distribution on σα seems closer to “noninformative”
for this problem, in the sense that it does not appear to be constraining the posterior
inference.

Finally, the rightmost histogram in Figure 1 shows the corresponding result with
an inverse-gamma(0.001, 0.001) prior distribution for σ2

α. This prior distribution is
even more sharply peaked near zero and further distorts posterior inferences, with the
problem arising because the marginal likelihood for σα remains high near zero.

In this example, we do not consider a uniform prior density on log σα, which would
yield an improper posterior density with a spike at σα = 0, like the rightmost graph in
Figure 1, but more so. We also do not consider a uniform prior density on σ2

α, which
would yield a posterior distribution similar to the leftmost graph in Figure 1, but with
a slightly higher right tail.

This example is a gratifying case in which the simplest approach—the uniform prior
density on σα—seems to perform well. As detailed in Gelman et al. (2003, Appendix
C), this model is also straightforward to program directly using the Gibbs sampler or
in Bugs, using either the basic model (1) or slightly faster using the expanded parame-
terization (2).

The appearance of the histograms and density plots in Figure 1 is crucially affected
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σα
0 50 100 150 200

3 schools:  posterior on σα  given
uniform prior on σα

σα
0 50 100 150 200

3 schools:  posterior on σα  given
half−Cauchy (25) prior on σα

Figure 2: Histograms of posterior simulations of the between-school standard deviation,
σα, from models for the 3-schools data with two different prior distributions on σα:
(a) uniform (0,∞), (b) half-Cauchy with scale 25, set as a weakly informative prior
distribution given that σα was expected to be well below 100. The histograms are
not on the same scales. Overlain on each histogram is the corresponding prior density
function. With only J = 3 groups, the noninformative uniform prior distribution is too
weak, and the proper Cauchy distribution works better, without appearing to distort
inferences in the area of high likelihood.

by the choice to plot them on the scale of σα. If instead they were plotted on the scale
of log σα, the inverse-gamma(0.001, 0.001) prior density would appear to be the flattest.
However, the inverse-gamma(ε, ε) prior is not at all “noninformative” for this problem
since the resulting posterior distribution remains highly sensitive to the choice of ε. As
explained in Section 4.2, the hierarchical model likelihood does not constrain log σα in
the limit log σα → −∞, and so a prior distribution that is noninformative on the log
scale will not work.

5.2 Weakly informative prior distribution for the 3-schools problem

The uniform prior distribution seems fine for the 8-school analysis, but problems arise if
the number of groups J is much smaller, in which case the data supply little information
about the group-level variance, and a noninformative prior distribution can lead to
a posterior distribution that is improper or is proper but unrealistically broad. We
demonstrate by reanalyzing the 8-schools example using just the data from the first 3
of the schools.

Figure 2 displays the inferences for σα from two different prior distributions. First we
continue with the default uniform distribution that worked well with J = 8 (as seen in
Figure 1). Unfortunately, as the left histogram of Figure 2 shows, the resulting posterior
distribution for the 3-schools dataset has an extremely long right tail, containing values
of σα that are too high to be reasonable. This heavy tail is expected since J is so low
(if J were any lower, the right tail would have an infinite integral), and using this as a
posterior distribution will have the effect of undershrinking the estimates of the school
effects αj , as explained in Section 4.2.

The right histogram of Figure 2 shows the posterior inference for σα resulting from a
half-Cauchy prior distribution of the sort described at the end of Section 3.2, with scale
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parameter A = 25 (a value chosen to be a bit higher than we expect for the standard
deviation of the underlying θj ’s in the context of this educational testing example, so
that the model will constrain σα only weakly). As the line on the graph shows, this prior
distribution is high over the plausible range of σα < 50, falling off gradually beyond this
point. This prior distribution appears to perform well in this example, reflecting the
marginal likelihood for σα at its low end but removing much of the unrealistic upper
tail.

This half-Cauchy prior distribution would also perform well in the 8-schools problem;
however it was unnecessary because the default uniform prior gave reasonable results.
With only 3 schools, we went to the trouble of using a weakly informative prior, a
distribution that was not intended to represent our actual prior state of knowledge
about σα but rather to constrain the posterior distribution, to an extent allowed by the
data.

6 Modeling variance components hierarchically

6.1 Application to a latin square Anova

We next consider an analysis of variance problem which has several variance components,
one for each source of variation. Gelman (2005) analyzes data from a 5×5×2 split-plot
latin square with five full-plot treatments (labeled A, B, C, D, E), and with each plot
divided into two subplots (labeled 1 and 2).

Source df
row 4
column 4
(A,B,C,D,E) 4
plot 12
(1,2) 1
row × (1,2) 4
column × (1,2) 4
(A,B,C,D,E) × (1,2) 4
plot × (1,2) 12

Each row of the table corresponds to a different variance component, and the
split-plot Anova can be understood as a linear model with nine variance components,
σ2

1 , . . . , σ
2
9—one for each row of the table. A default Bayesian analysis assigns a uniform

prior distribution, p(σ1, . . . , σ9) ∝ 1 (Gelman, 2005).

More generally, we can set up a hierarchical model, where the variance parameters
have a common distribution with hyperparameters estimated from the data. Based on
the analyses given above, we consider a half-Cauchy prior distribution with peak 0 and
scale A, and with a uniform prior distribution on A. The hierarchical half-Cauchy model
allows most of the variance parameters to be small but with the occasionally large σα,
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Source df
Estimated superpopulation sd’s

(with flat priors)
0 20 40 60 80 100

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 20 40 60 80 100

Source df
Estimated superpopulation sd’s
(with hier. half−Cauchy priors)

0 20 40 60 80 100

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 20 40 60 80 100

Figure 3: Posterior medians, 50%, and 95% intervals for standard deviation parameters
σk estimated from a split-plot latin square experiment. The left plot shows inferences
given uniform prior distributions on the σk’s, and the right plot shows inferences given a
hierarchical half-Cauchy model with scale fit to the data. The half-Cauchy model gives
much sharper inferences, using the partial pooling that comes with fitting a hierarchical
model.

which seems reasonable in the typical settings of analysis of variance, in which most
sources of variation are small but some are large (Daniel, 1959, Gelman, 2005).

6.2 Superpopulation and finite-population standard deviations

Figure 3 shows the inferences in the latin square example, given uniform and hierarchical
half-Cauchy prior distributions for the standard deviation parameters σk. As the left
plot shows, the uniform prior distribution does not rule out the potential for some
extremely high values of the variance components—the degrees of freedom are low, and
the interlocking of the linear parameters in the latin square model results in difficulty
in estimating any single variance parameter. In contrast, the hierarchical half-Cauchy
model performs a great deal of shrinkage, especially of the high ranges of the intervals.
(For most of the variance parameters, the posterior medians are similar under the two
models; it is the 75th and 97.5th percentiles that are shrunk by the hierarchical model.)
This is an ideal setting for hierarchical modeling of variance parameters in that it
combines separately imprecise estimates of each of the individual σk’s.

