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Outline

(1) An axiomatization of statistics (Draper 2011).

(2) Foundations of probability seem (to me) to be secure:
(RT Cox, 1946) Principles → Axioms → Theorem:

Logical consistency in uncertainty quantification →
justification of Bayesian reasoning.

(3) Foundations of inference, prediction and decision-making not yet
secure: fixing this would yield a Theory of Applied Statistics,

which we do not yet have; two remaining challenges:

(a) Cox’s Theorem doesn’t require You to pay attention to a basic
scientific issue: how often do You get the right answer?

(b) Too much ad hockery in model specification: still lacking
Principles → Axioms → Theorems.

(4) A Calibration Principle fixes 3 (a) via Bayesian decision theory.

(5) The Modeling-As-Decision Principle, the Prediction Principle
and the Decision-Versus-Inference Principle help with 3 (b).
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An Example, to Fix Ideas

Example (Krnjajić, Kottas, Draper [KKD] 2008): In-home geriatric

assessment (IHGA). In an experiment conducted in the 1980s
(Hendriksen et al. 1984), 572 elderly people, representative of P =
{all non-institutionalized elderly people in Denmark}, were

randomized, 287 to a control (C ) group (who received standard
health care) and 285 to a treatment (T ) group (who received standard
care plus IHGA: a kind of preventive medicine in which each person’s
medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during
the two-year life of the study:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

Let µC and µT be the mean hospitalization rates (per two years) in P
under the C and T conditions, respectively.

Here are four statistical questions that arose from this study:
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The Four Principal Statistical Activities

Q1: Was the mean number of hospitalizations per two years in the

IHGA group smaller than that in control by an amount that was large

in practical terms?
[
description involving

(
ȳT−ȳC

ȳC

)]
Q2: Did IHGA reduce the mean number of hospitalizations per two

years by an amount that was large in statistical terms?[
inference about

(
µT−µC

µC

)]
Q3: On the basis of this study, how accurately can You predict the
total decrease in hospitalizations over a period of N years if IHGA

were implemented throughout Denmark? [prediction]

Q4: On the basis of this study, is the decision to implement IHGA
throughout Denmark optimal from a cost-benefit point of view?

[decision-making]

These questions encompass almost all of the discipline of statistics:
describing a data set D, generalizing outward inferentially from D,
predicting new data D∗, and helping people make decisions in the
presence of uncertainty (I include sampling/experimental design

under decision-making; omitted: data quality assurance (QA), ...).
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An Axiomatization of Statistics

1 (definition) Statistics is the study of uncertainty: how to measure
it well, and how to make good choices in the face of it.

2 (definition) Uncertainty is a state of incomplete information
about something of interest to You (Good, 1950: a generic person

wishing to reason sensibly in the presence of uncertainty).

3 (axiom) (Your uncertainty about) “Something of interest to
You” can always be expressed in terms of propositions: true/false

statements A,B, . . .

Examples: You may be uncertain about the truth status of

• A = (Barack Obama will be re-elected U.S. President in 2012), or

• B = (the in-hospital mortality rate for patients at hospital H
admitted in calendar 2010 with a principal diagnosis of heart attack

was between 5% and 25%).

4 (implication) It follows from 1 – 3 that statistics concerns Your
information (NOT Your beliefs) about A,B, . . .
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Axiomatization (continued)

5 (axiom) But Your information cannot be assessed in a vacuum:
all such assessments must be made relative to (conditional on) Your
background assumptions and judgments about how the world works

vis à vis A,B, . . . .

6 (axiom) These assumptions and judgments, which are themselves a
form of information, can always be expressed

in a set B of propositions.

Examples of B: In the IHGA study, based on the experimental

design, B would include the propositions

• (Subjects were representative of [like a random sample from] P),

• (Subjects were randomized into one of two groups, treatment
(standard care + IHGA) or control (standard care)).

7 (definition) Call the “something of interest to You” θ; in
applications θ is often a vector (or matrix, or array) of real numbers,
but in principle it could be almost anything (a function, an image of

the surface of Mars, a phylogenetic tree, ...).
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Axiomatization (continued)

IHGA example: θ = mean relative decrease
(

µT−µC
µC

)
in hospitalization rate in P.

8 (axiom) There will typically be an information source (data set) D
that You judge to be relevant to decreasing Your uncertainty about θ;
in applications D is often again a vector (or matrix, or array) of real
numbers, but in principle it too could be almost anything (a movie,

the words in a book, ...).

9 (implication) The presence of D creates a dichotomy:

• Your information about θ {internal, external} to D.

(People often talk about a different dichotomy: Your information
about θ {before, after} D arrives (prior, posterior), but temporal

considerations are actually irrelevant.)

