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Hierarchical Models
for Combining Information

Formulating hierarchical models for
quantitative outcomes from
scientific context

Case Study: Meta-analysis of effects of aspirin

on heart attacks. Table 5.1 (Draper et al., 1993a) gives

the number of patients and mortality rate from all causes,

for six randomized controlled experiments comparing the
use of aspirin and placebo by patients following a

heart attack.

Table 5.1. Aspirin meta-analysis data.

Aspirin Placebo

# of Mortality # of Mortality
Study (i) Patients Rate (%) Patients Rate (%)

UK-1 615 7.97 624 10.74
CDPA 758 5.80 771 8.30
GAMS 317 8.52 309 10.36
UK-2 832 12.26 850 14.82
PARIS 810 10.49 406 12.81
AMIS 2267 10.85 2257 9.70
‘Total 5599 9.88 5217 10.73

Comparison
y; = Diff VvV, = SE

Study (i) (%) of Diff (%) Z: p’
UK-1 277 1.65 1.68 .047
CDPA 2.50 1.31 1.91 .028
GAMS 1.84 2.34 0.79 .216
UK-2 2.56 1.67 1.54 .062
PARIS 2.31 1.98 1.17  .129
AMIS -1.15 0.90 -1.27 .898
Total 0.86 0.50 147 072

17, denotes the ratio of the difference in mortality rates over its standard
error, assuming a binomial distribution. ¥p; is the one-sided
p value associated with Z;, using the normal approximation.
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Meta-Analysis

The first five trials are reasonably consistent in showing a
(weighted average) mortality decline for aspirin patients of
2.3 percentage points, a 20% drop from the (weighted
average) placebo mortality of 11.5% (this difference is
highly clinically significant).

However, the sixth and largest trial, AMIS, went the other
way: an increase of 1.2 percentage points in aspirin
mortality (a 12% rise from the placebo baseline of 9.7%).

Some relevant questions (Draper, 1995):

Q1| Why did AMIS get such different results?

Q> | What should be done next to reduce the uncertainty
about @17

Q3 | If you were a doctor treating a patient like those eligible

for the trials in Table 5.1, what therapy should you
employ while answers to (J1 and ()2 are sought?

One possible paraphrase of (Q3: | Q4| How should the
information from these six experiments be combined to
produce a more informative summary than those obtained
from each experiment by itself?

The discipline of | meta-analysis | is devoted to answering
questions like Q.

One leading school of frequentist meta-analysis (e.g.,
Hedges and Olkin, 1985) looks for methods for combining
the Z and p values in Table 5.1, an approach that often
leads only to an overall p value.



A Gaussian HM

A more satisfying form of meta-analysis (which has both
frequentist and Bayesian versions) builds a hierarchical
model (HM) that indicates how to combine information

from the mortality differences in the table.

A Gaussian meta-analysis model for the aspirin data, for
example (Draper et al., 1993a), might look like

(n,0%)  ~  p(p,o?) (prior)
(0|, o°) 1o N(p,0°)  (underlying effects) (1)
wlo) P N6, V) (data) .

The bottom level of (1), the data level of the HM, says
that—Dbecause of relevant differences in patient cohorts and
treatment protocols—each study has its own underlying
treatment effect 6,, and the observed mortality differences
y; are like random draws from a normal distribution with
mean 6; and variance V; (the normality is reasonable because
of the Central Limit Theorem, given the large numbers
of patients).

In meta-analyses of data like those in Table 5.1 the V; are
typically taken to be known (again because the patient
sample sizes are so big), V; = SEZ.Q, where SFE; is the standard
error of the mortality difference for study 7 in Table 5.1.

The middle level of the HM is where you would bring in the
study-level covariates | if you have any, to try to explain
why the studies differ in their underlying effects.

Here there are no study-level covariates, so the middle level
of (1) is equivalent to a Gaussian regression with no
predictor variables.



A Gaussian HM (continued)

Why the “error” distribution should be Gaussian at this
level of the HM is not clear—it’'s a conventional option, not
a choice that's automatically scientifically reasonable (in fact

I'll challenge it later).

o2 in this model represents study-level heterogeneity.

The top level of (1) is where the prior distribution on the
regression parameters from the middle level is specified.

Here, with only an intercept term in the regression model, a
popular conventional choice is the normaI/scaled-inverse-x2
prior we looked at earlier in our first Gaussian case study.

Fixed effects and random effects. | If 02 were known
somehow to be 0, all of the 0; would have to be equal

deterministically to a common value u, yielding a simpler

) indep
model: (yi|lp) ~" N(u, Vi), p~ p(p).

Meta-analysts call this a fixed-effects model, and refer to
model (1) as a random-effects model.

When o2 is not assumed to be 0, with this terminology the 6;
are called random effects (this parallels the use of this term
in the random-effects Poisson regression case study).



Approximate Fitting of Gaussian Hi-
erarchical Models: Maximum Likeli-
hood and Empirical Bayes

Fitting HM (1). Some algebra based on model (1) yields
that the conditional distributions of the study-level effects 6;
given the data and the parameters (u,0?), have a simple
and revealing form (I'll show this later):

indep «
Vi
with 07 = (1 — B;) vy; B; and B, = . 3
i = )i + Bip Vo (3)

In other words, the conditional mean of the effect for study 2
given y;, u, and o2 is a |weighted average | of the sample
mean for that study, y;, and the overall mean wu.

The weights are given by the so-called shrinkage factors B;
(e.g., Draper et al., 1993a), which in turn depend on how the
variability V; within study : compares to the between-study
variability o2: the more accurately y; estimates 6;, the more
weight the “local” estimate y; gets in the weighted average.

The term shrinkage refers to the fact that, with this
approach, unusually high or low individual studies are drawn
back or “shrunken” toward the overall mean u when making

the calculation (1 — B;) y; + B p.

Note that 67 uses data from all the studies to estimate the
effect for study +—this is referred to as borrowing strength
in the estimation process.

Closed-form expressions for p(uly) and p(6;|y) with
vy = (y1,...,Yr), k = 6 are not available even with a
normal-y—2 prior for (u,0?); MCMC is needed (see below).



Maximum Likelihood
and Empirical Bayes
In the meantime | maximum likelihood | calculations provide

some idea of what to expect: the likelihood function based
on model (1) is

(1, 02]y) —c[H m] exp [__Z(V+a ] (4)

The maximum likelihood estimates (MLEs) (f,52) then turn
out to be the iterative solutions to the following equations:

T k = —
— <k 7 = R )
Zz:l 1 ZZ:]. WZQ
1
where W, = Tt (6)

Start with 62 = 0 and iterate (5—6) to convergence (if 52
converges to a negative value, 62 = 0 is the MLE); the
MLEs of the 0; are then given by

) . Vi
0, = (1—B;) v; + B; where B; = —. 7
(1—Bi) i+ Bifa T (7)

These are called |empirical Bayes | (EB) estimates of the
study-level effects, because it turns out that this analysis
approximates a fully Bayesian solution by (in effect) using
the data to estimate the prior specifications for u and o2,

Large-sample (mainly meaning large k) approximations to
the (frequentist) distributions of the MLEs are given by

jp~ N
+ o2

z:k: A]_ and  0;~ N|[6;,Vi(1 - By)]. (8)




MLEB (continued)

NB The variances in (8) don’t account fully for the
uncertainty in o2 and therefore underestimate the actual
sampling variances for small k£ (adjustments are available;

see, e.g., Morris (1983, 1983)).

MLEB estimation | can be implemented simply in about
15 lines of R code (Table 5.2).

Table 5.2. R program to perform MLEB calculations.

mleb <- function( y, V, m ) {

sigma2 <- 0.0

for (i in 1:m ) {
W<-1.0/ (V + sigma2 )
theta <- sum( W *x y ) / sum( W )
sigma2 <- sum( W"2 * ( ( y - theta )"2 -V ) ) / sum( W2 )
B<-V/ (V + sigma2 )
effects <- (1 - B ) *x y + B *x theta
se.theta <- 1.0 / sqrt( sum( 1.0 / ( V + sigma2 ) ) )
se.effects <- sqrt( V. x ( 1.0 - B ) )
print( c( i, theta, se.theta, sigma2 ) )
print( cbind( W, ( W / sum( W ) ), B, y, effects, se.effects ) )

With the aspirin data it takes 18 iterations (less than 0.1
second on a 400MHz UltraSPARC Unix machine) to get
convergence to 4-digit accuracy, leading to the summaries
in Table 5.3 and the following estimates
(standard errors in parentheses):

ii = 1.45 (0.809), &2 =1.53.

Table 5.3. Maximum likelihood empirical Bayes
meta-analysis of the aspirin data.

study(4) ;| normalized W; | B; Yi 0; SE (@J)
1 0.235 0.154 0.640 2.77 1.92 0.990
2 0.308 0.202 0.529 2.50 1.94 0.899
3 0.143 0.0934 0.782 1.84 1.53 1.09
4 0.232 0.151 0.646 2.56 1.84 0.994
5 0.183 0.120 0.719 2.31 1.69 1.05
6 0.427 0.280 0.346 || —1.15 | —0.252 0.728




Aspirin Meta-Analysis: Conclusions

Note that (1) AMIS gets much less weight (normalized W;)
than would have been expected given its small V;; (2) the
shrinkage factors (B;) are considerable, with AMIS shrunk
almost all the way into positive territory (see Figure 5.1); (3)
there is considerable study-level heterogeneity (¢ = 1.24
percentage points of mortality); and (4) the standard errors
of the effects are by and large smaller than the /V; (from
the borrowing of strength) but are still considerable.

raw estimates (y)

shrunken estimates (theta.hat)

1 0 1 2 3
Estimated Effects

Figure 5.1. Shrinkage plot for the aspirin MLEB meta-analysis.

The 95% interval estimate of u, the overall underlying
effect of aspirin on mortality, from this approach comes out

ii+1.96 - SE(@) = (—0.140,3.03),

which if interpreted Bayesianly gives

P(aspirin reduces mortality|data) =1 — ®(%222) = 0.96 |,

where & is the standard normal CDF.

Thus although the interval includes O, so that in a
frequentist sense the effect is not statistically significant, in
fact from a Bayesian point of view the evidence is
running strongly in favor of aspirin’s usefulness.
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MCMC Details

In many cases (as with this example) empirical Bayes
methods have the advantage of yielding closed-form
solutions, but I view them at best as approximations to fully
Bayesian analyses—which can in any case be carried out with
MCMC—so I won’'t have any more to say about EB methods
here (see Carlin and Louis, 1996, for more on this topic).