As discussed in Gelman (2005, Section 3.5), the σk’s are superpopulation parameters
in that each represents the standard deviation of an entire population of effects, of which
only a few of which were sampled for the experiment at hand. In estimating variance
parameters estimated from few degrees of freedom, it can be helpful also to look at the
finite-population standard deviation sα of the corresponding linear parameters αj .

For a simple hierarchical model of the form (1), sα is simply the standard deviation
of the J values of αj . More generally, for more complicated linear models such as
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Source df
Estimated finite−population sd’s

(with flat priors)
0 2 4 6 8

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 2 4 6 8

Source df
Estimated finite−population sd’s
(with hier. half−Cauchy priors)

0 2 4 6 8

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 2 4 6 8

Figure 4: Posterior medians, 50%, and 95% intervals for finite-population standard de-
viations sk estimated from a split-plot latin square experiment. The left plot shows
inferences given uniform prior distributions on the σk’s, and the right plot shows infer-
ences given a hierarchical half-Cauchy model with scale fit to the data. The half-Cauchy
model gives sharper estimates even for these finite-population standard deviations, indi-
cating the power of hierarchical modeling for these highly uncertain quantities. Compare
to Figure 3 (which is on a different scale).

the split-plot latin square, sα for any variance component is the root mean square of
the coefficients’ residuals after projection to their constraint space (see Gelman, 2005,
Section 3.1). In any case, this finite-population standard deviation s can be calculated
from its posterior simulations and, especially when degrees of freedom are low, is more
precisely estimated than the superpopulation standard deviation σ.

Figure 4 shows posterior inferences for the finite-population standard deviation pa-
rameters sα for each row of the latin square split-plot Anova, showing inferences given
the uniform and hierarchical half-Cauchy prior distributions for the variance parame-
ters σα. The half-Cauchy prior distribution does slightly better than the uniform, with
the largest shrinkage occurring for the variance component that has just one degree of
freedom. The Cauchy scale parameter A was estimated at 1.8, with a 95% posterior
interval of [0.5, 5.1].

7 Recommendations

7.1 Prior distributions for variance parameters

In fitting hierarchical models, we recommend starting with a noninformative uniform
prior density on standard deviation parameters σα. We expect this will generally work
well unless the number of groups J is low (below 5, say). If J is low, the uniform
prior density tends to lead to high estimates of σα, as discussed in Section 5.2. This
miscalibration is an unavoidable consequence of the asymmetry in the parameter space,
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with variance parameters restricted to be positive. Similarly, there are no always-
nonnegative classical unbiased estimators of σα or σ2

α in the hierarchical model.

A user of a noninformative prior density might still like to use a proper distribution—
reasons could include Bayesian scruple, the desire to perform prior predictive checks (see
Box, 1980, Gelman, Meng, and Stern, 1996, and Bayarri and Berger, 2000) or Bayes
factors (see Kass and Raftery, 1995, O’Hagan, 1995, and Pauler, Wakefield, and Kass,
1999), or because computation is performed in Bugs, which requires proper distributions.
For a noninformative but proper prior distribution, we recommend approximating the
uniform density on σα by a uniform on a wide range (for example, U(0, 100) in the SAT
coaching example) or a half-normal centered at 0 with standard deviation set to a high
value such as 100. The latter approach is particularly easy to program as a N(0, 1002)
prior distribution for ξ in (2).

When more prior information is desired, for instance to restrict σα away from very
large values, we recommend working within the half-t family of prior distributions,
which are more flexible and have better behavior near 0, compared to the inverse-
gamma family. A reasonable starting point is the half-Cauchy family, with scale set to
a value that is high but not off the scale; for example, 25 in the example in Section
5.2. When several variance parameters are present, we recommend a hierarchical model
such as the half-Cauchy, with hyperparameter estimated from data.

We do not recommend the inverse-gamma(ε, ε) family of noninformative prior dis-
tributions because, as discussed in Sections 4.3 and 5.1, in cases where σα is estimated
to be near zero, the resulting inferences will be sensitive to ε. The setting of near-zero
variance parameters is important partly because this is where classical and Bayesian
inferences for hierarchical models will differ the most (see Draper and Browne, 2005,
and Section 3.4 of Gelman, 2005).

Figure 1 illustrates the generally robust properties of the uniform prior density on
σα. Many Bayesians have preferred the inverse-gamma prior family, possibly because
its conditional conjugacy suggested clean mathematical properties. However, by writing
the hierarchical model in the form (2), we see conditional conjugacy in the wider class
of half-t distributions on σα, which include the uniform and half-Cauchy densities on σα
(as well as inverse-gamma on σ2

α) as special cases. From this perspective, the inverse-
gamma family has nothing special to offer, and we prefer to work on the scale of the
standard deviation parameter σα, which is typically directly interpretable in the original
model.

7.2 Generalizations

The reasoning in this paper should apply to hierarchical regression models (including
predictors at the individual or group levels), hierarchical generalized linear models (as
discussed by Christiansen and Morris, 1997, and Natarajan and Kass, 2000), and more
complicated nonlinear models with hierarchical structure. The key idea is that parame-
ters αj—in general, group-level exchangeable parameters—have a common distribution
with some scale parameter which we label σα. Some of the details will change—in
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particular, if the model is nonlinear, then the normal prior distribution for the multi-
plicative parameter ξ in (2) will not be conditionally conjugate, however ξ can still be
updated using the Metropolis algorithm. In addition, when regression predictors must
be estimated, more than J = 3 groups may be necessary to estimate σα from a noninfor-
mative prior distribution, thus requiring at least weakly informative prior distributions
for the regression coefficients, the variance parameters, or both.

There is also room to generalize these distributions to variance matrices in multi-
variate hierarchical models, going beyond the commonly-used inverse-Wishart family
of prior distributions (Box and Tiao, 1973), which has problems similar to the inverse-
gamma for scalar variances. Noninformative or weakly informative conditionally-con-
jugate priors could be applied to structured models such as described by Barnard,
McCulloch, and Meng (2000) and Daniels and Kass (1999, 2001), expanded using mul-
tiplicative parameters as in Liu (2001) to give the models more flexibility.

Further work needs to be done in developing the next level of hierarchical models, in
which there are several batches of exchangeable parameters, each with their own variance
parameter—the Bayesian counterpart to the analysis of variance (Sargent and Hodges,
1997, Gelman, 2005). Specifying a prior distribution jointly on variance components at
different levels of the model could be seen as a generalization of priors on the shrinkage
factor, which is a function of both σy and σα (see Daniels, 1999, Natarajan and Kass,
2000, and Spiegelhalter, Abrams, and Myles, 2004, for an overview). In a model with
several levels, it would make sense to give the variance parameters a parametric model
with hyper-hyperparameters. This could be the ultimate solution to the difficulties of
estimating σα for batches of parameters αj where J is small, and we suppose that the
folded-noncentral-t family could be useful here, as illustrated in Section 6.