10 (implication) It follows from 1 – 9 that statistics concerns itself
principally with five things (omitted: description, data QA, ...):

(1) Quantifying Your information about θ internal to D (given B),
and doing so well (this term is not yet defined);
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Foundational Question

(2) Quantifying Your information about θ external to D (given B),
and doing so well;

(3) Combining these two information sources (and doing so well) to
create a summary of Your uncertainty about θ (given B) that includes
all available information You judge to be relevant (this is inference);

and using all Your information about θ (given B) to make

(4) Predictions about future data values D∗ and

(5) Decisions about how to act sensibly, even though Your
information about θ may be incomplete.

Foundational question: How should these tasks be accomplished?

This question has two parts: probability and statistics; in my view, the
probability foundations are secure, but the statistics foundations still

need attending to.

Let’s look first at the probability foundations.
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Theory of Probability: Kolmogorov

From the 1650s (Fermat, Pascal) through the 18th century (Bayes,
Laplace) to the period 1860–1930 (Venn, Boole, von Mises), three

different approaches for how to think about uncertainty
quantification — classical, Bayesian, and frequentist probability —
were put forward in an intuitive way, but no one ever tried to prove a

theorem of the form {given these premises, there’s only one sensible
way to quantify uncertainty} until Kolmogorov, de Finetti, and

RT Cox.

— Kolmogorov (1933): following (and rigorizing) Venn, Boole and
von Mises, probability is a function on (possibly some of) the subsets

of a sample space Ω of uncertain possibilities, constrained to obey
some reasonable axioms; this is excellent, as far as it goes, but many

types of uncertainty cannot (uniquely, comfortably) be fit
into this framework (examples follow).

Kolmogorov was trying to make precise the intuitive notion of
repeatedly choosing a point at random in a Venn diagram and asking
how frequently the point falls inside a specified set, i.e., his concept

of probability had a repeated-sampling, frequentist character:
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Frequentist Probability: Kolmogorov

“The basis for the applicability of the results of the mathematical theory of
probability to real ‘random phenomena’ must depend on some form of the
frequency concept of probability, the unavoidable nature of which has been

established by von Mises in a spirited manner.”

∗ Example: You’re about to roll a pair of dice and You regard this

dice-rolling as fair, by which You mean that (in Your judgment) all
62 = 36 elemental outcomes in Ω = {(1, 1), (1, 2), . . . , (6, 6)} are

equally probable; then the Kolomogorov probability of snake eyes
((1, 1)) exists and is unique (from Your fairness judgment),

namely 1
36 ; but

∗ Example: You’re a doctor; a new patient presents saying that he

may be HIV positive; what’s the Kolmogorov probability that he is?

What’s Ω? This patient is not the result of a uniquely-specifiable
repeatable “random” process, he’s just a guy who walked into Your

doctor’s office, and — throughout the repetitions of whatever
repeatable phenomenon anyone might imagine — his HIV status is

not fluctuating “randomly”: he’s either HIV positive or he’s not.
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Theory of Probability: de Finetti

The closest You can come to making Kolmogorov’s approach work
here is to imagine the set Ω of all people {similar to this patient in

all relevant ways} and ask how often You’d get an HIV-positive
person if You repeatedly chose one person at random from Ω, but to
make this operational You have to specify what You mean by “similar

to, in all relevant ways,” and if You try to do this You’ll notice that
it’s not possible to do so uniquely (in such a way that all other

reasonable people would unanimously agree with You).

— de Finetti (1937): rigorizing Bayes, probability is a quantification
of betting odds about the truth of a proposition, constrained to obey
axioms guaranteeing coherence (absence of internal contradictions);
this is more general than Kolmogorov — in fact, it’s as general as

You can get: any statement about sets can be expressed in terms of
propositions — but betting odds are not fundamental to science.

(de Finetti proved a theorem that’s equivalent to the one developed
by Cox; if You prefer, You can get to the same place (probability as an
operator on propositions of uncertain truth status) with de Finetti’s

betting primitive, but (for me) science is about information,
not betting.)
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Theory of Probability: RT Cox

— RT Cox (1946): following Laplace, probability is a quantification
of information about the truth of one or more propositions,

constrained to obey axioms guaranteeing internal logical consistency;
this is both fundamental to science and as general as You can get.

Cox’s goal was to identify what basic rules pl(A|B) — the plausibility
(weight of evidence in favor) of (the truth of) A given B — should

follow so that pl(A|B) behaves sensibly, where A and B are
propositions with B assumed by You to be true and the truth status of

A unknown to You.

He did this by identifying a set of principles making operational the
word “sensible” (Jaynes, 2003):

• Suppose You’re willing to represent degrees of plausibility by real
numbers (i.e., pl(A|B) is a function from propositions A and B to <);

• You insist that Your reasoning be logically consistent:

— If a plausibility assessment can be arrived at in more than one
way, then every possible way must lead to the same value.
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Cox’s Principles and Axioms

— You always take into account all of the evidence You judge to be
relevant to the plausibility assessment under consideration (this is the

Bayesian version of objectivity).

— You always represent equivalent states of information by
equivalent plausibility assignments.