MCMC details. | First let's derive that likelihood function
I mentioned on page 7: the model, once again, is

(n,0%)  ~  p(p,o?) (prior)

(6|, o) 1o N(p,0%)  (underlying effects) (9)
(yil0:) ngee N(0;,V;) (data) .

The parameters we're interested in here are (u,0?); Bayes’s
Theorem gives (as usual)

p(u, o%ly) = cp(p, o) p(ylp, o), (10)
so let's look at the sampling distribution for a single y;:
pulo® = [ pbilno®) o,

- / p(yil6i, 11, 0%) p(8ilp, 0%) d6;  (11)

—0o

= / p(yil6:) p(0il, 0°) db;
(what we're doing here is integrating out the random
effect 06,).

Now p(w;]6;) is normal in this model, and p(6;|u,c?) is also
normal; you could put in the normal densities and grind
away at the algebra and integration, but there’'s a better
way: the last line of (11) is a mixture representation, and
a normal mixture of normals is normal, so I know that
p(yi|p, o?) is normal, and the only questions are, what are its
mean and variance?
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Adam and Eve

These questions can be answered with little difficulty via
the Double Expectation Theorem, which has two parts
that are so central to Bayesian calculations that Carl
Morris refers to them as Adam and Eve: for any two
random variables X and Y,

E(Y) Ex [E(Y|X)] (Adam)
V(Y) Ex [VY[X)] 4+ Vx [E(Y]X)] (Eve),

in which Ex and Vx refer to expectation and variance with
respect to the distribution of X.

(12)

If there's additional conditioning going on, you just need to
remember to include it in all the relevant places: for any
three random variables X, Y and Z,
Exiz) [E(Y]X, Z)]
Exiz) [VIY|X, 2)] + Vixiz) [E(Y]X, Z)],

and so on.

E(Y|Z)

V(Y|2) (13)

The application here is in two parts (Adam and Eve):

E(yilp,0%) = E@uo [EWilp, 0, 6)]
E g, u,07) [E(yi]0:)]
E,|,02) [0i]

@, and

V(yl|:u7 0-2) E(0i|,u,(72) [V(yl|:u7 0-27 01)] + ‘/(9i|u,02) [E(y2|:u7 027 92)]
Eguo2) [V (9il0)] + Viguo2) [E(yil0:)]
E(9i|ﬁb,02) [‘/Z] _|_ ‘/((91‘|M,0'2) [91]

Vi + 0% (14)
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Direct Use of Gibbs Sampling

So (a) (yi|p,0?) ~ N(u, V; + ¢2), (b) by inspection of the
form of the model, the y; are independent given (i, c?), so

(n,0%ly) = ep(ylp,o®) =c jpuﬁm,a?) (15)

[Hmz o0 | 33 Vet

as desired.

MCMC: how best to sample from the posterior?

All MCMC (with a parameter space of fixed dimension)
IS one special case or another of the Metropolis-Hastings
algorithm, but (as usual) we have a number of
possibilities: generic (e.g., random-walk) Metropolis?
Metropolis mixed with Gibbs steps? All Gibbs? With or
without auxiliary (e.g., latent) variables? ...

First let's try direct Gibbs, for which we would need the
full conditionals:

p(ulo®y) = cp(p,o”,y) (16)

cp(p, o®) p(ylp, o).

By virtue of integrating out the random effects above, we
have p(y|u,0?) as a product of independent univariate

Gaussians; what shall we take for the prior p(u,o?), given
that there's no conjugate choice?

Even with somewhat informative priors on a vector of
parameters, for simplicity people often assume
independence of the components — in this case,
p(u,0?) = p(p) p(c?) — on the ground that whatever
correlation the parameters should have in the posterior will
be learned via the likelihood function; let's make this
simplifying assumption; then

p(plo®,y) = cp(p) p(a?) p(ylp, 0%) = cp(p) p(ylp, o). (17)
12



Direct Gibbs; Latent Gibbs

Now the product of two Gaussians is Gaussian, so if we
take the prior for u to be Gaussian we'll have a Gaussian
full conditional for p that’ll be easy to sample from; what
about 027

cp(p, 0%, y)

cp(p, o) p(y|u, o) (18)
cp(p) p(o?) p(y|p, o)

cp(o”) p(ylp, o°).

Here we run into trouble: when considered as a function of
o? for fixed p and y, p(y|u,o?) is not recognizable as a
member of a standard parametric family (because the y;
(given 1 and ¢2) are independent but not identically
distributed); we could choose, e.g., a x~2 prior on ¢2 and
use rejection sampling to sample from the resulting
non-standard full conditional, but that would not be
especially pleasant.

p(o?| i, y)

So instead let's use a trick that’s generally helpful in
random-effects models: treat the (latent) random effects
as auxiliary variables to be sampled along with (i, o?).

In other words, letting 8 = (61,...,60:), we're going to sample
from the augmented posterior p(u,0?,0]y); the hope is that
this will have completely tractable full conditionals;
let’s see.

p(ulo?,0,y) = cp(u,0?,0,y) (19)
= cp(p,0?) p(0|u,o?) p(y|0, u, o)

Notice how naturally this factorization matches the
hierarchical character of (9), which starts at the top with
a model for (u,0?), and then builds a model for (0|u,o?),
and then at the bottom there’s a model for p(y|d, 1, 02),
which — by virtue of the hierarchical structure — can be
simplified to p(y|9).
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Latent Gibbs (continued)

Since (a) we're assuming that p(u,o?) = p(r) p(a?) and (b)
p(y|@) doesn’t involve p, the full conditional for u becomes

p(plo?,0,y) = cp(p) p(lp, o°) ; (20)
with a Gaussian prior on p this will be Gaussian,;
how about ¢27

cp(p,02,0,y) (21)
cp(p, a?) p(0lu, o?) p(ylo, p, 0%)
cp(p) p(a?) p(0|p, o*) p(y|6)
cp(o?) p(6|p, 0°).

Here's another trick: instead of slogging through the
details, try to recognize situations in which you already

know the conjugate updating, and just use what you
already know.

p(a?|p, 0,y)

For example, in this calculation (0|u,o?) is Gaussian with
known 1 and unknown ¢2, and we know the conjugate

prior for ¢2 in that model — y—2 — so with that prior
choice the full conditional for o2 will also be x~2; how
about 67
p(0lp, 0%, y) = cp(p,0°,0,y) (22)

cp(p, o) p(0u, o) p(yl0, p, o°)
cp(0|u, o) p(y|6).

Here p(0|u,0?) and p(y|d) are both Gaussian, so the full
conditional for 6 — the product — will also be Gaussian.

Thus using the latent Gibbs approach in this
random-effects model, all of the full conditionals have
familiar forms; this approach will work smoothly; we just

need to work out the details.

(I recommend this as a basic Gibbs strategy: in the first
step make a sketchy pass through the full conditionals
without working out all of the details, to ensure that
everything works fine, and then go back and fill in
the details.)
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Details

(1) | Full conditional for u:

p(plo,0,y) = cp(p) p(8|p, o). (23)

In this calculation (a) o2 is known and (b) the latent vector

0 = (01,...,0,) acts like the data vector y = (y1,...,yn) in
11D :
the model p ~ N(MOaaio)a(in) ~ N(u,0%) (i=1,...,n), so

we already know the answer: (u|o?,0,y) ~ N(u,02), where

_ kopo + kO o2

and o7 = , 24
225 ko + k O ko + k (24)
and in which the prior sample size is kg = 2- and
__ 1 k HO
0=1% D i1 i
(2) | Full conditional for o2:
p(o?|p,0,y) = cp(c?) p(6lu, o). (25)
In parallel with the situation with pu, in this calculation (a)
1 is known and (b) the latent vector 6§ = (61,...,60;) acts

like the data vector y = (y1,...,yn) in the model

. 11D )
02 ~ x2(v0,02y), (yilo?) '~ N(p,02) (i=1,...,n), sO we

already know the answer: (o2|u,0,y) ~ x ?(vg, 02), Where

5 l/oago—l—kv
O —
vo + k
in which v =13 (6; — p)2.

v, =19+ k and ) (26)
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Details (continued)

(3) | Full conditional for 0:
cp(0|p, %) p(yl0)

k
= c]]piln, o) p(yil6). (27)
i=1

p(0|u, 0%, y)

Now (0i|p,0?) ~ N(u,0?) and (yi0;) ~ N(6;,V;) (with V;
known), so this is just our old friend

{Gaussian likelihood (for y;) with unknown mean 6; and
known variance V;, 4+ Gaussian prior for 6; with
hyper-parameters p and o2}

the (un-normalized) product p(0;|u,o?) p(y;|0;) is just the
posterior for 6;, and the answer is therefore the same as it
was in the full conditional for u:
(6il, 02, y) ~ N(0;,07), with

1 1
pM‘F vYi VZ-,u—I—GQyi .

0F = = = B; 1 — B;)vy; and
1 Vio?
02 = T =—"—=Vi(l-B), (28)
~++  Vito?
in which B; = # is the shrinkage factor for study 7 (this

is the demonstration of equations (2) and (3) earlier).

Thus (8|p, 02, y) ~ Ni(6*, <) with 6* = (0%,...,6;) and
> =diag(s?), and one scan of the Gibbs sampler can be
described as follows:

(a) draw p from p(ulo?,0,y), obtaining p.;
(b) draw o2 from p(o?|us, 0,y), obtaining o2; and

(c) draw 60 from p(0|us,02,y), either univariately on the 0,
(one by one) or multivariately on 6 all at once.
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R Code

meta.analysis.gibbs <- function( mu.0, sigma2.mu.0, nu.0, sigma2.sigma.O,
mu.initial, sigma2.initial, theta.initial, y, V, M, B ) {

k <- length( y )

mu <- rep( O, M + B + 1)

sigma2 <- rep( 0, M + B + 1 )
theta <- matrix( O, M + B + 1, k )
mu[ 1 ] <- mu.initial

sigma2[ 1 ] <- sigma2.initial
thetal 1, ] <- theta.initial

for (min 2:( M+ B + 1) ) {

mu[ m ] <- mu.full.conditional( mu.0, sigma2.mu.0, sigma2[ m - 1 ],
thetal m - 1, 1, y )

sigma2[ m ] <- sigma2.full.conditional( nu.0, sigma2.sigma.O,
mu[ m ], thetal m - 1, 1, y )

thetal m, ] <- theta.full.conditional( mul[ m ], sigma2[ m 1, y, V)
if (m %% 1000 == 0 ) print( m )

+

return( cbind( mu, sigma2, theta ) )

}

mu.full.conditional <- function( mu.0, sigma2.mu.0, sigma2.current,
theta.current, y ) {

k <- length( y )
k.0 <- sigma2.current / sigma2.mu.O

theta.bar <- mean( theta.current )