Appendix: R and Bugs code for the hierarchical model
with half-Cauchy prior density

Computations for the hierarchical normal model are most conveniently performed using
Bugs (Spiegelhalter et al., 1994, 2003) as called from R (R Development Core Team,
2003), or by programming the Gibbs sampler directly in R. Both these strategies are
described in detail in Gelman et al. (2003, Appendix C). Here we give an Bugs imple-
mentation of the 8-schools model with the half-Cauchy prior distribution (that is, the
half-t with degrees-of-freedom parameter ν = 1).

We put the following Bugs code in the file schools.halfcauchy.bug:

# Bugs model: a half-Cauchy prior distribution on sigma.theta is induced

# using a normal prior on xi and an inverse-gamma on tau.eta

model {

for (j in 1:J){ # J = the number of schools

y[j] ~ dnorm (theta[j], tau.y[j]) # data model: the likelihood

theta[j] <- mu.theta + xi*eta[j]
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tau.y[j] <- pow(sigma.y[j], -2)

}

xi ~ dnorm (0, tau.xi)

tau.xi <- pow(prior.scale, -2)

for (j in 1:J){

eta[j] ~ dnorm (0, tau.eta) # hierarchical model for theta

}

tau.eta ~ dgamma (.5, .5) # chi^2 with 1 d.f.

sigma.theta <- abs(xi)/sqrt(tau.eta) # cauchy = normal/sqrt(chi^2)

mu.theta ~ dnorm (0.0, 1.0E-6) # noninformative prior on mu

}

We can then set up the data and call the Bugs model from R (using the bugs.R

routines at Gelman, 2003). The scale parameter in the half-Cauchy distribution is
prior.scale, which we set to the value 25 in the R code.

# R code for calling the Bugs 8-schools model with half-Cauchy prior dist

schools <- read.table ("schools.dat", header=T)

J <- nrow (schools)

y <- schools$estimate

sigma.y <- schools$sd

prior.scale <- 25

data <- list ("J", "y", "sigma.y", "prior.scale")

inits <- function (){

list (eta=rnorm(J), mu.theta=rnorm(1), xi=rnorm(1), tau.eta=runif(1))}

parameters <- c ("theta", "mu.theta", "sigma.theta")

schools.sim <- bugs (data, inits, parameters, "schools.halfcauchy.bug",

n.chains=3, n.iter=1000)

References

Barnard, J., McCulloch, R. E., and Meng, X. L. (2000). “Modeling covariance matri-
ces in terms of standard deviations and correlations, with application to shrinkage.”
Statistica Sinica, 10: 1281–1311.

Bayarri, M. J. and Berger, J. (2000). “P-values for composite null models.” Journal of
the American Statistical Association, 95: 1127–1142. (with discussion).

Bernardo, J. M. (1979). “Reference posterior distributions for Bayesian inference.”
Journal of the Royal Statistical Society B, 41: 113–147. (with discussion).

Bickel, P. and Blackwell, D. (1967). “A note on Bayes estimates.” Annals of Mathe-
matical Statistics, 38: 1907–1911.

Box, G. E. P. (1980). “Sampling and Bayes inference in scientific modelling and robust-
ness.” Journal of the Royal Statistical Society A, 143: 383–430.



Andrew Gelman 531

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis.
Reading, Mass.: Addison-Wesley.

Browne, W. J. and Draper, D. (2005). “A comparison of Bayesian and likelihood-based
methods for fitting multilevel models.” Bayesian Analysis, This issue.

Carlin, B. P. and Louis, T. A. (2001). Bayes and Empirical Bayes Methods for Data
Analysis. Chapman and Hall, second edition edition.

Christiansen, C. and Morris, C. (1997). “Hierarchical Poisson regression models.” Jour-
nal of the American Statistical Association, 92: 618–632.

Daniel, C. (1959). “Use of half-normal plots in interpreting factorial two-level experi-
ments.” Technometrics, 1: 311–341.

Daniels, M. J. (1999). “A prior for the variance in hierarchical models.” Canadian
Journal of Statistics, 27: 569–580.

Daniels, M. J. and Kass, R. E. (1999)). “Nonconjugate Bayesian estimation of covariance
matrices and its use in hierarchical models.” Journal of the American Statistical
Association, 94: 1254–1263.

— (2001). “Shrinkage estimators for covariance matrices.” Biometrics, 57: 1173–1184.

Efron, B. and Morris, C. (1975). “Data analysis using Stein’s estimator and its gener-
alizations.” Journal of the American Statistical Association, 70: 311–319.

Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling-based approaches to calculating
marginal densities.” Journal of the American Statistical Association, 85: 398–409.

Gelman, A. (2003). “Bugs.R: functions for calling Bugs from R.”
http://www.stat.columbia.edu/∼gelman/bugsR/.

— (2004). “Parameterization and Bayesian modeling.” Journal of the American Sta-
tistical Association, 99: 537 – 545.

— (2005). “Analysis of variance: why it is more important than ever.” Annals of
Statistics, 33: 1 – 53. With discussion.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data
Analysis. London: Chapman and Hall, second edition edition.

Gelman, A., Huang, Z., van Dyk, D., and Boscardin, W. J. (2005). “Transformed
and parameter-expanded Gibbs samplers for multilevel linear and generalized linear
models.” Technical report, Department of Statistics, Columbia University.

Gelman, A., Meng, X. L., and Stern, H. S. (1996). “Posterior predictive assessment
of model fitness via realized discrepancies.” Statistica Sinica, 6: 733–807. (with
discussion).



532 Comment on Article by Browne and Draper

Hill, B. M. (1965). “Inference about variance components in the one-way model.”
Journal of the American Statistical Association, 60: 806–825.

James, W. and Stein, C. (1960). “Estimation with quadratic loss.” In Neyman, J.
(ed.), Proceedings of the Fourth Berkeley Symposium, volume 1, 361–380. Berkeley:
University of California Press.

Jaynes, E. T. (1983). Papers on Probability, Statistics, and Statistical Physics. Dor-
drecht, Netherlands: Reidel.

Jeffreys, H. (1961). Theory of Probability . Oxford University Press, third edition
edition.

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics. New York: Wiley. 4
vols.

Kass, R. E. and Raftery, A. E. (1995). “Bayes factors and model uncertainty.” Journal
of the American Statistical Association, 90: 773–795.

Kass, R. E. and Wasserman, L. (1996). “The selection of prior distributions by formal
rules.” Journal of the American Statistical Association, 91: 1343–1370.