From these principles Cox derived a set of axioms:

• The plausibility of a proposition determines the plausibility of the
proposition’s negation; each decreases as the other increases.

• The plausibility of the conjunction AB = (A and B) of two
propositions A, B depends only on the plausibility of B and that of {A
given that B is true} (or equivalently the plausibility of A and that of

{B given that A is true}).

• Suppose AB is equivalent to CD; then if You acquire new
information A and later acquire further new information B, and

update all plausibilities each time, the updated plausibilities will be
the same as if You had first acquired new information C and then

acquired further new information D.
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Cox’s Theorem

From these axioms Cox proved a theorem showing that uncertainty
quantification about propositions behaves in one and only one way:

Theorem: If You accept Cox’s axioms, then to be logically
consistent You must quantify uncertainty as follows:

• Your plausibility operator pl(A|B) — for propositions A and B —
can be referred to as Your probability P(A|B) that A is true, given that

You regard B as true, and 0 ≤ P(A|B) ≤ 1, with certain truth of A
(given B) represented by 1 and certain falsehood by 0.

• (normalization) P(A|B) + P(A|B) = 1, where A = (not A).

• (the product rule):

P(AB|C ) = P(A|C ) · P(B|AC ) = P(B|C ) · P(A|B C ).

The proof (see, e.g., Jaynes (2003)) involves deriving two functional

equations F [F (x , y), z ] = F [x ,F (y , z)] and x S
[
S(y)
x

]
= y S

[
S(x)
y

]
that

pl(A|B) must satisfy and then solving those equations.

A number of important corollaries arise from Cox’s Theorem:
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Optimal Reasoning Under Uncertainty

• (the sum rule):

P(A or B|C ) ≡ P(A + B|C ) = P(A|C ) + P(B|C )− P(AB|C ).

• Extensions of the product and sum rules to an arbitrary finite
number of propositions are easy, e.g.,

P(AB C |D) = P(A|D) · P(B|AD) · P(C |AB D) and

P(A + B + C |D) = P(A|D) + P(B|D) + P(C |D)− P(AB|D)

−P(AC |D)− P(B C |D) + P(AB C |D) .

• This framework (obviously) covers optimal reasoning about
uncertain quantities θ taking on a finite number of possible values;
less obviously, it also handles (equally well) situations in which the set

Θ of possible values of θ has infinitely many elements.

— Example: You’re studying quality of care at the 17 Kaiser

Permanente (KP) northern California hospitals in 2003–7, before
the era of electronic medical records; during that time there was a

population P of N = 8,561 patients at these facilities with a primary
admission diagnosis of heart attack.
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Inference About a Population Parameter

You take a simple random sample of n = 112 of these admissions and
record whether or not each patient had an unplanned transfer to the

intensive care unit (ICU), observing s = 4 who did; θ is the proportion
of such unplanned transfers in all of P; here Θ = { 0

N ,
1
N , . . . ,

N
N }, which

can be conveniently approximated by Θ′ = [0, 1].

Prior to 2003, the proportion of such unplanned transfers for heart
attack patients at KP in the northern California region was about
q = 0.07, so interest focuses on P(A|D B), where A is the proposition

(θ ≤ q), D is the proposition (s = 4), and B includes (among other
things) details about the sampling experiment (e.g., (n = 112)).

In this setup θ is usually called a (population) parameter, and is not
itself the result of any sampling experiment (random or otherwise);

for this reason, it’s not possible to (directly) quantify uncertainty
about θ from the Kolmogorov (set-theoretic) point of view, but it

makes perfect sense to do so from the RT Cox (propositional) point
of view.
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Optimal Reasoning About a Continuous θ

You could now more generally define a function
F(θ|D B)(q) = P(θ ≤ q|D B) and call it the cumulative distribution

function (CDF) for (not of) (θ|D B), which is shorthand for

the CDF for Your uncertainty about θ given D and B.

If F(θ|D B)(q) turns out to be continuous and differentiable in q (I
haven’t said yet how to calculate F ), it will be convenient to write

F(θ|D B)(b)− F(θ|D B)(a) = P(a < θ ≤ b|D B) =

∫ b

a

p(θ|D B)(q) dq , (1)

where the (partial) derivative p(θ|D B)(q) of F(θ|D B) with respect to q

can be called the density for (not of) (Your uncertainty about) θ

given D and B.

In a small abuse of notation it’s common to write F (θ|D B) and
p(θ|D B) instead of F(θ|D B)(q) and p(θ|D B)(q) (respectively), letting the

argument θ of F (·|D B) and p(·|D B) serve as a reminder of the
uncertain quantity in question.
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Ontology and Epistemology

NB In the Kolmogorov approach a random variable X is a function
from Ω to some outcome space O, and if O = < You’ll often find it

useful to summarize X ’s behavior through the CDF of X :
FX (x) = P(the set of ω ∈ Ω such that X (ω) ≤ x), usually written in

propositional-style shorthand as FX (x) = P(X ≤ x).