17



R Code (continued)

mu.k <- ( k.0 * mu.0 + k * theta.bar ) / ( k.0 + k )

sigma2.k <- sigma2.current / ( k.0 + k )
mu.star <- rnorm( n = 1, mean = mu.k, sd = sqrt( sigma2.k ) )
return( mu.star )

}

sigma2.full.conditional <- function( nu.0, sigma2.sigma.O,
mu.current, theta.current, y ) {

k <- length( y )
nu.k <- nu.0 + k
v <- mean( ( theta.current - mu.current )~2 )
sigma2.k <- ( nu.0 * sigma2.sigma.0 + k * v ) / ( nu.0 + k )
sigma2.star <- rsichi2( 1, nu.k, sigma2.k )
return( sigma2.star )
}
rsichi2 <- function( n, nu, sigma2 ) {

sigma2.star <- 1 / rgamma( n, shape = nu / 2,
rate = nu * sigma2 / 2 )

return( sigma2.star )

+

theta.full.conditional <- function( mu.current, sigma2.current, y, V ) {
k <- length( y )

theta.star <- ( V * mu.current + sigma2.current * y ) /
( V + sigma2.current )

18



R Code (continued)

sigma2.star <- V * sigma2.current / ( V + sigma2.current )

theta.sim <- rnorm( n = k, mean = theta.star,
sd = sqrt( sigma2.star ) )

return( theta.sim )

b

mu.0 <- 0.0

sigma2.mu.0 <- 10072

nu.0 <- 0.001

sigma2.sigma.0 <- 1.53

mu.initial <- 1.45

sigma2.initial <- 1.53

theta.initial <- c¢( 1.92, 1.94, 1.53, 1.84, 1.69, -0.252 )

y <- c( 2.77, 2.50, 1.84, 2.56, 2.32, -1.15 )

V <-c(1.65, 1.31, 2.34, 1.67, 1.98, 0.90 )~2

M <- 100000

B <- 1000

mcmc.data.set <- meta.analysis.gibbs( mu.0, sigma2.mu.0, nu.O,
sigma2.sigma.0, mu.initial, sigma2.initial, theta.initial,
y, V, M, B)

% took 47 seconds

mcmc.data.set <- cbind( mcmc.data.set[ , 1:2 1],
sqrt( mcmc.data.set[ , 2 ] ), mcmc.data.set[ , 3:8 ] )

19



R Code (continued)

apply( mcmc.data.set[ 1001:101001, ], 2, mean )

mu sigma2
1.33013835 2.24106295 1.12196766 1.68639681 1.67526967 1.38514567 1.62389213
1.51615795 0.09356775
apply( mcmc.data.set[ 1001:101001, 1, 2, sd )
mu sigma2
0.9042468 4.4707971 0.9910910 1.1576621 1.0311309 1.2381000 1.1391841
1.1917662 0.9944885
mu.star <- mcmc.data.set[ 1001:101001, 1 ]
sum( mu.star > 0 ) / length( mu.star )
[1] 0.9484605
sigma.star <- mcmc.data.set[ 1001:101001, 3 ]

par( mfrow = c( 2, 1) )

hist( mu.star, nclass = 100, main = ’’, probability = T,
xlab = ’mu’ )

hist( sigma.star[ sigma.star < 5 ], nclass = 100, main = ’’,
probability = T, xlab = ’sigma’ )

0.4

Density

0.2

0.0

mu

1.2

Density
0.8

0.4

0.0

sigma
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WinBUGS Analysis of Aspirin Data

Aspirin meta-analysis revisited. I create three
files for WinBUGS: a model file, a data file, and an
initial values file (I'm using the most recent
release, 1.4.1, of WinBUGS).

The (first) model file for the aspirin data:

mu ~ dnorm( 0.0, 1.0E-6 )
tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )

for (i in 1:k ) {

thetal i ] ~ dnorm( mu, tau.theta )
y[L i ] 7 dnorm( thetal i 1, tau.y[ i ] )

}

sigma.theta <- 1.0 / sqrt( tau.theta )
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WinBUGS Analysis of Aspirin Data

Here p plays the role of 8 in model (10) above to avoid using
the name theta twice for two different purposes in the
WinBUGS program.

In specifying a normal distribution WinBUGS works not with a
standard deviation (SD) or a variance but with a
precision—the reciprocal of the variance—so that the
N(p, 0?) distribution is specified by dnorm( mu, tau )
with 7 = .

Then the SD has to be computed as a derived quantity
(o = %) which is written above as

sigma.theta <- 1.0 / sqrt( tau.theta )

If—before the aspirin experiments were performed—I'm
relatively ignorant about the quantities 6 (1) and o in model
(10), or equivalently p and 7 = % I can build a diffuse or
flat prior for both quantities that expresses this relative
ignorance.

Since u lives on (—oo,o0) a convenient choice for a flat prior
for it is a normal distribution with mean (say) 0 and very
small precision: mu ~ dnorm( 0.0, 1.0E-6 )

For tau.theta, which lives on (0,00), I want something that's
flat throughout (almost) all of that range; a convenient
choice (to get an initial idea of where the posterior
distribution for sigma.theta is concentrated) is a gamma
distribution with small positive values of both of its
parameters.

This is the | (e, ¢€) | distribution for some small ¢ > 0O like
0.001: tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )
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WinBUGS Aspirin Analysis (continued)
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Figure 3.1. The M(0.001,0.001) distribution.
The data file in the aspirin meta-analysis is

list( k = 6, y = c( 2.77, 2.50, 1.84, 2.56, 2.31, -1.15 ),
tau.y = c( 0.3673, 0.5827, 0.1826, 0.3586, 0.2551, 1.235 ) )

Here, e.g., tau.y[ 1 ] = 4z = 0.3673, where 1.65 is the
standard error of the difference y[ 1 ] for experiment 1 in
Table 2.1 on p. 20.

Finally, the initial values file in the aspirin meta-analysis is
list( mu = 0.0, tau.theta = 1.0 )

In a simple example like this there's no harm in starting the
Markov chain off in a generic location: since pu and 1y live on
(—o0,0) and (0,00), convenient generic choices for their
starting values are 0 and 1, respectively (more care may be
required in models with more complex
random-effects structure).
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WinBUGS Aspirin Analysis (continued)

i 81 aspirin-modell aspirin-datal

( list(k=6,y=c{ 277,250,184, 256,231,-115),
tauy = c(0.3673,05827,0.1826, 0.3586, 0.2551, 1.235 ) )

mu ~ dnorm( 0.0, 1.0E-6 ) :
tau theta ~ dgammal 1.0E-3, 1.0E-3 ) |1

foriiintk){

theta[ i ] ~ dnarm{ mu, tau theta )
Y[ ]~ dnorm( theta[i ], tauy[i])

}
sigma theta <- 1.0/ sgrtf tau theta ) T X

uoda‘reh 000 refras |1 a0

update| thir[l fterati[T000

Coverre I adapting

positive effect <- step( mu )

- — — .
o — -
£.3specification Tool ] 2 5ample Monitor Tool |

heck mod| load da’ra| noc | = chair[1 tof1 | percent
25 =

numof T bec |1 erc 110000 hjn |1 i
clear | F56tT | frace | history] densi
load inits | for |1_E | - ] | ry| U{ a0

stats | | coda| uantile] jgrdiad it Co| 25

I (1) get a Specification Tool from the Model menu, (2) click
on the model window and click check model, (3) click on the
data window and click load data and compile, (4) click on
the initial values window and click load inits, and (5) click
gen inits (because the random effects 6; were uninitialized in
the inits file); I'm now ready to do some MCMC sampling.

I (6) get an Update Tool from the Model menu, and click
update to perform a burn-in of 1,000 iterations (the
default), which takes Os at 1.6 Pentium GHz; (7) I then get
a Sample Monitoring Tool from the Inference menu, and type
sigma.theta and click set.
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WinBUGS Aspirin Analysis (continued)
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1.0

05 i node mean  sd MC error2.5% median 97.5%  start sample
ook .III...IIIIII ................... -

o sigma.theta 1.138 1.002 0.02087 0.0418 09576 3158? 1001 50000

A0t : : =

zl
NG [sigma theta d chairh_ tal1  Dercent

el enc 110000 thin [1 -
updatd50000 refres 100
update| thir[T iterati/51000

Coverre I adapting

olear| HES Traoe| hisTory| densi‘rﬂ gg

stats | coda| uanti|e| Jgrdiad uto Co| 95

(8) I type 50000 in the updates window in the Update Tool and
click update to get a monitoring run of 50,000 iterations
(this took 15s).

Then (9) selecting sigma.theta in the node window, all 10
buttons from clear through autoC are active, and I click on
history (to get a Time Series window), density (to get a
Kernel density window), autoC to get an Autocorrelation
function window, and stats (to get a Node statistics
window), vyielding the screen above.

The output of an MCMC sampler, when considered as a
time series, often exhibits positive autocorrelation; in fact
it often looks like a realization of an autoregressive AR,
model of order p =1 (0; = a + B0;—1 + e;) with positive
first-order autocorrelation p.
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WinBUGS Aspirin Analysis (continued)

This does not affect the validity of Monte Carlo inferences
about the unknowns (e.g., the mean of any stationary
stochastic process is a consistent estimator of the
underlying process mean), but it does affect the efficiency
of these inferences: for example, the Monte Carlo variance of
the sample mean 6 based on M draws from an AR; time

series is
2
oy (1+4p
V@_M(l—p)’ (29)

and the sample size inflation factor i—J_Fg s 00 as p — +1.

An MCMC sampler which produces output for any given
unknown 6 with p near O (if p = 0 the output is white noise,
i.e., equivalent to IID draws from the posterior) is said to be

mixing well in that unknown.

The time series trace for oy above is only mixing moderately
well: the autocorrelation function has the familiar ski-slope
shape of an AR; series with p = 0.7 (the height of the bar

at lag 1).

The marginal posterior distribution for oy (from the Kernel
density window) looks heavily skewed to the right, which
makes sense for a scale parameter.

The posterior mean and SD of gy (using the (¢, ¢) prior
for 1y9) are estimated to be 1.14 and 1.00, respectively; the
Monte Carlo standard error of the posterior mean
estimate is 0.021 (so that with 50,000 monitoring iterations
I don't yet have 3 significant figures of accuracy for the
posterior mean); the posterior median is estimated to be
0.96; and a 95% central interval for oy with this prior is
estimated to run from 0.042 to 3.57.
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WinBUGS Aspirin Analysis (continued)
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______________________ uodatd50000 | refeclio0
update| trir[1 iteratif61000

Coverre [ adapting

bec |1

The main thing to notice, however, is that the range of
plausible values for sigma.theta in its posterior is
approximately from O to 16.