Kreft, I. and De Leeuw, J. (1998). Introducing Multilevel Modeling . Sage.

Liu, C. (2001). “Bayesian analysis of multivariate probit models. Discussion of “The art
of data augmentation” by D. A. van Dyk and X. L. Meng.” Journal of Computational
and Graphical Statistics, 10: 75–81.

Liu, C., Rubin, D. B., , and Wu, Y. N. (1998). “Parameter expansion to accelerate EM:
the PX-EM algorithm.” Biometrika, 85: 755–770.

Liu, J. and Wu, Y. N. (1999). “Parameter expansion for data augmentation.” Journal
of the American Statistical Association, 94: 1264–1274.

Meng, X. L. and Zaslavsky, A. M. (2002). “Single observation unbiased priors.” Annals
of Statistics, 30: 1345–1375.

Morris, C. (1983). “Parametric empirical Bayes inference: theory and applications (with
discussion).” Journal of the American Statistical Association, 78: 47–65.

Natarajan, R. and Kass, R. E. (2000). “Reference Bayesian methods for generalized
linear mixed models.” Journal of the American Statistical Association, 95: 227–237.

O’Hagan, A. (1995). “Fractional Bayes factors for model comparison (with discussion).”
Journal of the Royal Statistical Society B, 57: 99–138.

Pauler, D. K., Wakefield, J. C., and Kass, R. E. (1999). “Bayes factors for variance
component models.” Journal of the American Statistical Association, 94: 1242–1253.

Portnoy, S. (1971). “Formal Bayes estimation with applications to a random effects
model.” Annals of Mathematical Statistics, 42: 1379–1402.



Andrew Gelman 533

R Development Core Team (2003). “R: a language and environment for
statistical computing. Vienna: R Foundation for Statistical Computing.”
http://www.r-project.org.

Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical Linear Models. Thousand
Oaks, Calif.: Sage., second edition.

Rubin, D. B. (1981). “Estimation in parallel randomized experiments.” Journal of
Educational Statistics, 6: 377–401.

Sargent, D. J. and Hodges, J. S. (1997). “Smoothed ANOVA with application to sub-
group analysis.” Technical report, Department of Biostatistics, University of Min-
nesota.

Savage, L. J. (1954). The Foundations of Statistics. New York: Dover.

Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis. London: Sage.

Spiegelhalter, D. J., Abrams, K. R., , and Myles, J. P. (2004). Bayesian Approaches to
Clinical Trials and Health-Care Evaluation, chapter section 5.7.3. Chichester: Wiley.

Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W. R., , and Lunn, D. (1994,
2003). “BUGS: Bayesian inference using Gibbs sampling.” MRC Biostatistics Unit,
Cambridge, England,http://www.mrc-bsu.cam.ac.uk/bugs/.

Stein, C. (1955). “Inadmissibility of the usual estimator for the mean of a multivari-
ate normal distribution.” In Neyman, J. (ed.), Proceedings of the Third Berkeley
Symposium, volume 1, 197–206. Berkeley: University of California Press.

Stone, M. and Springer, B. G. F. (1965). “A paradox involving quasi-prior distribu-
tions.” Biometrika, 52: 623–627.

Tiao, G. C. and Tan, W. Y. (1965). “Bayesian analysis of random-effect models in the
analysis of variance. I: Posterior distribution of variance components.” Biometrika,
52: 37–53.

van Dyk, D. A. and Meng, X. L. (2001). “The art of data augmentation (with discus-
sion).” Journal of Computational and Graphical Statistics, 10: 1–111.

Acknowledgments

We thank Rob Kass for inviting this paper, John Boscardin, John Carlin, Samantha Cook,

Chuanhai Liu, Iain Pardoe, Hal Stern, Francis Tuerlinckx, Aki Vehtari, Phil Woodward,

Shouhao Zhao, and reviewers for helpful suggestions, and the National Science Foundation

for financial support.



534 Comment on Article by Browne and Draper



Bayesian Analysis (2006) 1, Number 3, pp. 535–542

A Default Conjugate Prior for Variance

Components in Generalized Linear Mixed

Models (Comment on Article by Browne and

Draper)

Robert E. Kass∗ and Ranjini Natarajan†

Abstract. For a scalar random-effect variance, Browne and Draper (2005) have
found that the uniform prior works well. It would be valuable to know more about
the vector case, in which a second-stage prior on the random effects variance matrix
D is needed. We suggest consideration of an inverse Wishart prior for D where
the scale matrix is determined from the first-stage variance.
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1 Comments

There is no standard solution to the problem of choosing a prior on the random-effects
variance in random-effects models, or mixed models, or what Bayesian analysts usually
call “hierarchical models.” In the case of a scalar random effect, Browne and Draper
(2005) investigated the frequentist behavior of posterior estimates based on a uniform
prior and an inverted-gamma prior. They also compared the Bayesian methods to
likelihood and quasi-likelihood alternatives.

The main Bayesian messages we take home from Browne and Draper’s study are
that, in the case of a scalar random effect, (1) a uniform prior on the variance produces
posterior distributions with very good operating characteristics: the coverage probabil-
ities remain close to .95 for all of their simulations; and (2) the uniform prior is a bit
better than a quasi-uniform inverted-gamma prior. Though the situations for Normal
and non-Normal models seem to us different in principle, with some kind of correc-
tion seeming necessary before prior rules for non-Normal models match those for the
Normal models, the work by Browne and Draper strengthens an already strong case
for the uniform prior becoming the “standard solution.” The main general statistical
message seems to be that this Bayesian method works well. We would underscore the
additional general comment made by Browne and Draper, and many before them, that
estimates of fixed effects remain very good in the presence of modest errors in estimation
of the variance components. This is part of what makes generalized estimating equation
estimators so effective (Diggle et al., 2002).
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What happens in the vector case? As the dimensionality increases, one anticipates
degradation of performance: the choice of prior is likely to matter much more, and
one may expect trouble in estimating fixed effects, as well. It would be good to have
results like those of Browne and Draper’s so that we would know more precisely when
to worry, and it would also be very valuable if the field could settle on a reasonable
default prior for the non-worrisome and not-very-worrisome situations. The tradition
in statistical research is to report results of the form “method A (often the authors’
method) works better than method B.” This is useful, but statisticians too rarely give
practical guidance as to when a method breaks down.

Perhaps future studies of priors for random effects in the vector case will be un-
dertaken. If so, we would like to make one more suggestion: it may be worthwhile to
evaluate yet another prior, one we call a “default conjugate prior.” In the remainder of
our commentary we will describe this prior and indicate why we think it may be of use.