In the RT Cox approach, there are no random variables; there are
uncertain things θ whose uncertainty (when Θ = <k , for integer

1 ≤ k <∞) can usefully be summarized with CDFs and densities.

Jaynes (2003) makes a worthwhile distinction: the statements

There is noise in the room. The room is noisy.

seem quite similar but are in fact quite different: the former is
ontological (asserting the physical existence of something), whereas

the latter is epistemological (expressing the personal perception of the
individual making the statement).

Talking about “the density of θ” would be to confuse ontology
and epistemology;

18 / 140



The Mind-Projection Fallacy

Jaynes calls this confusion of {the world} (ontology) with {Your
uncertainty about the world} (epistemology) the mind-projection

fallacy, and it’s clearly a mistake worth avoiding.

Returning to the corollaries of Cox’s Theorem,

• Given the set B, of propositions summarizing Your background
assumptions and judgments about how the world works as far as θ,

D and future data D∗ are concerned:

(a) It’s natural (and indeed You must be prepared in this approach) to
specify two conditional probability distributions:

— p(θ|B), to quantify all information about θ external to D that You
judge relevant; and

— p(D|θB), to quantify Your predictive uncertainty, given θ, about
the data set D before it’s arrived.

(b) Given the distributions in (a), the distribution p(θ|D B) quantifies
all relevant information about θ, both internal and external to D,

and must be computed via Bayes’s Theorem:
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Optimal Inference, Prediction and Decision

p(θ|D B) = c p(θ|B) p(D|θB) , (inference) (2)

where c > 0 is a normalizing constant chosen so that the left-hand
side of (2) integrates (or sums) over Θ to 1;

(c) Your predictive distribution p(D∗|D B) for future data D∗ given the
observed data set D must be expressible as follows:

p(D∗|D B) =

∫
Θ

p(D∗|θD B) p(θ|D B) dθ ;

often there’s no information about D∗ contained in D if θ is known, in
which case this expression simplifies to

p(D∗|D B) =

∫
Θ

p(D∗|θB) p(θ|D B)dθ ; (prediction) (3)

(d) to make a sensible decision about which action a You should take in
the face of Your uncertainty about θ, You must be prepared to specify

(i) the set A of feasible actions among which You’re choosing, and
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Bayesian Reasoning

(ii) a utility function U(a, θ), taking values on < and quantifying Your
judgments about the rewards (monetary or otherwise) that would ensue

if You chose action a and the unknown actually took the value θ —
without loss of generality You can take large values of U(a, θ) to be

better than small values;

then the optimal decision is to choose the action a∗ that maximizes
the expectation of U(a, θ) over p(θ|D B):

a∗ = argmax
a∈A

E(θ|D B)U(a, θ) = argmax
a∈A

∫
Θ

U(a, θ) p(θ|D B) dθ . (4)

The equation solving the inference problem is traditionally attributed
to Bayes (1764), although it’s just an application of the product rule

(page 14), which was already in use by (James) Bernoulli and de
Moivre around 1715, and Laplace made much better use of this

equation from 1774 to 1827 than Bayes did in 1764; nevertheless the
Laplace/Cox propositional approach is typically referred to as

Bayesian reasoning.
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Logical Consistency → Bayesian Reasoning Justified

Cox’s Theorem is equivalent to the assertion

If You wish to quantify Your uncertainty about an unknown θ (and
make predictions and decisions in the presence of that uncertainty) in

a logically internally consistent manner (as specified through Cox’s
axioms), on the basis of data D and background

assumptions/judgments B, then You can achieve this goal with
Bayesian reasoning, by specifying p(θ|B), p(D|θB), and {A,U(a, θ)}

and using equations (2–4).

This assertion has not rendered Bayesian analyses ubiquitous,
although the value of Bayesian reasoning has become increasingly

clear to an increasingly large number of people in the last 20 years,
now that advances in computing have made the routine use

of equations (2–4) feasible.

Advantages include a unified probabilistic framework: e.g., in my
earlier ICU example, Kolmogorov’s non-Bayesian approach does not
permit direct probability statements about a population parameter,

but Cox’s Theorem permits You to make such statements
(summarizing all relevant available information) in a natural way.
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The Specification Burden

It’s worth noting, however, that there really is a theorem here, of the
form A→ B, from which B → A; this comes close to the assertion

If You employ non-Bayesian reasoning then You’re open to the
possibility of logical inconsistency,

and indeed there have been some embarrassing moments in
non-Bayesian inference over the past 100 years (e.g., negative

estimates for quantities that are constrained to be non-negative).