It has recently been shown that the simplest diffuse prior
on oy that has good calibration properties (i.e., such that
95% nominal Bayesian interval estimates for all of the
parameters in model (10) do in fact have actual coverage
close to 95%) is

gg ~ U(O,C), (30)

where c is chosen to be (roughly) the smallest value that
doesn’t truncate the likelihood function for oy; here it’s
evident that ¢ = 16 will work well.
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WinBUGS Aspirin Analysis (continued)

o
{

_

listt k=6,y=c{ 277,250,184 256,231,-115],

tauy = ¢f 03673, 05827 0.1826, 0.3586, 02551, 1.235 )
mu -~ dnorm{ 0.0, 1.0E-6 )
sigma.theta ~ dunif{ 0.0, 16.0)

< |

Rtk =0l x|

theta[ i ]~ dnorm{ mu, tautheta ) list{ mu =00, sigmatheta=10) -

; Wi ]~ dnormi theta[i ] tauy[i]) i |

P

'}
tautheta <- 1.0/ ( powl sigmatheta, 2 1)
positive effect <- step( mu ) X

updatd1000 refrac 100
update thir[1 iterati[T000

Coverre I adapting

;l?!

| x| EgSample Maonitor Tool | |

heck mod| load da’ra| noc | = chairh_ ‘ro|1_ percent

25 &
numof 1
load inits | 5o [ H

bec |1 enc 110000 thjn |1
dear | [EEEY [trace | nistory] deneit] 90

stats | ooda| uanTiIe| agr diad it Co| 5

So I estimate a second model placing a Uniform(0, ¢) prior
on oy (this model also requires a new initial values file that
initializes sigma.theta instead of tau.theta).

This time in the Sample Monitor Tool I set all of the
interesting quantities: mu, sigma.theta, theta, and
positive.effect, and I use the same MCMC strategy as
before (a burn-in of 1,000 followed by a monitoring run
of 50,000).
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WinBUGS Aspirin Analysis (continued)
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bec |1 enc 110000 hyjn |1
clear | Set| frace | his‘rory| :Jensi‘ry{

stats | coda| uanTiIe| jgrdiad uto co| o]

aspirin-modelZ -I: _5[

With the Uniform(0,c¢) prior on oy the posterior mean of gy is
now sharply higher than before (2.02 versus the 1.14 value
I got with the initial (e, €) prior (this sort of discrepancy
will only arise when the number of studies k is small; when it
does arise I trust the results from the Uniform(0, c¢) prior).

Note that the posterior mean of oy is also quite a bit bigger
than the value (1.24) obtained from MLEB back on page
25—this is a reflection of the tendency of MLEB to
understate the between-study heterogeneity in model
(10) with small k.
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WinBUGS Aspirin Analysis (continued)
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Mode statistics

node mean  sd MC error2.5% median 97.5% start
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B:s Node statistics

node mean sd MC error2 5% median 97.5% start
positive. effect 0.9257 02623  0.001666 0.0 1.0 1.0 1001

BESample Monitor Tool

noc Ipositive.effect vI ChElirh_ TO|1_ 0295roem

enc 110000 i |1 x|
uoda’re|50000 refres |1 0o

bec |1

UpdElTel thir [1 iterati [51000

Coverre [ adapting

On pp. 25—26 above we saw that the MLEB estimate of u
was 1.45 with an approximate standard error of 0.809, and
an approximate 95% confidence interval for u ran from
—0.14 to +-3.03.

The corresponding Bayesian results are: posterior mean
1.52, posterior SD 1.21, 95% interval (—0.72, 4.006).

As is often true, the simple MLEB approximations leading to
these estimates have underestimated the actual
uncertainty about u: the Bayesian 95% interval with the
Uniform prior is 50% wider.

It's easy to monitor the posterior probability that aspirin
Is beneficial, with the built-in step function applied to mu:
P(up > O|data, diffuse prior information) = 0.93, i.e.,
posterior betting odds of about 12.5 to 1 that aspirin
reduces mortality.
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WinBUGS Aspirin Analysis (continued)
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The marginal density plots of the 6; values show interesting

departures from normality, and the Bayesian estimates (a)

exhibit rather less shrinkage and (b) have 27—43% larger
uncertainty estimates.

Table 3.1. MLEB and Bayesian (posterior mean) estimates of the 6.

Maximum Likelihood | Bayesian Posterior
study(s) 0; SE(6;) mean SD
1 1.92 0.990 2.11 1.33
2 1.94 0.899 2.06 1.14
3 1.53 1.09 1.59 1.56
4 1.84 0.994 1.99 1.33
5 1.69 1.05 1.82 1.46
6 —0.252 0.728 —0.44 0.95
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Hierarchical Model Expansion

Looking at the shrinkage plot on p. 26 or the raw data

values themselves, it's evident that a Gaussian model for

the 6, may not be appropriate: study 6 is so different than

the other 5 that a heavier-tailed distribution may be a
better choice.

This suggests expanding the HM (10), by embedding it in a
richer model class of which it's a special case (this is the
main Bayesian approach in practice to dealing with
model inadequacies).

A natural choice would be a t model for the 6; with
unknown degrees of freedom v:

0,0%v) ~ p(,0°v) (prior)
(616,02, v) 11D t(6,0%,v) (underlying effects) (31)
(vi]6:) ngee N(6;, Vi) (data) .

Here n ~ t(6,02,v) just means that (”7_9) follows a standard

t distribution with v degrees of freedom. This is amazingly
easy to implement in WinBUGS (it is considerably more
difficult to carry out an analogous ML analysis).

The new model file is

mu ~ dnorm( 0.0, 1.0E-6 )
sigma.theta ~ dunif( 0.0, 16.0 )
nu ~ dunif( 3.0, 30.0 )

for (i in 1:k ) {

thetal i ] ~ dt( mu, tau.theta, nu )
y[L i ] 7 dnorm( thetal i 1, tau.y[ i ] )

}

tau.theta <- 1.0 / pow( sigma.theta, 2 )
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Model Expansion (continued)
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To express comparative prior ignorance about v I use a
uniform prior on the interval from 2.0 to 30.0 (below v =2
the t distribution has infinite variance, and above about 30

it starts to be indistinguishable in practice from
the Gaussian).

A burn-in of 1,000 and a monitoring run of 100,000
iterations takes about twice as long as with 50,000
iterations in the Gaussian model (i.e., about the same
speed per iteration) and yields the
posterior summaries above.

It's clear that there's little information in the likelihood
function about v: the prior and posterior for this parameter
virtually coincide.

The results for 4 and the 6; are almost unchanged; this
would not necessarily be the case if study 6 had been
more extreme.
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Educational Meta-Analysis

Incorporating Study-Level Covariates

Case Study: Meta-analysis of the effect of teacher

expectancy on student IQ (Bryk and Raudenbush, 1992).
Do teachers’ expectations influence students’ intellectual
development,

as measured by IQ scores?

Table 5.4. Results from 19 experiments estimating the effects of teacher
expectancy on pupil IQ.

Weeks of Estimated | Standard

Prior Effect Error of

Study (7) Contact (z;) | Size (v;) vi = V'V
1. Rosenthal et al. (1974) 2 0.03 0.125
2. Conn et al. (1968) 3 0.12 0.147
3. Jose & Cody (1971) 3 -0.14 0.167
4. Pellegrini & Hicks (1972) 0 1.18 0.373
5. Pellegrini & Hicks (1972) 0 0.26 0.369
6. Evans & Rosenthal (1969) 3 -0.06 0.103
7. Fielder et al. (1971) 3 -0.02 0.103
8. Claiborn (1969) 3 -0.32 0.220
9. Kester & Letchworth (1972) 0 0.27 0.164
10. Maxwell (1970) 1 0.80 0.251
11. Carter (1970) 0 0.54 0.302
12. Flowers (1966) 0 0.18 0.223
13. Keshock (1970) 1 -0.02 0.289
14. Henrickson (1970) 2 0.23 0.290
15. Fine (1972) 3 -0.18 0.159
16. Greiger (1970) 3 -0.06 0.167
17. Rosenthal & Jacobson (1968) 1 0.30 0.139
18. Fleming & Anttonen (1971) 2 0.07 0.094
19. Ginsburg (1970) 3 -0.07 0.174
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Teacher Expectancy

Raudenbush (1984) found k = 19 experiments, published
between 1966 and 1974, estimating the effect of teacher
expectancy on student IQ (Table 5.4).

In each case the experimental group was made up of children
for whom teachers were (deceptively) encouraged to have
high expectations (e.g., experimenters gave treatment
teachers lists of students, actually chosen at random, who
allegedly displayed dramatic potential for intellectual
growth), and the controls were students about whom no
particular expectations were encouraged.

The estimated | effect sizes |y, = SDi_Ci (column 3 in
:pooled

Table 5.4) ranged from —.32 to 4+1.18; why?

One good reason: the studies differed in how well the
experimental teachers knew their students at the time
they were given the deceptive information—this time period
x; (column 2 in Table 5.4) ranged from 0 to 3 weeks.

Figure 5.2 plots y; against z;—Yyou can see that the studies
with bigger x; had smaller IQ effects on average.

1.0

Estimated Effect Size
0.5

0.0

1 2
Weeks of Prior Contact

Figure 5.2. Scatterplot of estimated effect size against weeks of prior
contact in the IQ meta-analysis. Radii of circles are proportional to
w; = V.1 (see column 4 in Table 5.4); fitted line is from weighted

regression of y; on x; with weights w;.
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Conditional Exchangeability

Evidently model (1) will not do here — it says that your
predictive uncertainty about all the studies is exchangeable
(similar, i.e., according to (1) the underlying study-level
effects 0, are like IID draws from a normal distribution),
whereas Figure 5.2 clearly shows that the z; are useful in
predicting the y;.

This is another way to say that your uncertainty about the
studies is not unconditionally exchangeable but

conditionally exchangeable given x
(Draper et al., 1993b).

In fact Figure 5.2 suggests that the y; (and therefore the 6;)
are related linearly to the z;.

Bryk and Raudenbush, working in the frequentist paradigm,
fit the following HM to these data:

indep

(bile, B,05) ~ N(a+Bzi,0;)  (underlying effects)
(wilor) P N (6, Vi) (data).  (32)

According to this model the estimated effect sizes y; are like
draws from a Gaussian with mean 6; and variance V;, the
squared standard errors from column 4 of Table 5.4—~here as
in model (1) the V; are taken to be known—and the 6;
themselves are like draws from a Gaussian
with mean a + Bz; and variance .