2 A Default Conjugate Prior

In the vector case, under the assumption of a Normal distribution for the random effects
(the second stage of the hierarchical model), the uniform prior remains a reasonable
candidate. It is also possible to use an inverted Wishart prior on the random effects
variance matrix D, which requires the specification of a scale matrix typically considered
to be a guess at the value of D. There is, however, rarely good scientific information on
which to base this guess. A frequently-applied procedure is to set the scale matrix equal
to the maximum likelihood estimator (MLE) of D. Natarajan and Kass (2000) reported
simulations indicating that posterior distributions based on this procedure can lead to
poor estimates of D, and we also gave a real-data example where scientific inferences are
seriously affected. In that paper we also proposed an alternative — the “approximate
uniform shrinkage” prior — and showed it to lead to better-behaved posteriors. That
prior is easy enough to use, but has not caught on. We here draw attention to yet
another alternative, namely the “default conjugate prior.” Rather than using the MLE
as the scale matrix of the inverse Wishart prior, it may be preferable to base a “guess”
at the value of D on the first-stage data variability. Although the method uses first-
stage data both for formulation of the second-stage prior and for computation of the
posterior, we note that this particular re-use of the data has asymptotically negligible
effects on the posterior.

2.1 The Two-Stage Hierarchical Model

Let us consider the following class of two-stage models:

Yi|bi ∼

ni∏

j=1

f (Yij |bi,β) , i = 1, . . . , k, j = 1, . . . , ni,

bi ∼ Nq (0, D) , (1)
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where Yi = (Yi1, Yi2, . . . , Yini)
t
is a vector of observed responses for the ith experimental

unit (cluster), bi is a q × 1 vector of unobserved cluster-specific random effects and
f (.) is an exponential family density function with dispersion parameter φ assumed
known. The conditional mean of Yij is assumed to satisfy µb

ij = h
(
x
t
ijβ + z

t
ijbi

)
, where

xij (p× 1) and zij (q × 1) are design vectors corresponding to the fixed effects β and
the random effects bi respectively and h (.) is a known link function with inverse g (.).
Such models belong to the family of generalized linear mixed models (GLMMs). By
way of notation we let Xi (ni × p) and Zi (ni × q) denote full-rank matrices with rows
x
t
ij and z

t
ij , respectively.

2.2 Definition and motivation

In this section we assume the prior on β will be diffuse (in implementation, typically
a multivariate Normal with large variances), and consider the problem of specifying
the q × q scale matrix R of an inverted Wishart prior for D. Specifically, a random
positive-definite symmetric matrix D is distributed according to an inverted Wishart
distribution with ρ(> q − 1) degrees of freedom and scale matrix R if its probability

density function is proportional to det (D)
−(ρ+q+1)/2

exp
(
−ρ

2 tr
(
RD

−1
))
. We denote

this inverted Wishart distribution by IW(ρ, ρR). Note that when q = 1, the inverted
Wishart reduces to an inverted gamma distribution and ρ is typically referred to as the
shape parameter. We will denote the inverted gamma by IG. Conventional wisdom
dictates that a good default specification is one for which ρ is taken to be small and R

is a “minimally informative” prior guess of D.

We now define a default Wishart prior for D with

ρ = q,

R̃ = c ·

(
1

k

k∑

i=1

Z
t

i Wi (β)Zi

)−1

,

where Wi (β) (ni × ni) denotes the usual diagonal GLM weight matrix with diagonal

elements
{
φv

(
µ0

ij

) [
∂g

(
µ0

ij

)
/∂µ0

ij

]2}−1

, v (.) is the known variance function based on

the density f (.) and the superscript zeros indicate the substitution of bi with zero
in these quantities. The value of c is an inflation factor representing the amount by
which the within-cluster variability should be increased in determining R∗. In our
simulation we used c = 1. Note that the inverse of 1

k

∑k
i=1 Z

t
i Wi (β)Zi exists by the

full-rank assumption on Zi. Thus, calculation of R̃ is straightforward, requiring only
a few matrix operations and knowledge of the form of the weight matrix Wi for the
particular exponential family under consideration McCullagh and Nelder (1989), pp.
30.

We now offer two heuristic justifications for R̃. The first arises from the approximate

shrinkage estimate of bi — that is, b̃i = DZ
t
i

(
W

−1
i (β) + ZiDZ

t
i

)−1
(Y∗

i − h (Xiβ))
where Y

∗
i is the working dependent variable Breslow and Clayton (1993). After some
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matrix manipulations, it can be shown that b̃i may be expressed as

b̃i = Si0 + (I− Si)Z
t

i Wi (β) (Y
∗
i − h (Xiβ)) ,

where I is the q× q identity matrix and Si = I−
(
D

−1 + Z
t
i Wi (β)Zi

)−1
. The matrix

Si controls the relative contribution of the prior mean 0 and the data to the posterior
update of bi, and thus offers a natural metric for evaluating the informativeness of a

particular prior guess for D. It ranges from I−
(
Z
t
i Wi (β)Zi

)−1
when D =∞, which

corresponds to a flat prior for bi, to I when D = 0, which corresponds to a point mass

prior for bi at zero. A prior guess of
(
Z
t
i Wi (β)Zi

)−1
for D would result in a weight

of I − 1
2

(
Z
t
i Wi (β)Zi

)−1
, which is exactly half-way between the weights accorded by

the two extreme choices of D. Thus, this seems like a reasonable guess for D in the

absence of any other prior knowledge. However, since
(
Z
t
i Wi (β)Zi

)−1
varies with i,

we suggest replacing it with its harmonic mean over clusters, which leads to our choice
of R̃.

A second justification arises from considering a maximum likelihood-based Normal
approximation to the GLMM in which the exponential family specification is replaced
with

b̂i ∼ Nq

(
bi, I

(
b̂i

))
,

where b̂i is the ML estimator of bi based on the first-stage likelihood
∏ni

j=1 f (Yij |bi,β),

and I

(
b̂i

)
is the observed information evaluated at b̂i. It can be shown that I

(
b̂i

)
=

(
Z
t
i Ŵi (β)Zi

)−1

, where Ŵi (β) is the GLM weight matrix Wi defined previously but

with b̂i in place of zero. However, when Ŵi (β) is close to Wi (β), the within-cluster

variance I

(
b̂i

)
will be approximated well by

(
Z
t
i Wi (β)Zi

)−1
. Thus, a prior guess

of
(

1
k

∑k
i=1 Z

t
i Wi (β)Zi

)−1

for D, corresponds roughly to an a priori belief that the

between-cluster variance is equal to the harmonic mean of the within-cluster variance.