Challenges: These corollaries to Cox’s theorem solve problems (3–5)

above (page 8) — they leave no ambiguity about how to draw
inferences, and make predictions and decisions, in the presence of
uncertainty — but problems (1) and (2) are still unaddressed: to

implement this logically-consistent approach in a given application,
You have to specify

• p(θ|B), usually called Your prior information about θ (given B; this is
better understood as a summary of all relevant information about θ

external to D, rather than by appeal to any temporal
(before-after) considerations);
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The Specification Burden (continued)

• p(D|θB), often referred to as Your sampling distribution for D given
θ (and B; this is better understood as Your conditional predictive

distribution for D given θ, before D has been observed, rather than by
appeal to other data sets that might have been observed); and

• the action space A and the utility function U(a, θ) for
decision-making purposes.

The results of implementing this approach are

• p(θ|D B), often referred to as Your posterior distribution for θ given D
(and B; as above, this is better understood as the totality of Your

current information about θ, again without appeal to
temporal considerations);

• Your posterior predictive distribution p(D∗|D B) for future data D∗

given the observed data set D; and

• the optimal decision a∗ given all available information (and B).

To summarize: Inference and prediction require You to specify
p(θ|B) and p(D|θB); decision-making requires You to specify the same
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Theory of Applied Statistics

two ingredients plus A and U(a, θ); how should this be done in a
sensible way?

Cox’s Theorem and its corollaries provide no constraints on the
specification process, apart from the requirement that all probability

distributions be proper (integrate or sum to 1).

In my view, in seeking answers to these specification questions, as a
profession we’re approximately where the discipline of statistics was in
arriving at an optimal theory of probability before Cox’s work: many
people have made ad-hoc suggestions (some of them good), but little

formal progress has been made.

Developing (1) principles, (2) axioms and (3) theorems about optimal
specification could be regarded as creating a Theory of Applied

Statistics, which we need but do not yet have.

p(θ|B), p(D|θB) and {A,U(a, θ)} are all important; I’ll focus here on
the problem of specifying {p(θ|B), p(D|θB)} — call such a

specification a model M for Your uncertainty about θ (I’ll have one
brief comment about decision theory at the end).
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What I Mean By Optimal Model Specification

How should M be specified? Where is the progression

Principles → Axioms → Theorems

to guide You, the way Cox’s Theorem settled the foundational
questions for probability?

In my view this is the central unsolved foundational problem in
statistical inference and prediction.

Making progress on this problem requires defining the phrase “optimal
model specification;” for this purpose the following two-step

argument is helpful:

• All Bayesian reasoning under uncertainty is based on

P(A|B) = P(AB)
P(B) for true/false propositions A and B, and this is

undefined if B is false; therefore

Rule 1: You should try hard not to condition on propositions (a)
that You know to be false and (b) that MAY be false.

This motivates the following
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Getting From the Context and Design to the Model

Definition: In model specification, optimal = {to come as close as
possible to the goal of conditioning only on propositions rendered

true by the context of the study and the design of the
data-gathering process}.

This seems hard to achieve; for example, in the IHGA case study,
visualizing the data set before it arrives, it would look like the table

shell presented back on page 3:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

The problem context and design make this table shell something You
can condition on, and the lack of previous trials with IHGA (this was

the first time it was implemented anywhere) implies that You can
also condition on a diffuse choice for p(θ|B) (with 572 observations,
it won’t matter much how this diffuseness is specified), but context

and design don’t seem to have anything to say about the
predictive (sampling) distribution p(D|θB).
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The Calibration Principle

This is where a good set of principles starts to help: as a small
contribution to closing the gap between ad-hoc practice and lack of

theory, I’ll focus in the rest of this presentation on four principles
worth considering, the first of which is the

Calibration Principle: In model specification, You should pay

attention to how often You get the right answer, by creating
situations in which You know what the right answer is and seeing

how often Your methods recover known truth.

The reasoning behind the Calibration Principle is as follows:

(axiom) You want to help positively advance the course of science,
and repeatedly getting the wrong answer runs counter to this desire.

(remark) There’s nothing in the Bayesian paradigm to prevent You
from making one or both of the following mistakes — (a) choosing

p(D|θB) badly; (b) inserting {strong information about θ external to
D} into the modeling process that turns out after the fact to have
been (badly) out of step with reality — and repeatedly doing this

violates the axiom above.
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Reasoning Behind the Calibration Principle

(remark) Paying attention to calibration is a natural activity from the
frequentist point of view, but a desire to be well-calibrated can be

given an entirely Bayesian justification via decision theory:

Taking a broader perspective over Your career, not just within any
single attempt to solve an inferential/predictive problem in
collaboration with other investigators, Your desire to take part

positively in the progress of science can be quantified in a utility
function that incorporates a bonus for being well-calibrated, and in

this context (Draper, 2011) calibration-monitoring emerges as a
natural and inevitable Bayesian activity.

This seems to be a new idea: logical consistency justifies Bayesian
uncertainty assessment but does not provide guidance on model
specification; if You accept the Calibration Principle, some of this

guidance is provided, via Bayesian decision theory, through a desire on
Your part to pay attention to how often You get the right answer,

which is a central scientific activity.