The top level of this HM in effect assumes, e.g., that the 5
studies with x = 0 are sampled representatively from {all
possible studies with x = 0}, and similarly for the other
values of x.

This (and the Gaussian choice on the top level) are
conventional assumptions, not automatically
scientifically reasonable—for example, if you know of some
way in which (say) two of the studies with x = 3 differ from
each other that's relevant to the outcome of interest, then
you should include this in the model as a study-level
covariate along with =z.
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An MLEB Drawback

Bryk and Raudenbush used MLEB methods, based on the
EM algorithm, to fit this model.

As in Section 5.2, this estimation method combines the two
levels of model (9) to construct a single likelihood for the
yi, and then maximizes this likelihood as usual in the ML
approach.

They obtained (a,B8) = (.407 £ .087,—.157 £+ .036) and
792 = 0, naively indicating that all of the study-level
variability has been “explained” by the covariate zx.

However, from a Bayesian point of view, this model is
missing a third layer:

(a,B,08) ~ pla,B,03)

(92'|Oé,5,0'92) in’C\IJep N((X—I—,B(LUZ—L%),O'QQ) (33)
(i) P N6, V).

(it will help convergence of the sampling-based MCMC
methods to make o« and 8 uncorrelated by | centering | the z;
at O rather than at 7).

As will subsequently become clear, the trouble with MLEB is
that in Bayesian language it assumes in effect that the
posterior for o7 is point-mass on the MLE. This is bad

(e.g., Morris, 1983) for two reasons:

e If the posterior for o7 is highly skewed, the mode will be a
poor summary; and

e \Whatever point-summary you use, pretending the posterior
SD for o2 is zero fails to propagate uncertainty about ag
through to uncertainty about «, 8, and the 6;.

The best way to carry out a fully Bayesian analysis of model
(10) is with MCMC methods.
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WinBUGS Implementation

| Rl . S|grna sigmatheta | J J
alpha ~ dnormi 0.0, ‘I.UE-S:] — : _![

beta ~ dnormi 0.0, 1.0E-6 }
tau theta ~ dgamma( 0.001, 0.001)

wbar <-mean({x ]}

for{iin1ni{

mufi]=-alpha +beta® {x[i]-xbar)
thetal i ]~ dnorm{ muli ], tau theta )
y[i ]~ dnorm( theta[ i ], tau[i]}

}
] =]
sigma theta <- 1.0/ sqr{ tau theta ) e

sigma theta

b et e e |
: T

T T
g0 a00
iteration

list{y=c{003,012 -014, 118 026 -006,-002,-032, 027,080,054 0.18,-0.02, 023,
-018,-0.06,0.30,0.07,-007),x=¢(2,3,3,0,0,3,3,3,0,1,0,0,1,2,3,3,1,2,3},
tau=c(84.0 46.3,359,7.19,7.34, 943,943 207,372,159 110,201,120, 11.9,
396,359,518 132,330 ),n=18)

For p(a, B,02) in model (10) I've chosen the usual WinBUGS

diffuse prior p(a)p(8)p(c7): since a and 3 live on the whole
real line I've taken marginal Gaussian priors for them with

mean 0 and precision 107°, and since p = % is positive I use

a M(0.001,0.001) prior for it.

Model (10) treats the variances V; of the y; as known (and
equal to the squares of column 4 in Table 5.4); I've
converted these into precisions in the data file (e.g.,

T = 01252 = 64.0).
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WinBUGS Implementation
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A burn-in of 1,000 (certainly longer than necessary) from
default initial values («, 3,79) = (0.0,0.0,1.0) and a
monitoring run of 10,000 yield the following preliminary
MCMC results.

Because this is a random-effects model we don’t expect
anything like IID mixing: the output for o behaves like an
AR; time series with p; = 0.86.

The posterior mean for «, 0.135 (with an MCSE of 0.002),
shows that a in model (10) and « in model (9) are not
comparable because of the recentering of the predictor «x
in model (10): the MLE of « in (9) was 0.41 + 0.09.
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WinBUGS Implementation
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But 5 means the same thing in both models (9) and
(10): its posterior mean in (10) is —0.161 4 0.002, which is
not far from the MLE —0.157.

Note, however, that the posterior SD for 3, 0.0396, is 10%
larger than the standard error of the maximum likelihood
estimate of 8 (0.036).

This is a reflection of the underpropagation of uncertainty
about oy in maximum likelihood mentioned on page 15.
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us-ample Monitor Tool
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node mean sd MC error2.5% median 97.5% start
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In these preliminary results oy has posterior mean
0.064 + 0.002 and SD 0.036, providing clear
evidence that the MLE g =0 is a

poOoor summary.

Note, however, that the likelihood for oy may be
appreciable in the vicinity of O in this case,
meaning that some sensitivity analysis with

diffuse priors other than N(0.001,0.001)—such as
U(0,c) for ¢ around 0.5—would be in order.
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When you specify node theta in the Sample Monitor
Tool and then look at the results, you see that
WinBUGS presents parallel findings with a single
click for all elements of the vector 6.

Some of the 8, are evidently
Mmixing better than others.
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The marginal density traces of the 6; look rather
like t distributions with fairly low degrees of
freedom (fairly heavy tails).
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node MC error2.5% median
theta[1] 007914 00667 0001621 -006158 008178 02083 1001 10000
theta[2] 003745 007771 0002503 -01787  -0.04117 0121 1001 10000
theta[3] 007873 00771 0002139 -02409 -007674 007068 1001 10000
theta[4] 04412 01206 0005198 02206 04379 0OBE7S 1001 10000
theta[5] 04088 01159 0004757 01802 O4117  OE283 1001 10000
thetalE] 006684 0068417 0001823 0195 0068695 006058 1001 10000
theta[7] 0.058633 006543 0001951 -01834  -0.08685 007543 1001 10000
theta[8] 009112 008347 0002333 02772 008547 0.0R1368 1001 10000
theta[9] 03942 01020 000442 018456 0308 0.5857 1001 10000
theta[10] 0.2915 009705 0003804 012668 02851 05119 1001 10000
theta[11] 0.42 01139 0004813 0199 04217 06MS5 1001 10000
theta[12] 03939 01095 0004472 01722 03971 05978 1001 10000
theta[13] 0.2387 0.09165 0.003086 0.05124 02429 04105 1001 10000
theta[14] 0.09989 008011 0.002044 -0.05295 009718 0.2684 1001 10000
theta[15]  -0.08512 0.07562 0.002023 -0.2462 -0.08189 0.05845 1001 10000
theta[16] -0.06751 0.07592 0.002041 -0.2161 -0.06628 0.08334 1001 10000
theta[17] 0.26809 007768 0.002718 01114 0.261 0.4162 1001 10000
theta[18] 0.08658 0.05889 0.001467 -0.03271 00869 02029 1001 10000
theta[19] -00535 007743 00020365 -0.2254 -0.0B507 0.08493 1001 10000
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Many of the 6, have posterior probability
concentrated near 0, but not all; 04,05,609,011,
and 61, are particularly large (looking back on
page 12, what's special about the
corresponding studies?).
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Some of the #; are not far from white noise;
others are mixing quite slowly.
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: _ B
node mean  sd MC error2.5% median 97.5%  start sample |5
muf1] 0.09231 004185 0001765 0.01142 009231 01736 1001 10000 E*8update Tool
mu[2] 008895 00527 0002071 0172 -00R524 003334 1001 10000 e |
mu[3] 008835 005827 0002071 0172 -008824 003334 1001 10000 :
muf4] 0.4143 009549 00047558 02314 04181 048304 1001 10000 i
mu[5] 0.4149 002549 0004759 02314 04151 05204 1001 10000
mu[g] 008895 00527 0002071 0172 -00R524 003334 1001 10000
muf7] 008835 005827 0002071 0172 -008824 003334 1001 10000
mu[g] 008898 00527 0002071 0172 -008524 003334 1001 10000
mu[9] 0.4149 002549 0004759 02314 04151 05204 1001 10000
muf10] 02536 006217 0003041 0.134 0.2567 03679 1001 10000
muf11] 0.4149 002549 0004759 02314 041591 058204 1001 10000

mu[12] 0.4149 0.09545 0.004759 02314 04191 05504 10071 10000
mu[13] 02536 0.08217 0.0030471 0.134 02857 03679 1001 10000
mu[14] 0.09231 004185 0001769 0.01142 009231 01736 10071 10000
mu[15] 008898 00527 0002071 -0172  -00BB24 0.03334 1001 10000
mu[16] -0.06898 0.0527 0002071 -0.172  -0.06824 0.03334 1001 10000
mu[17] 02536 0.08217 0.0030471 0.134 03873 1001 10000
mu[18] 009231 0.04185 0.001769 0.01142 Hode statisties

mu[19] -0.0889z 0.0827  0.002071 -0.172

[ sloix

node mean  sd MC error2.5% median 97.5%  start sample [
theta[1] 0.07914 00667 0.001621 -0.06158 005178 02083 1001 10000
theta[2] 0.03745 0.07771 0.002503 01787 -0.04117 0131 1001 10000
theta[3] 007873 0.0771  0.002132 02408 007674 0.07065 1001 10000
theta[4] 04412 01206 0.005198 02206 04379 06575 1004 10000
theta[5] 04085 01188 0.004757 01802 04117 06283 1001 10000
theta[B] -0.06684 0.06417 0.001823 -0.1915 -0.06685 0.06058 1001 10000
theta[7] -0.05633 0.06543 0.001951 -0.1834 005685 0.07543 1001 10000
theta[d] 0.09112 0.08347 0.002333 02772 -0.08547 006136 1001 10000
theta[3] 0.3942 01023 0.00442 01846 0393 08867 1001 10000
theta[10] 02915 009705 0003804 01266 0.2851 05118 1001 10000
theta[11]  0.42 0.1133  0.004513 0199 04217 06415 1001 10000
theta[12] 03833 01095 0004472 01722 03971 05878 1001 10000
theta[13] 0.2387 0.09166 0.003086 0.05124 02429 04105 1001 10000
theta[14]  0.09982 008011 0.002044 -0.05295 0.09718 0.2684 1001 10000
theta[15]  -0.08512 0.07569 0.002023 02462 -0.08189 0.05%45 1001 10000
theta[16]  -0.06751 0.07552 0.002041 02161 -0.06628 0.08384 1001 10000
theta[17] 02609 007768 0002718 01114 0.261 0.4162 1001 10000
theta[18]  0.08650 0.05889 0.001467 -0.03271 0.08696 0.2028% 1001 10000
theta[19]  -0.0695 007743 0.002035 -0.2254 -0.08907 0.08453 1001 10000

It's also useful to monitor the u; = a4+ B(x; — x),
because they represent an important part of the
shrinkage story with model (10).
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Shrinkage Estimation

In @ manner parallel to the situation with the
simpler model (1), the posterior means of the
underlying study effects 6, should be at least
approximately related to the raw effect sizes y;
and the u; via the shrinkage equation

E(0ily) = (1 — B;) yi + BiE(paly) ; (34)

Vi
Vi+og

here B, = and G2 is the posterior mean of o2.