Note that our specification for the prior on D depends on β through µb

ij , which
appears in Wi (β), and is thus a specification of the conditional distribution of D given
β. A consequence of this appearance of β is that the full conditional distribution
of β given the data and all other parameters will no longer be free of D. Although
this presents no substantial difficulties, the simplicity of the standard assumption of
independence of β and D (together with a uniform or Normal prior on β) enables
particularly straightforward MCMC implementation via Gibbs sampling (Zeger and
Karim, 1991). Thus, we propose a slight modification to the prior given above: we
replace the family of conditional distributions of D given β by the single conditional
distribution of D given β̂, where β̂ is an estimate of the regression coefficients from the
GLM model obtained by pooling all the data and setting bi = 0, for all i. That is, we
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specify the default inverted Wishart by ρ = q, and

R
∗ = c ·

(
1

k

k∑

i=1

Z
t

i Wi

(
β̂
)
Zi

)−1

. (2)

Note that Wi

(
β̂
)
is a Op

(
k−1/2

)
consistent estimator of Wi (β), and that the estimate

β̂ may be obtained in a simple pre-calculation.

2.3 Asymptotic irrelevance of the data-dependence in the modified
prior

Our modified default prior now depends on the data through the replacement of the

conditional prior π (D|β) with π
(
D|β̂

)
. It is possible for such a data-dependent sub-

stitution to yield very misleading inferences. For example, in the one-sample Normal
problem using the conjugate family of prior distributions on the mean µ and variance
σ2: π

(
µ|σ2

)
= N

(
µ0, λ0σ

2
)
, π

(
σ2

)
= IG (α0, β0), one might take σ̂ to be the standard

error of the sample mean and substitute it for σ in the Normal prior π
(
µ|σ2

)
. This

results in a prior whose informativeness is derived from the data; indeed, it would count
the data twice, and is clearly an unreasonable procedure. The substitution we have
made, however, is quite different: it does not carry the same amount of information as
the full data set, but in fact carries less information than does a single observation (that
is, a single cluster).

More formally, let λ = (β,D), πdef (λ) and πmod (λ) be the original default conju-
gate prior and its modification, and q (λ) be any alternative non-data-dependent prior.
Also, let G (λ) be a function to be estimated and let E (G (λ) |Y, πdef ) be the posterior
expectation of G (λ) based on πdef (λ), and similarly for the other two priors. Then, as
k →∞, we have

E (G (λ) |Y, πdef ) = E (G (λ) |Y, q)
(
1 +Op(k

−1)
)
, (3)

which is one way of saying that, in large samples, the effect of changing the prior is
roughly that of changing a single observation. If an informative data-dependent prior
were used (analogous to that mentioned for the one-sample Normal) in place of q (λ),
Equation (3) would no longer hold. Our modified prior produces

E (G (λ) |Y, πdef ) = E (G (λ) |Y, πmod)
(
1 +Op(k

−1)
)
. (4)

This result may be obtained from asymptotic expansions, as in Kass and Steffey (1989),
Equation (3.14), using the MLE-based version mentioned just after that equation). The
essential observation is that for any λ within an order O(k−1/2) neighborhood of the true
value (toward which a

√
k-consistent estimator will converge) the ratio of the original

to modified priors satifies πdef (λ) /πmod (λ) = 1 +Op

(
k−1/2

)
.

Kass and Steffey (1989) pointed out that when the empirical Bayes substitution of
an MLE of λ is made, the resulting posterior variance of a random effect is too small,
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and no longer approximates to order Op(k
−1) the correct posterior variance. This is

another example of the use of data-dependent priors that may have strong, undesirable
effects on inference. It is worth noting, again by way of contrast, that an expression
analogous to (4) holds for posterior variances:

var (G (λ) |Y, πdef ) = var (G (λ) |Y, πmod)
(
1 +Op(k

−1)
)
.

2.4 Simulation study

We ran three simulations, with generally similar results, and report the most dramatic
of them here. Unfortunately, while this illustrates the potential value of the default
conjugate prior, it is yet again a scalar example.

We compared the performance of the default conjugate prior with three other priors:
an inverted Wishart with ρ = q and R given by the MLE of D, an “ideal” inverted
Wishart with ρ = q and R given by the true value of D, and the approximate uniform
shrinkage prior πus (Natarajan and Kass, 2000). The ideal prior provides an unattain-
able target for the other Wishart priors.

All priors were used in conjunction with a uniform prior for β. The conditions under
which this gives a proper posterior for GLMMs has been derived by Natarajan and Kass
(2000), and were verified for the data here. Inferences for the four priors were based on
2,000 samples generated from their posterior distributions for each data set. Posterior
sampling was performed using the Gibbs sampler and followed the implementation de-
scribed by Zeger and Karim (1991) for the inverted Wishart priors, and Natarajan and
Kass for πus.

Breslow (1984) presented mutagenicity assay data on the number of revertant colonies
of TA98 Salmonella (Y ) at six doses of quinoline (x = 0, 10, 33, 100, 333, 1000). Three
plates were processed at each of the six dose levels resulting in a total of 18 observations.
He considered the following Poisson GLMM for these data:

Yi|bi ∼ Poisson
(
µbi
)
, i = 1, . . . , 18,

bi ∼ N(0, θ) , (5)

with µbi = exp (β0 + β1 ln (xi + 10) + β2xi + bi). The single variance component θ cap-
tures the overdispersion due to plate-to-plate variability. The default conjugate prior is

IG (1, R∗) where R∗ = 18/
∑18

i=1 wi, wi = exp
(
β̂0 + β̂1 ln(xi + 10) + β̂2xi

)
and we esti-

mated β̂ from the first-stage Poisson likelihood function with bi = 0. The approximate
uniform shrinkage prior is πus (θ) ∝ 1/ (1 + θ/R∗)

2
.

We generated 1,000 data sets from (5) with β0 = 2.203, β1 = .311, β2 = −.001 and
θ = .040. These values were chosen because they are close to the estimates obtained
for the salmonella data. The estimators of β and θ from the four priors were evaluated
according to posterior risk and noncoverage probabilities for 95% posterior intervals
(the noncoverage probabilities would, ideally, equal .05). The posterior risk was calcu-

lated under the squared-error loss function L
(
β̂,β

)
=

(
β̂ − β

)′ (
β̂ − β

)
for β, and
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the entropy loss function L
(
θ̂, θ

)
=

(
θ̂/θ − ln |θ̂/θ| − 1

)
for θ. The Bayes estimators

corresponding to these loss functions are the posterior mean and harmonic mean re-
spectively. Note that the entropy loss function penalizes underestimation more severely
than overestimation in cases when the true value of θ is close to zero. Thus, we would
expect the prior πus to have a slightly worse risk than the other priors since it places
non-zero mass at zero.