But the Calibration Principle is not enough: in problems of realistic
complexity You’ll generally notice that (a) You’re uncertain about θ
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Model Uncertainty

but (b) You’re also uncertain about how to quantify Your uncertainty
about θ, i.e., You have model uncertainty.

Cox’s Theorem says that You can draw logically-consistent inferences
about an unknown θ, given data D and background information B, by
specifying M = {p(θ|M B), p(D|θM B)}, but item (b) in the previous

paragraph implies that there will typically be more than one such
plausible M; what should You do about this?

It would be nice to be able to solve the inference problem by using
Bayes’s Theorem to compute p(θ|DMall B), where Mall is the set of
all possible models, but this is not feasible: just as Kolmogorov had

to resort to σ-fields because the set of all subsets of an Ω with
uncountably many elements is too big to meaningfully assign

probabilities to all of the subsets, with a finite data set D, Mall is
too big for D to permit meaningful plausibility assessment of all the

models in Mall .

Having adopted the Calibration Principle, it makes sense to talk about
an underlying data-generating model MDG , which is unknown to You

(more on this below).
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An Ensemble M of Models

Not being able to compute p(θ|DMall B), in practice the best You
can do is to compute p(θ|DMB), where M is an ensemble of models

(finite or countably or uncountably infinite) chosen “well” by You,
where “well” can and should be brought into focus by the Calibration

Principle (and some of the other Principles to be introduced later):
evidently what You want, among other things, is for M to contain one

or more models that are identical (or at least close) to MDG (in a
sense I’ll make precise below).

Suppose initially, for the sake of discussion, that You’ve identified such
an ensemble (I’ll present some ideas for how to do this later) and that it
turns out to be finite: M = (M1, . . . ,Mk) for 2 ≤ k <∞; what next?

Are You supposed to try to choose one of these models (the model
selection problem) and discard the rest, or combine them in some way

(if so, how?), or what?

To move toward an answer to this question, suppose (continuing the
Kaiser example on page 15) that You also observe (for each of the n =
112 randomly-sampled patients from the population P of N = 8,561

heart-attack patients) a real-valued conceptually-continuous
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Model Uncertainty (continued)

non-negative quality-of-care score yi , and inferential interest focuses
on the mean θ of these scores in P; here the data set D is just

y = (y1 . . . yn).

One possible Bayesian parametric model for this setting is

M1:

{
(θ σ2|M1 B) ∼ p(θ σ2|M1 B)

(yi |θ σ2 M1 B)
IID∼ Gaussian

(
θ, σ2

) } , (5)

for some scientifically appropriate prior distribution p(θ σ2|M1 B);
another possible parametric model is

M2:

{
(θ τ 2|M2 B) ∼ p(θ τ 2|M2 B)

(yi |θ τ 2 M2 B)
IID∼ Lognormal

(
θ, τ 2

) } , (6)

with the Lognormal distribution parameterized so that θ and τ 2 are
the mean and variance on the y (rather than log y) scale.

I’ll use the notation γj = (θ, ηj) for the parameter vector (of length
kj) for model Mj , where each model has its own vector of so-called

nuisance parameters ηj : here η1 = (σ2) and η2 = (τ 2).
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The Data-Generating Model MDG

By the Product Rule, p(θ ηj |Mj B) = p(θ|Mj B) p(ηj |θMj B), and the
priors p(θ|Mj B) are the same for all j (and can therefore just be

referred to as p(θ|B)); thus, in this setting, in which two or more
parametric models may be plausible, model uncertainty has three
parts: the prior p(θ|B) on θ, the conditional prior on the nuisance

parameters p(ηj |θMj B), and the sampling distribution (in this case,
Gaussian (j = 1) or Lognormal (j = 2)).

As noted above, under the Calibration Principle it makes sense to talk
about an underlying data-generating model MDG , which is unknown

to You; an example here might be

MDG: yi
IID∼ Gaussian

(
θDG , σ

2
DG

)
, (7)

with (e.g.)
(
θDG , σ

2
DG

)
= (50, 102); I’ll use the notation

γDG = (θDG , ηDG ) for the parameter vector of MDG .

Note that MDG is a single model (e.g., N(50, 102)), not a parametric
family of single models (e.g., N(µ, σ2) with

−∞ < µ <∞ and 0 ≤ σ2 <∞).
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Rule 1, Revisited

The fact that MDG is unknown to You presents a challenge in both
Bayesian and non-Bayesian paradigms; the form this challenge takes in

the Bayesian approach can be seen by recalling Rule 1:

• Choosing a specific model Mj amounts to conditioning on it; in
other words, in practice You may want to compute p(θ|D B), but by

choosing Mj You’re really computing p(θ|D Mj B).

• Having chosen a particular model Mj (say), this makes me wonder
what happens when Mj 6= MDG , because in that case choosing Mj

sounds like conditioning on a false proposition.