This is easy to check in R:
> mu <- c( 0.09231, -0.06898, -0.06898, 0.4149, 0.4149, -0.06898, -0.06898,
-0.06898, 0.4149, 0.2536, 0.4149, 0.4149, 0.2536, 0.09231, -0.06898,
-0.06898, 0.2536, 0.09231, -0.06898 )

>y <-c(0.03, 0.12, -0.14, 1.18, 0.26, -0.06, -0.02, -0.32, 0.27, 0.80,
0.54, 0.18, -0.02, 0.23, -0.18, -0.06, 0.30, 0.07, -0.07 )

Vv

theta <- c( 0.08144, -0.03455, -0.07456, 0.4377, 0.4076, -0.0628,
-0.05262, -0.08468, 0.3934, 0.289, 0.4196, 0.3938, 0.2393, 0.1014,
-0.08049, -0.06335, 0.2608, 0.08756, -0.06477 )

\4

V<-1/ tau

\4

B.hat <- V/ (V + 0.06472 )

\"4

theta.approx <- ( 1 - B.hat ) * y + B.hat * mu
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The Shrinkage Story (continued)

> cbind( y, theta, mu, sigma.2, B.hat, theta.approx )

y theta mu V B.hat theta.approx
[1,] 0.03 0.08144 0.09231 0.015625 0.7923026 0.07936838
[2,] 0.12 -0.03455 -0.06898 0.021609 0.8406536 -0.03886671
[3,] -0.14 -0.07456 -0.06898 0.027889 0.8719400 -0.07807482
[4,] 1.18 0.43770 0.41490 0.139129 0.9714016 0.43678060
[65,] 0.26 0.40760 0.41490 0.136161 0.9707965  0.41037637
[6,] -0.06 -0.06280 -0.06898 0.010609 0.7214553 -0.06647867
[7,] -0.02 -0.05262 -0.06898 0.010609 0.72145563 -0.05533688
[8,] -0.32 -0.08468 -0.06898 0.048400 0.9219750 -0.08856583
[9,] 0.27 0.39340 0.41490 0.026896 0.8678369  0.39574956
[10,] 0.80 0.28900 0.25360 0.063001 0.9389541  0.28695551
[11,] 0.54 0.41960 0.41490 0.091204 0.9570199  0.42027681
[12,] 0.18 0.39380 0.41490 0.049729 0.9239015  0.39702447
[13,] -0.02 0.23930 0.25360 0.083521 0.9532511  0.24080950
[14,] 0.23 0.10140 0.09231 0.084100 0.9535580  0.09870460
[15,] -0.18 -0.08049 -0.06898 0.025281 0.8605712 -0.08445939
[16,] -0.06 -0.06335 -0.06898 0.027889 0.8719400 -0.06783002
[17,] 0.30 0.26080 0.25360 0.019321 0.8250843 0.26171609
[18,] 0.07 0.08756 0.09231 0.008836 0.6832663 0.08524367
[19,] -0.07 -0.06477 -0.06898 0.030276 0.8808332 -0.06910155

You can see that equation (11) is indeed a good
approximation to what's going on: the posterior means of
the 0; (column 3 of this table, counting the leftmost column
of study indices) all fall between the y; (column 2) and the
posterior means of the u; (column 4), with the closeness to

yi or E(uily) expressed through the shrinkage factor B,;.

Since 83 is small (i.e., most—but not quite all—of the
between-study variation has been explained by the covariate
x), the raw y; values are shrunken almost all of the way
toward the regression line a + 8(xz; — 7).
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Hierarchical Model
Selection: A Case Study

Case Study: In-home geriatric assessment
(IHGA). In an experiment conducted in the 1980s
(Hendriksen et al. 1984), 572 elderly people living

in @ number of villages in Denmark were
randomized, 287 to a control (C) group (who
received standard care) and 285 to an
experimental (E) group (who received standard
care plus IHGA: a kind of preventive medicine in
which each person’s medical and social needs were
assessed and acted upon individually).

One important outcome was the number of
hospitalizations during the two-year life
of the study (Table 4.1).

Table 4.1. Distribution of number of hospitalizations in the
IHGA study over a two-year period.

Number of Hospitalizations

Group 0 1 2 3 4 5 6 7 n Mean SD
Control 138 77 46 12 8 4 0 2| 287 0944 1.24
Experimental | 147 83 37 13 3 1 1 0] 285 0.768 1.01

Evidently IHGA lowered the mean hospitalization
rate (for these elderly Danish people, at least) by

(0.944 — 0.768) = 0.176, which is about a

100 (0'7%%4?4944) — 19% reduction from the

control level, a difference that's
large in clinical terms.

49



Modeling the IHGA Data

An off-the-shelf analysis of this experiment might
pretend (Model 0) that the data are Gaussian,

<C%|N(%<7%J ~ PV(QLCB‘T%) i =1,...,n¢,

(E]|:LLE70-%) ~ N(:U“E'7O-%> ,J=1,...,ng, (35)

and use the ordinary frequentist
two-independent-samples ‘“z-machinery’’ :

rosalind 15> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> C <- c( rep( 0, 138 ), rep( 1, 77 ), rep( 2, 46 ),
rep( 3, 12 ), rep( 4, 8 ), rep( 5, 4 ), rep( 7, 2 ) )

> print( n.C <- length( C ) )

[1] 287 # sample size in the control group
> mean( C )

[1] 0.9442509 # control group mean

> sqrt( var( C ) )

[1] 1.239089

++

control group

# standard deviation (SD)
> table( C )
0O 1 2 3457 # control group
138 77 46 12 8 4 2 # frequency distribution
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Analysis of Model O

> E <- c( rep( 0, 147 ), rep( 1, 83 ), rep( 2, 37 ),
rep( 3, 13 ),rep( 4, 3 ), rep( 5, 1), rep( 6, 1) )

> print( n.E <- length( E ) )
[1] 285 # sample size in the
# experimental group
> mean( E )
[1] 0.7684211 # experimental group mean
> sqrt( var( E ) )
[1] 1.008268 # experimental group SD

> table( E )

0O 1

2 3456 # experimental group
147 83 37 13 3 1 1

# frequency distribution

> print( effect <- mean( E ) - mean( C ) )

[1] -0.1758298 # mean difference ( E - C )

> effect / mean( C )

[1] -0.1862109 # relative difference (E-C ) / C
> SE.effect <- sqrt( var( C ) / n.C + var( E ) / n.E )

[1] 0.09442807 # standard error of the difference

> print( CI <- c( effect - 1.96 * SE.effect,
effect + 1.96 * SE.effect ) )

[1] -0.3609 0.009249 # the 957, confidence interval from
# model O runs from -.36 to +.01
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Deficiencies of Model O

The frequentist analysis of Model O is equivalent
to a Bayesian analysis of the same model with
diffuse priors on the control and experimental
group means and SDs (uc,oc, ug,0r), and is

summarized in Table 4.2.

Table 4.2. Summary of analysis of Model O.

Posterior
Mean SD 95% Interval

—0.176 0.0944 (—0.361,0.009)

Treatment effect
(ke — pe)

However, both distributions have long right-hand
tails; in fact they look rather Poisson.

0.8
0.8

0.6
0.6

Control Experimental

Density
0.4
Density
0.4

0.2
0.2

0.0
0.0

0 2 4 6 0 2 4 6
Days Hospitalized Days Hospitalized

Figure 4.1. Histograms of control and experimental numbers
of hospitalizations.
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4.1.1 Poisson Fixed-Effects Modeling

R code to make the histograms:

> x11( ) # to open a
#  graphics window
> par( mfrow = c( 1, 2 ) ) # to plot two histograms

> hist( C, nclass = 8, probability =
xlab = ’Days Hospitalized’, ylab
xlim = ¢c( 0, 7 ), ylim = c( O, O.

’Density’,
) )

o I A

> text( 4, 0.4, ’Control’ )

> hist( E, nclass = 8, probability = T,
xlab = ’Days Hospitalized’, ylab = ’Density’,
xlim = ¢c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Experimental’ )

So I created a classicBUGS file called poissonl.bug
that looked like this:

model poissonl;
const
n.C = 287, n.E = 285;
var
lambda.C, lambda.E, C[ n.C ], E[ n.E ], effect;
data C in "poisson-C.dat", E in "poisson-E.dat";

inits in "poissonl.in";
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Initial Poisson Modeling (continued)

lambda.C ~ dgamma( 0.001, 0.001 );
lambda.E ~ dgamma( 0.001, 0.001 );

for (i in 1:n.C ) {

Cl i 1 ~ dpois( lambda.C );
}
for ( j in 1:n.E ) {

E[ j 1 ~ dpois( lambda.E );
}

effect <- lambda.E - lambda.C;

poissonl.in initializes both Ao and Ag to 1.0; the

(0.001,0.001) priors for Ao and Ag are chosen (as

usual to create diffuseness) to be flat in the region
in which the likeltihood is appreciable:

> sqrt( var( C ) / n.C )
[1] 0.07314114
> sqrt( var( E ) / n.E )
[1] 0.05972466

> c( mean( C ) - 3.0 * sqrt( var( C ) / n.C ),
mean( C ) + 3.0 * sqrt( var( C ) / n.C ) )
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Initial Poisson Modeling (continued)

[1] 0.7248275 1.1636743

> c( mean( E ) - 3.0 * sqrt( var( E ) / n.E ),
mean( E ) + 3.0 * sqrt( var( E ) / n.E ) )

[1] 0.5892471 0.9475950
> lambda.grid <- seq( 0.01, 2.0, 0.01 )

> plot( lambda.grid, 0.001 * dgamma( lambda.grid, 0.001 ),
type = ’1’, xlab = ’Lambda’, ylab = ’Density’ )

The likelihood under the Gaussian model is
concentrated for Ao from about 0.7 to 1.2, and
that for Ap from about 0.6 to 1; you can see from
the plot that across those ranges the
[(0.001,0.001) prior is essentially constant.