Operating Char-
acteristics

IW (1, θ) IW
(
1, θ̂

)
IW (1, R∗) πus

Risk
β .01 ± .00 .01 ± .00 .01 ± .00 .01 ± .00
θ .09 ± .00 .89 ± .05 .12 ± .00 .62 ± .02

Noncoverage
β0 .046 ± .007 .076 ± .008 .056 ± .007 .070 ± .008
β1 .054 ± .007 .086 ± .009 .059 ± .007 .067 ± .008
β2 .051 ± .007 .081 ± .009 .060 ± .007 .075 ± .008
θ .011 ± .003 .194 ± .012 .007 ± .003 .037 ± .006

Table 1: Simulation results: risk and noncoverage probability. IW (1, θ) denotes the
ideal diffuse conjugate prior based on the unknown true value θ = .04. Note that in
this one-dimensional case the inverse-Wishart becomes an inverse-gamma. IW (1, θ̂)

denotes the diffuse conjugate prior based on the MLE θ̂. IW (1, R∗) denotes the diffuse
conjugate prior based on Equation (2), with c = 1. The average value of MLE, across

the 1,000 data sets, was θ̂ = .027 while the average value of R∗ was R∗ = .033.

Table 1 displays these results for β and θ under the four priors. An examination of
the results shows that the inverted Wishart prior (here, an inverted gamma) centered

at the MLE θ̂ is dominated by the other priors, both in terms of risk and coverage
probabilities. The poor risk of this prior is a consequence of the tendency of the MLE to
underestimate the true value, while the worse coverage probabilities are due to its failure
to account for the extra variability induced by plugging in θ̂. The default conjugate prior
is fairly competitive with the ideal prior and offers slightly better inferences than πus
for the regression coefficients.

2.5 Conclusions

There is not much knowledge about the performance of posteriors based on alternative
priors for the matrix D in models of the form (1). The very limited results we have
managed to present here are intended to offer the default conjugate prior in (2) as a
plausible choice, and we would expect good results for this prior when c is chosen well.
Possibly c could be estimated from the data. We hope the future will bring practical
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guidance as to when posteriors based on priors for D, including the uniform prior,
the default conjugate prior, or other interesting choices such as that recommended by
Gelman (2005), are likely to have good frequentist operating characteristics.
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Comment on article by Browne and Draper

Paul C Lambert∗

University of Leicester, UK

I would like to congratulate the authors on a clearly written and detailed paper.
Large scale simulation studies are important to understand the properties of complex
models which we are increasingly able to fit. The amount of computing time needed
for the simulation studies performed by Browne and Draper (stated in the Appendix)
demonstrates that this can be a time consuming task.

As stated by the authors, the use of multilevel models has grown substantially over
the last few years. However, as listed in the first paragraph of section 1, there are a
number of competing methods proposed for their estimation, both Bayesian and likeli-
hood based. Within the Bayesian framework there is of course the added issue of the
choice of prior distributions for the various model parameters. It is worth noting here
that the increased use of Bayesian methods over the last decade or so has not neces-
sarily been due to a philosophical shift, but rather a desire to fit complex models, with
software such as WinBUGS enabling users to do this. Many of these users want their
‘data to dominate’ and therefore want all prior distributions to be non-informative.
However, this is rarely straightforward and in hierarchical models it is the choice of
prior distribution for the hierarchical variance parameters that has been shown to be
most crucial, particularly in small samples. In earlier work we conducted a simulation
study on the choice of prior distribution for the variance component (between study
variance) in a meta-analysis of aggregated data (Lambert et al. 2005). One of the ad-
vantages of using aggregated data is that models are quicker to fit and we were able to
compare 13 different prior distributions for 9 different scenarios. When the number of
level 2 units is large the choice of prior distribution becomes less important. However,
for many real applications in medicine one would expect the number of level 2 units to
be small, for example meta-analysis (Sutton and Abrams 2001) and cluster randomised
trials (Turner et al. 2001). It is to the situations where there are only a small number
of level 2 units that I wish to address most of my comments.

• The inverse-gamma (ε, ε) distribution is by far the most common prior distribution
used for variance components. One reason for this is that in the set of BUGS
examples (Spiegelhalter et al. 1996a,b) it is the only prior distribution used for
variance components, with ε = 0.001. As Browne and Draper point out, the
inverse-gamma (ε, ε) distribution has a spike near zero and that this can create
problems for low values of σ2

u or when the number of level 2 units is small. These
problems have recently been demonstrated by Gelman (Gelman 2006). My view is
that there is a need to educate users to move away from tradition and avoid using
this prior distribution for hierarchical variance parameters, particularly when the
number of level 2 units is small.

∗University of Leicester, UK, http://www.hs.le.ac.uk/personal/pl4/

c© 2006 International Society for Bayesian Analysis ba0003
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• One of the problems with both the prior distributions investigated by Browne and
Draper is that with a small number of level 2 units, the posterior distribution may
include implausibility large values for σ2

u. The use of weakly informative prior dis-
tributions that will give low (or zero) probability to values that are clearly implau-
sible are likely to produce more realistic estimates (Gelman 2006; Lambert et al.
2005).

• A disadvantage of the two prior distributions chosen by Browne and Draper is
that interpretation on the variance or precision scales is less obvious and for this
reason I prefer prior distributions on the standard deviation scale, particularly if
using informative or weakly informative prior distributions, as these will be on the
same scale as the model and thus provides greater transparency. Two such prior
distributions are the uniform or half-normal distributions. In addition the half-
Cauchy distribution used by Gelman looks particularly promising for situations
with a small number of level 2 units (Gelman 2006)

• Another important point illustrated in the paper is that the choice of summary
statistic (mean, median or mode) can lead to very different point estimates, par-
ticularly in small samples. This is of course to be expected when the posterior
distribution is skewed, but does illustrate the importance in reporting which sum-
mary measure has been used. It is also worthwhile noting that the majority of
WinBUGS users rarely report the mode for the simple reason that the standard
output does not report it.

• The results of the simulation for the random effects logistic regression (RELR) are
particularly interesting with the quasi-likelihood methods performing poorly even
with a large number of level 2 and level 3 units. It is for these types of models
that the Bayesian approach is particularly advantageous. This is demonstated by
their use in genetic epidemiology where complex random effects models are used
to model genetic and enviromental associations in pedigree data (Burton et al.
1999). The RELR simulation study has a large number of units in comparison to
the variance components simulations and one would expect similar problems to
occur regarding the choice of prior distributions when the number of level 2 (or
level 3) units are small. I agree with Browne and Draper that other likelihood
based approaches need further investigation, in particular the use of adaptive
quadrature based methods (Pinheiro and Bates 1995) and hierarchical generalized
linear models (Lee and Nelder 1996). However, due to flexibility and potential to
extend the models I think it is likely that a Bayesian approach is the most sensible
in these situations.