• However, it’s not quite meaningful to write something like
Mj 6= MDG , because the sampling-distribution part of Mj actually

contains many models from an MDG perspective; in the
Gaussian-Lognormal example above, for instance, MDG specifies the
single model N(50, 102) but p(yi |θ σ2 M1 B) specifies N(θ, σ2) for all
(θ, σ2) in the support of the prior p(θ, σ2|M1 B) (i.e., all (θ, σ2) such

that p(θ, σ2|M1 B) 6= 0).
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Asymptotic Consistency of Bayesian Inference

• Theorem (Doob, 1948): In repeated sampling under MDG , as n
increases, the posterior distribution p(θ|D Mj B) becomes more and

more concentrated around {point mass at θDG}, as long as θDG is in
the support of p(θ|Mj B) (this theorem demonstrates what’s known as

asymptotic consistency of Bayesian inference).

• This theorem motivates the following

Definition (Draper 2011): Mj is consistent with MDG (Mj
c
= MDG ) if

(a) the support of p(γj |Mj B) includes γDG and (b)
p(D|γDG Mj B) = p(D|MDG ).

Intuitively Mj
c
= MDG means that (a) Your prior on the parameters

includes the data-generating parameter values as valid possibilities
and (b) You got the sampling distribution right.

So now the correct wording of the question is: what happens if I

choose Mj but (unknown to me) Mj

c

6= MDG?

Good news — what happens is not like conditioning on a false
proposition (i.e., not like dividing by 0); (possibly) bad news —
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Model Mis-Specification

Theorem (Berk, 1964): if Mj

c

6= MDG , then as n increases, the
posterior distribution p(θ|D Mj B) becomes more and more

concentrated around {point mass at θ∗}, where γ∗j = (θ∗, η∗j ) and θ∗ is
such that p(D|γ∗j Mj B) is as close as possible to p(D|γDG MDG ) (here

closeness is measured by Kullback-Leibler (KL) divergence: for
densities p and q, DKL(p||q) =

∫
p log p

q ).

In the Gaussian-Lognormal example, if MDG is Lognormal(θDG , τ
2
DG )

but You choose as Your model Gaussian(θ, σ2), with more data it will
look increasingly to You as though MDG is Gaussian

(
θ∗, σ2

∗
)
, where(

θ∗, σ2
∗
)

is such that Gaussian
(
θ∗, σ2

∗
)

minimizes the KL divergence
from Lognormal(θDG , τ

2
DG ).

It’s nice that p(D|γ∗j Mj B) is as close as possible to p(D|γDG MDG ),
but this provides no guarantee that they are in fact close; the point is

that model mis-specification can have serious inferential
consequences in both Bayesian and non-Bayesian paradigms.

Having introduced this idea of a model Mj being consistent (or not)
with an underlying data-generating mechanism MDG , it would be
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Dealing With Model Uncertainty

nice — from a calibration point of view — to be able to compute
p(θ|DMc B), where Mc includes all models Mj such that Mj

c
= MDG ;

Q: Are there any Bayesian approaches that can achieve this goal?

A: Bayesian nonparametric methods can come close, in large
samples (more on this below).

Solving the model uncertainty problem. People used to “solve” the

problem of what to do about model uncertainty by ignoring it: it was
common, at least through the mid-1990s, to

(a) use the data D to conduct a search among possible models,
settling on a single (apparently) “best” model M∗ arising from the

search, and then

(b) draw inferences about θ pretending that M∗
c
= MDG .

This of course can lead to quite bad calibration, almost always in the
direction of pretending You know more than You actually do, so

that, e.g., Your nominal 90% posterior predictive intervals for
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Assessment and Propagation of Model Uncertainty

data values not used in the modeling process would typically include
substantially fewer than 90% of the actual observations.

The M∗ approach “solves” the problem of how to specify M by setting
M = {M∗}; I’ll continue to postpone for the moment how You might

do a better job of arriving at M.

Having chosen M in some way, how can You assess Your uncertainty
across the models in M, and appropriately propagate this through to

Your uncertainty about θ, in a well-calibrated way?

I’m aware of three approaches to improved assessment and
propagation of model uncertainty: BMA, BNP, CCV.

• Bayesian model averaging (BMA): If interest focuses on
something that has the same meaning across all the models in M —

for example, a set of future data values D∗ to be predicted —
calculation reveals (e.g., Leamer, 1978; Draper, 1995) that

p(D∗|DMB) =

∫
M

p(D∗|D M B) p(M|DMB) dM , (8)
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BMA, BNP

which is eminently reasonable: equation (8) tells You to form a
weighted average of Your conditional predictive distributions

p(D∗|D M B), given particular models M ∈M, weighted by those
models’ posterior probabilities p(M|DMB).

This approach typically provides (substantially) better calibration
than that obtained by the M∗ method; for implementation, there are
two R packages at CRAN — BMA and BMS — that perform Bayesian

model averaging with a wide variety of data configurations.