0.00010

0.00008

0.00006

Density

0.00004

0.00002

0.0

0.0 0.5 1.0 15 2.0

Lambda

Figure 4.2. The (0.001,0.001) distribution in the region in
which the likelihoods for Ao and Ag are appreciable.
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WinBUGS Implementation
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The screendump above presents part of the

results of fitting the 2-independent-samples

additive Poisson model at the top of page 8

in WinBUGS.
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2

three main quantities of interest.
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WinBUGS Implementation (continued)
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A monitoring run of 8,000 reveals that the effect
parameter in the 2-independent-samples
Poisson model is behaving like white noise, so
that already with only 8,000 iterations the
posterior mean has a Monte Carlo standard error
of less than 0.001.
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Initial Poisson Modeling (continued)

Thus a burn-in of 2,000 and a monitoring run of
8,000 yields good MCMC diagnostics and
permits a comparison between model 0 (Gaussian)
and model 1 (Poisson), as in Table 4.3.

Table 4.3. Comparison of inferential conclusions
from models O and 1.

Ao Posterior Posterior Central 95%
Model Mean SD Interval
Gaussian 0.944 0.0731 (0.801,1.09)
Poisson 0.943 0.0577 (0.832,1.06)
AE Posterior Posterior Central 95%
Model Mean SD Interval
Gaussian 0.768 0.0597 (0.651,0.885)
Poisson 0.769 0.0521 (0.671,0.875)
A = \g — Mo | | Posterior Posterior Central 95%
Model Mean SD Interval
Gaussian -0.176 0.0944 (—0.361,0.009)
Poisson -0.174 0.0774  (—0.325,-0.024)

The two models produce almost identical point
estimates, but the Poisson model leads to
sharper inferences (e.g., the posterior SD for the
treatment effect A = A\ — A¢ is 22% larger in
model 0 than in model 1).
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Additive and
Multiplicative Treatment Effects

This is the same point we noticed with the NB10
data—when a location parameter is the only thing
at issue, the Gaussian is a conservative modeling
choice (intuitively, the Poisson gains its “extra
accuracy’ from the variance and the mean being
equal, which permits second-moment information
to help in estimating the X\ values along with the
usual first-moment information).

Both the Gaussian and Poisson models so far
implicitly assume that the treatment effect
iIs additive:

EZC+ effect, (36)

where = means is stochastically equal to; in other
words, apart from random variation the effect of
the IHGA is to add or subtract a constant to or
from each person’s underlying rate of
hospitalization.

However, since the outcome variable is
non-negative, it is plausible that a better model
for the data is

EZ (1 + effect) C. (37)
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Additive vs. Multiplicative Effect

Here the treatment effect is multiplicative—in
other words, apart from random variation the
effect of the IHGA is to multiply each person’s
underlying rate of hospitalization by a constant
above or below 1.

A qgplot of the control and experimental outcome
values can in some cases be helpful in choosing
between additive and multiplicative models:

> CEqq <- qgplot( C, E, plot =F )
> table( CEqq$y, CEqqg$x )

Interpolated C values

00.965 1 1.5 2 2.82 3 3.91 4 4.965 6.99 7

0 137 1 9 0 O 00 00 00 00

1 0 0 66 1 16 00 00 00 00

2 0 O 0 0 29 17 00 00 00
E3 O O 0 0 O 0 4 17 10 00
4 O O 0 0 O 00 00 03 00

5 0 O 0 0 O 00 00 00 10

6 O O 0 0 O 00 00 00 01

> symbols( c( 0, 0.964798, 1, 1, 1.5, 2, 2, 2.823944, 3, 3,
3.908447, 4, 4.964813, 5, 6.985962, 7 ), c( rep( 0, 3 ),
rep( 1, 3 ), rep( 2, 3 ), rep( 3, 4 ), 4, 5, 6 ),
circles = ¢( 137, 1, 9, 66, 1, 16, 29, 1, 7, 4, 1, 7, 1,
3, 1, 1), xlab = ’C’, ylab E? )

N g
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Additive vs. Multiplicative Effect

> abline( 0, 1 ) # E = C (no effect)
> abline( 0, 0.793, 1ty = 2 ) # E=0.816 C
# (multiplicative)
> abline( -0.174, 1, 1ty = 3 ) # E=C - 0.174 (additive)

0 2 4 6

Figure 4.3. QQplot of E versus C values, with the radii of
the plotted circles proportional to the number of observations
at the indicated point. The solid line corresponds to no
treatment effect, the small dotted line to the best-fitting

multiplicative model (FE st 0.816 C), and the large dotted line
to the best-fitting additive model (E st C —0.174).

Here, because the Poisson model has only one
parameter for both location and scale, the
multiplicative and additive formulations fit equally
well, but the multiplicative model generalizes
more readily (see below).
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A Multiplicative Poisson Model

A simple way to write the multiplicative model is

to re-express the data in the form of a regression

of the outcome y on a dummy variable x which is

1 if the person was in the experimental group and
O if he/she was in the control group:

i |1 2 ... 287|288 289 .- 572
x |0 0O - 0 | 1 1 - 1
vi|1l 0O -~ 2] 0 3 ... 1

Then for:=1,...,n =572 the
multiplicative model can be written
(yi 1N) P Poisson()\;)
log(N;) = 70+ 7z; (38)
(’yo, ’71) ~ diffuse
In this model the control people have

log(X;)) =70 +71(0) =10, e, Ac=¢€", (39)
and the experimental people have

l0g(A;) Y0 +71(1) =7+, ie.,
A\p = VOV — 7071 — Aoel. (40)

Now you may remember from basic Taylor series
that for ;1 not too far from O

el =1 +717 (41)
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A Multiplicative Poisson Model

so that finally (for ~; fairly near 0)

Ap = (14+71)Ac, (42)

which is a way of expressing equation (3) in
Poisson language.

Fitting this model in BUGS is easy:

model poisson2;

const

n = 572;

var

gamma.0, gamma.l, lambdal n ], x[ n ], y[ n ], lambda.C,
lambda.E, mult.effect;

data x in "poisson-x.dat", y in "poisson-y.dat";
inits in "poisson2.in";

{

gamma.0 ~ dnorm( 0.0,
gamma.l ~ dnorm( 0.0,

1.0E-4 ); # flat priors for
1.0E-4 ); # gamma.0 and gamma.l
for (i in 1:n ) {

log( lambdal i ] ) <- gamma.0 + gamma.l * x[ i ];
y[ i 1 7 dpois( lambdal i ] );

}

lambda.C <- exp( gamma.O );
lambda.E <- exp( gamma.0 + gamma.l );
mult.effect <- exp( gamma.l );
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WinBUGS Implementation (continued)

00, gamma.1

gamma.0

| st

—
]
Il
=

gamma. 1™ xi]
Y[ ]~ dpois( lambda[

log lambdali] ) <- gamma.0 +

1)

)

lambda E = exp{ gamma.0 + gamma.

lambda.C =- expl gamma.l )
mult.effect =- expl gamma.1 )

0000 | i [ |

4

The multiplicative Poisson model (11) takes
longer to run—2,000 burn-in iterations now take

but st
'l see below.

0O PC GHz—

about 4 seconds at 2

exhi

IXIiNng, as we

its fairly good m
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WinBUGS Implementation (continued)

mult.effect

T T T
9350 9300 9950
iteration

mult.effect sample; 10000

SN

T T T T
0.4 0E ng 1.0

T
S000
teration

‘ node mean  sd MC error2 5% median 97.5% start sample
mult.effect 0.85138 007369 0.001146 06785 0.8109 05683 1 10000

FOFS-o
oar
o8t
orr
06}

T T T T
401 2500 5000 7500
iteration

A total of 10,000 iterations (the chain started
essentially in equilibrium, so the burn-in can be
absorbed into the monitoring run) reveals that the
multiplicative effect parameter ¢71 in model
(11) behaves like an ARq series with p; = 0.5, but
the Monte Carlo standard error for the posterior
mean is still only about 0.001 with a run of
this length.
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Additive versus Multiplicative Fit

A burn-in of 2,000 and a monitoring run of 8,000
again yields good MCMC diagnostics and
permits a comparison between the additive and
multiplicative Poisson models, as in Table 4.4.

Table 4.4. Comparison of inferential conclusions
from the additive and multiplicative Poisson models.

AC Posterior Posterior Central 95%
Model Mean SD Interval
additive 0.943 0.0577 (0.832,1.06)
multiplicative 0.945 0.0574 (0.837,1.06)
AE Posterior Posterior Central 95%
Model Mean SD Interval
additive 0.769 0.0521 (0.671,0.875)
multiplicative 0.768 0.0518 (0.671,0.872)
effect Posterior Posterior Central 95%
Model Mean SD Interval
additive -0.174 0.0774 (—0.325,-0.024)

multiplicative | -0.184 0.0743 (—0.324,-0.033)

With this model it is as if the experimental
people’s average underlying rates of hospitalization
have been multiplied by 0.82,
give or take about 0.07.

The additive and multiplicative effects are similar
here, because both are not too far from zero.
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Extra-Poisson Variability

However, none of this has verified that the
Poisson model is reasonable for these data—the
histograms show that the Gaussian model is clearly

unreasonable, but the diagnostic plots in WinBUGS
and CODA only check on the adequacy of the
MCMC sampling, not the model.

In fact we had a good clue that the data are not
Poisson back on page 2: as noted in part 2, the
Poisson(\) distribution has mean A and also
variance A—in other words, the
variance-to-mean-ratio (VTMR) for the Poisson
is 1. But

> var( C ) / mean( C )
[1] 1.62599
> var( E ) / mean( E )
[1] 1.322979

I.e., the data exhibit extra-Poisson variability
(VTMR > 1).

This actually makes good sense if you think
about it, as follows.

The Poisson model assumes that everybody in the
control group has the same underlying rate Ao
of hospitalization, and similarly everybody in the

experimental group has the same rate \g.
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Unobserved Predictor Variables

In reality it's far more reasonable to think that

each person has his/her own underlying rate of

hospitalization that depends on baseline health
status, age, and various other things.

Now Hendriksen forgot to measure (or at least

to report on) these other variables (he may have

hoped that the randomization would balance them
between C and E)—the only predictor we have is

x, the experimental status dummy variable—so
the best we can do is to lump all of these other
unobserved predictor variables together into a

kind of *“error’ term e.

This amounts to expanding the second Poisson
model (11) above: for:i=1,...,n =572
the new model is
(yi 1N) P Poisson()\;)
log(A;)) = Yo+ m7z+e; (43)
ei ~ N(0,07)

(70,’)/1,0'62) ~ diffuse.
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Random-
Effects Poisson Regression

The Gaussian choice for the error distribution is
conventional, not dictated by the science of the
problem (although if there were a lot of
unobserved predictors hidden inside the e; their
weighted sum would be close to normal by the
Central Limit Theorem).