• It is clear is that for any Bayesian hierarchical model involving a small number of
units, the role of the prior distribution for the hierarchical variance parameters is
crucial and that there is unlikely to be an ’off-the-shelf’ vague prior distribution
suitable for all scenarios. Therefore a sensitivity analysis should routinely be
performed. Finally, it is worth reiterating the importance of reporting all prior
distributions used, in both the main and sensitivity analyses, and their impact on
results.
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Rejoinder

William J. Browne∗, and David Draper†

We are grateful to Gelman, Kass and Natarajan, and Lambert for their thoughtful
comments (and indeed for the original research that they summarize in their papers),
and we offer the following remarks by way of rejoinder.

• Many of the results presented in our article were obtained more than a few years
ago (based, as they were, on part of the work in Browne (1998)) and are only now
seeing the light of publication largely due to, shall we say, the vagaries of non-
Bayesian refereeing. We focused on the Γ−1(ε, ε) prior for random-effects variances
in some of our work because—under the influence of the WinBUGS package and the
examples distributed with it—this was very much the most common prior in use in
hierarchical/multilevel modeling in the mid to late 1990s. Lambert expresses the
opinion that this is still true today, although it appears to us that the pendulum
is shifting away from this prior, for reasons like those mentioned by Gelman. (To
be fair to the WinBUGS development group, in many of the examples distributed
with release 1.4.1 they currently offer analyses with both Γ(0.001, 0.001) priors on
random-effects precision parameters τ and Uniform priors on the corresponding
standard deviation parameters σ = τ−1/2, although they send a distinctly mixed
message by building in default values of 0.001 for each of the shape and scale pa-
rameters whenever a parameter is given a Gamma distribution in the DoodleBUGS
part of the package.)

It is interesting to see that in 2006 there is still no consensus on a general-purpose
choice of diffuse prior for this situation, although the work summarized in both
the Gelman and Kass-Natarajan contributions to this discussion may go some
distance toward achieving this goal. We have found ourselves recently gravitat-
ing toward Uniform priors on random-effects standard deviations, which accord
with one of Gelman’s suggestions, although instead of using Uniform(0,∞) (or
Uniform(0, A) for huge A) we prefer Uniform(0, c) where c is chosen just large
enough not to truncate the marginal likelihood for σ (and, in an interesting res-
urrection of the sometimes appropriately maligned Gamma prior, c can often be
chosen well by making a preliminary fitting with a Γ−1(0.001, 0.001) prior on σ2

and looking at the marginal posterior for σ). It is also interesting that Γ−1(ε, ε)
priors were originally chosen for computational convenience (through their condi-
tional conjugacy), and the half t family mentioned by Gelman again has surfaced
due to computational benefits, this time arising from model expansion. One of us
(Browne (2004)) has also seen these benefits in a more complex random effects
model, reinforcing Gelman’s comments on efficiency of MCMC chains.

∗Division of Statistics, School of Mathematical Sciences, University of Nottingham, UK
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†Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA,
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• The IGLS estimation method we use to get maximum likelihood estimates in
the paper (see Section 2.1) has other features that are of interest to explore for
their potential payoff with MCMC methods. Given a particular random effects
model, the IGLS method does not in fact directly fit this model, but rather fits
a structured multivariate normal model with the whole set of responses treated
as one vector-valued outcome, and with constraints (e.g., positive between-groups
variance) included in the covariance matrix of the response; these constraints
create equivalence between the multivariate model and the original random effects
model. We are currently investigating MCMC algorithms for such structured
multivariate normal models; here we have the option of allowing the parameter
in this model that corresponds to the between-groups variance in the random
effects model to have positive prior probability of taking negative values. This has
advantages in performing Bayesian model selection and may help in choosing a
reference prior for this family of structured multivariate normal models (although
the equivalence with the random effects model is lost by such a prior choice).

• In three places in Gelman’s paper (Sections 5.1, 5.2, and 6.2) he refers to what
he characterizes as the good performance of a particular choice of prior (“the
simplest approach ... seems to perform well”; “this prior distribution appears to
perform well in this example”; “the half-Cauchy prior distribution does slightly
better than the uniform”) without saying what standard of merit he is using to
come to these conclusions. We believe that the best way to settle issues of this
type is through simulation studies (of the type illustrated in our paper, in Kass
and Natarajan’s contribution to this discussion, and in Lambert et al. (2005)), in
which an environment embodying a particular known truth is created and then a
variety of Bayesian inferential methods are compared on their ability to reproduce
the known truth. This is a form calibration inquiry—how often does my method
get the right answer?—that it would seem all statisticians, whether they are using
Bayesian methods or not, would be interested in undertaking. (How exactly can
Gelman know that the half-Cauchy prior distribution does slightly better than
the uniform in his ANOVA example without performing such a simulation? See,
e.g., Draper (2006) for some recent thoughts on the importance of combining the
notions of coherence (internal consistency) and calibration (external consistency)
in contemporary Bayesian inference.) In fact, this simulation approach has by now
become so easy to perform—e.g., by embedding calls to WinBUGS in a random-
data-set-generating environment in R (in part thanks to the useful R functions
Gelman has made available at www.stat.columbia.edu/∼gelman/bugsR)—and
inexpensive computers have become so fast that most questions one might have
about the calibration properties of a particular choice of diffuse prior can be
answered in a completely problem-specific manner with just an hour or two of
programming and a few hours or days of computer time.

At about the time of Browne (1998), we were the co-developers of the MCMC ca-
pabilities in the multilevel modeling package MLwiN (Rasbash et al. (2005)), and—
since we wanted to give users a default choice of diffuse priors for that package—it
was natural to ask calibration questions of the type addressed in our paper. We
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believe that similar questions are routinely worth asking, not just by software
developers but by essentially all Bayesian analysts, and we hope that the imple-
mentation and publication of Bayesian calibration studies of the type discussed
here will become considerably more frequent in the not-too-distant future.

References

Browne, W. J. 1998. Applying MCMC Methods to Multilevel Models. Ph.D. disserta-
tion: University of Bath, U.K. 547, 548

—. 2004. An illustration of the use of reparameterisation methods for improving MCMC
efficiency in crossed random effect models. Multilevel Modelling Newsletter 16: 13–
25. 547

Draper, D. 2006. Coherence and calibration: comments on subjectivity and “objectiv-
ity” in Bayesian analysis. Discussion of “The case for objective Bayesian analysis” by
J. Berger and “Subjective Bayesian analysis: principles and practice” by M. Gold-
stein. Bayesian Analysis (this issue). 548

Lambert, P. C., A. J. Sutton, P. R. Burton, K. R. Abrams, and D. R. Jones. 2005.
How vague is vague? A simulation study of the impact of the use of vague prior
distributions in MCMC using WinBUGS. Statistics in Medicine 24: 2401–2428. 548

Rasbash, J., F. Steele, W. Browne, and B. Prosser. 2005. A User’s Guide to MLwiN

Version 2.0. University of Bristol, U.K. (www.mlwin.com). 548



550 Rejoinder