Model (16) is an expansion of the earlier model
(11) because you can obtain model (11) from (16)
by setting ¢2 = 0, whereas with (16) we're letting

o2 vary and learning about it from the data.

The addition of the [random effects|e; to the
model is one way to address the extra-Poisson
variability: this model would be called a lognormal
mixture of Poisson distributions (or a random
effects Poisson regression (REPR) model)
because it's as if each person’s A is drawn from a
lognormal distribution and then his/her number of
hospitalizations y is drawn from a Poisson
distribution with his/her A, and this mixing process
will make the variance of y
bigger than its mean.
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WinBUGS Implementation

The new WinBUGS model is

gamma.0 ~ dnorm( 0.0, 1.0E-4 )
gamma.l ~ dnorm( 0.0, 1.0E-4 )
tau.e ~ dgamma( 0.001, 0.001 )

for (i in 1:n ) {

el i ] ~ dnorm( 0.0, tau.e )

log( lambdal i ] ) <- gamma.0 + gamma.l * x[ i ] +
el 1 ]

y[ i 1 ~ dpois( lambdal i ] )

}

lambda.C <- exp( gamma.O )

lambda.E <- exp( gamma.0 + gamma.l )
mult.effect <- exp( gamma.l )
sigma.e <- 1.0 / sqrt( tau.e )

I again use a diffuse I (¢,¢) prior (with e = 0.001)
for the precision 7. of the random effects.
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WinBUGS Implementation (continued)

gamma.0 ~ dnorm{ 0.0, 1.0E-4)
gamma.1 ~ dnorm( 0.0, 1.0E-4)
taue ~ dgammal 0.001, 0.001}

for{iintnj{

gli]~dnom({ 0.0, taue)
logl lambda[i]) =- gamma.0+g
Y[ ]~ dpois{ lambdali])

}

lambda.C =- expl gamma.0 )
lambda.E =- exp( gamma.0 + gar
mult effect = expl gamma.1)
sigma.e =- 1.0/ sgri tau.e )

_—k_—\_—\_—\_—\_—\_—\_l:l_l:l_l:l_l:l_l:l_l:l_IZI_D_I'_AJ_I\J_—'L_—\_D_l:l_l:l_U"l_r\J_—k_—\_l:l_l:l_l:l_D

undefined real result

UpdaterLoglin Updater1 Mode  [00000347H]
canst ARRAY 1 OF REAL
deriv RESL
EXR REAL
fter INTEGER
Aambda ARRAY 1 OF REAL
mode RESL
U REAL
oldStep REAL
frec REAL
i ARRAY 1 OF REAL
FES INTEGER
lope ARRAY 1 OF REAL
step REAL
tau REAL
pdater UpdaterLoglin Updster

UpcisterLoglin Upclster! MCMC [D0000E15H]
wconst ARRAY 1 OF REAL
detiv REAL
& REAL
EXR REAL
i INTEGER,

k INTEGER
lambda ARRAY 1 OF REAL
Jambdal

Jambdak

Jeft

leftStar

logFleft

JogFmode

logFright

mocle

mu

ald% alue

overRelax

= Elements &
(g}

1.0

500

= Elements &
0o

1.0

0o

20

= Elementz &
1}

=» Elements &
0o

1.0
[011E69B20H]

= Elements &
1.8645640891 07 856E-306
7 691969051144499E-304
5.403121246301695E-312
397396732

-2108276736

= Elements &
7.709770565349526E-304
1.864422851491476E-306
3.206566496691 S46E-149
1.86543869331 667 9E-306
7 44565901361 7OS7E-310
2751701282467 31E-315
1.86:55959204119956E-306
1.864569521417031E-306
1.0

-0.1689863058575515
FALSE
1.243250043656637E-96
£.519693948250807E-315
1.007893917516143E-320

listf gamma.0 = 0.0, gamma.1 =00, taue=10)

7 BOS085082663637E-304
GraphStochastic Node [01116E30H]
ARRAY 1 OF REAL =» Elements &
INTEGER a

With a model like that in equation (16), there are n random
effects ¢; that need to be sampled as nodes in the graph (the
e; play the role of auxiliary variables in the MCMC) along
with the fixed effects (y0,7v1) and the variance parameter o2.

In earlier releases of the software, at least, this made it more
crucial to give WinBUGS good starting values.

Here WinBUGS release 1.3 has figured out that random draws

like | 1.66 - 107316 | result from the generic (and quite poor)
initial values (49,71, 7) = (0.0,0.0,1.0) and has refused to
continue sampling.
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Sensitivity to Initial VValues

wWarning | WwinBUGS can fail, particularly in
random-effects models, when you give it initial
values that are not very close to the final posterior
means; an example in release 1.3 is the REPR
model (16) on the IHGA data with the ‘“‘generic”
starting values (vg,7v1,7e) = (0.0,0.0,1.0).

When this problem arises there are two ways out in
WinBUGS: trial and error, or a calculation
(see below).

NB MLwiN does not have this problem—it gets its starting
values from maximum likelihood (the mode of the
likelihood function is often a decent approximation to the
mean or mode of the posterior).

Technical note. To get a decent starting value for 7. in
model (16) you can calculate as follows: renaming the
random effects 7; to avoid confusion with the number e,
(1) V(yi) = VIE(yi [ni)] + E[V (yi|m)], where
(2) (yi|mi) ~ Poisson (e tntm), so
E(yi|ni) = V(yi|n;) = ert7@+%. Then (3)
VIE(y; [ni)] = V (ertmetn) = e20etmz)y/ (en) and
E[V (yi |n:)] = E(e@tnetn) = entneE(en). Now (4) e is
lognormal with mean 0 and variance 062 on the log scale, so

2

E(e") = e3% and V(e™) = e (e — 1), yielding finally
V(y:) = e2(ot+mnz)+30? + erotmzitor (eaf _ 1). (5) Plugging in
x; = 0 for the C' group, whose sample variance is 1.54, and
using the value v = —0.29 from runs with previous models,

gives an equation for ag that can be solved numerically,
yielding ¢2 = 0.5 and . = 2.

e
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WinBUGS Implementation (continued)
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the error message (“Rejectionl” ) in the lower left

corner is more discreet.
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WinBUGS Implementation (continued)

lambicia C

T T T
5850 5900 5950
iteration

lambda.C
lambida C sample: 5000

04 06 03 1.0

T
4000

iteration

node mean sd MC error2.5% median 97.5% start
lambda.C 07494 006519 0002959 06262 07484 08309 1001

lammbicla.C
O9F cn

o8 : :iiln-... ................... -

U
06p-""
T T
1201 2000

With a better set of initial
values—(v0,v1,7) = (—0.058,—-0.21,2.0), obtained from (a)
the earlier Poisson models (in the case of the regression
parameters ;) and (b) either a calculation like the one on
the bottom of page 29 or trial and error—WinBUGS is able to
make progress, although this model takes a fairly long time
to fit in release 1.4: a burn-in of 1,000 takes 11 seconds at
1.0 PC GHz (the code runs about twice as fast in release 1.3
for some reason).

A monitoring run of 5,000 iterations reveals that the random
effects make everything mix more slowly: \c (this page)
and Ag and the multiplicative effect (next page) all behave

like AR; series with p1 = 0.7, 0.5, and 0.6, respectively.
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WinBUGS Implementation (continued)

Eﬂs-ample Monitor Tool

lambda E

T T T
830 5900 2950
iteration

lambda E

4000
iteration

node mean  sd MC error2.5% median 97.5% start
larbda.E 06099 005654 0.002217 05022 0.609 07242 1001

lambda E

T T T
1201 2000 4000
tteration

mult effect

T T T
4830 2800 2830
tteration

mult effect

T
4000
iteration

node mean  sd MC error2 5% median 97.5% start samplfe
mult.effect 08186 0.09227 0002773 06549 08133 1.018 1001 5000

mult effect

T T
1201 2000
tteration
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WinBUGS Implementation (continued)

sigma.e

AL T T T
5850 5900 5350
iteration

sigma e sample: S000

T T T
04 06 0g

node mean  sd MC error2.5% median 97.5% start sample
sigma.e 06813 007453 0005182 05361 06778 08314 1001 5000

Learning about o, in this model is slow: its autocorrelation
function is that of an AR; with a high value of p; (equation
(55) on page 76 of part 3 of the lecture notes gives
p1 = 0.92).

The MCSE of the posterior mean for o, based on 5,000
draws is 0.005182—to get this down to (say) 0.001 I need
to increase the length of the monitoring run by a factor of

(0'890501182)2 = 26.9, meaning a total run of about

(26.9)(5,000) = 134,000 iterations (this takes about half an
hour at 1 PC GH2z).

76



WinBUGS Implementation (continued)

Sigma e —

T T T
134350 134400 134450
itetation

T
100000

node mean  sd MC error2.5% median 97.5% start sample
sioma.e 06747 007443 0001114 06272 06748 08219 501 134000

sigma.e
UR=R

ey’ || [T )

0ef.
05t

T T T
5861 50000 100000
iteration

There is clear evidence that o is far from 0—its
posterior mean and SD are estimated as 0.675
(with an MCSE of about 0.001 after 134,000

iterations) and 0.074, respectively—meaning that
the model expansion from (11) to (16) was

amply justified.
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REPR Model Results

(Another way to achieve the goal of describing the
extra-Poisson variability would be to fit different
negative binomial distributions to the observed

counts in the C and E groups—the negative
binomial is a gamma mixture of Poissons, and
the gamma and lognormal distributions often fit
long-tailed data about equally well, so you would
not be surprised to find that the two approaches
give similar results.)

Table 4.5. Comparison of inferential conclusions about the
multiplicative effect parameter e’ from the fixed-effects and
random-effects Poisson regression models.

Posterior Posterior Central 95%
Model Mean SD Interval

FEPR 0.816 0.0735 (0.683,0.969)
REPR 0.830 0.0921 (0.665,1.02)

Table 4.5 compares the REPR model inferential results with
those from model (11), which could also be called a
fixed-effects Poisson regression (FEPR) model.

The “error” SD o, has posterior mean 0.68, give or take
about 0.07 (on the log(\) scale), corresponding to
substantial extra-Poisson variability, which translates into
increased uncertainty about the multiplicative effect
parameter e.

I'll argue later that the REPR model fits the data well, so
the conclusion I'd publish from these data is that IHGA
reduces the average number of hospitalizations per two years
by about 100 (1 — 0.083)% = |17% | give or take about 9%

(ironically this conclusion is similar to that from the Gaussian
model, but this is coincidence).
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