• Bayesian nonparametric (BNP) modeling: The BMA integral in
(8) can be thought of as an approximation to the (unattainable?)

ideal of averaging over all worthwhile models; a better
approximation to this ideal can often be achieved with Bayesian

nonparametric modeling, which dates back to de Finetti (1937).

Continuing the Kaiser example on page 15, suppose You also observe
(for each of the n = 112 randomly-sampled patients from the

population P of N = 8,561 heart-attack patients) a real-valued
conceptually-continuous quality-of-care score yi , and (following de

Finetti) You’re thinking about Your predictive distribution
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Exchangeability

p(y1 . . . yn|B) for these scores before any data have arrived.

de Finetti pointed out that, if You have no covariate information
about the patients, Your predictive distribution p(y1 . . . yn|B) should
remain the same under arbitrary permutation of the order in which
the patients are listed, and he coined the term exchangeability to

describe this state of uncertainty.

He (and later Diaconis/Freedman) went on to prove that, if Your
judgment of exchangeability extends from (y1 . . . yn) to (y1 . . . yN) (as
it certainly should here, given the random sampling) and N >> n (as is

true here), then all logically-internally-consistent predictive
distributions can approximately be expressed hierarchically as follows:
letting G stand for the empirical CDF (see page 58) of the population

values (y1 . . . yN), the hierarchical model is (for i = 1, . . . , n){
(G |B) ∼ p(G |B)

(yi |G B)
IID∼ G

}
. (9)

This requires placing a scientifically-appropriate prior distribution
p(G |B) on the set G of all CDFs on <, which de Finetti didn’t know
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Bayesian Nonparametric (BNP) Modeling

how to do in 1937; thanks to work by Freedman, Ferguson, Lavine,
Escobar/West, and others, two methods for doing this sensibly —

Pólya trees and Dirichlet-process (DP) priors — are now in routine
use: this — placing distributions on function spaces — is

Bayesian nonparametric (BNP) modeling.

IHGA Example, Revisited: Once again visualizing the IHGA data

set before it arrives, here’s the table shell one more time:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

Letting (as before) µC and µT be the mean hospitalization rates (per
two years) in the population P (of all elderly non-institutionalized

people in Denmark in the early 1980s) under the C and T conditions,
respectively, the inferential quantity of main interest is still

θ = µT−µC

µC
(or this could be redefined without loss as θ = µT

µC
); how

can You draw valid and accurate inferences about θ while coping
with Your uncertainty about the population C and T CDFs —
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Bayesian Qualitative-Quantitative Inference

call them FC and FT , respectively — of numbers of hospitalizations
per person (per two years)?

One approach: Bayesian qualitative-quantitative inference (BQQI;
Draper 2011): exchangeability implies a multinomial sampling

distribution on the qualitative outcome variable with category labels
0, 1, . . . , and this permits optimal model specification here (this
approach treats the hospitalization outcome categorically but

permits quantitative inference about θ).

BQQI in the IHGA case study. de Finetti’s most basic theorem

about exchangeability says that if You’re about to observe a binary
data set y = (y1, . . . , yn) and You’re willing to regard y as part of an
infinitely exchangeable sequence (meaning that You judge all finite

subsets exchangeable; this is like thinking of the yi as having been
randomly sampled from the population (y1, y2, . . . )), then to be
logically internally consistent Your joint predictive distribution

p(y1, . . . , yn|B) must have the simple hierarchical form

(θ|B) ∼ p(θ|B), (yi |θB)
IID∼ Bernoulli(θ), (10)
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Model = Prior (Sometimes)

where θ = P(yi = 1|B) is the limiting value of the mean of the yi in the
infinite sequence.

Writing s = (s1, s2) where s1 and s2 are the numbers of 0s and 1s,
respectively, in (y1, . . . , yn), this is equivalent to the model

(θ2|B) ∼ p(θ2|B) (11)

(s2|θ2 B) ∼ Binomial(n, θ2),

where (in a slight change of notation) θ2 = P(yi = 1|B); i.e., in this
simplest case the form of the likelihood function (Binomial(n, θ2)) is

determined by a desire for logical internal consistency.

The likelihood function for θ2 in this model is

l(θ2|y) = c θs2
2 (1− θ2)n−s2 = c θs1

1 θ
s2
2 , (12)

from which it’s evident that the conjugate prior for the
Bernoulli/Binomial likelihood (the choice of prior having the

property that the posterior for θ2 has the same mathematical form as
the prior) is the family of Beta(α1, α2) densities

p(θ2|B) = c θα2−1
2 (1− θ2)α1−1 = c θα1−1

1 θα2−1
2 , (13)
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BQQI (continued)

for some α1 > 0, α2 > 0.

With this prior the conjugate updating rule is evidently{
(θ2|B) ∼ Beta(α1, α2)

(s2|θ2 B) ∼ Binomial(n, θ2)

}
→ (θ2|y B) ∼ Beta(α1 + s1, α2 + s2),

(14)
where s1 (s2) is the number of 0s (1s) in the data set y = (y1, . . . , yn).

Moreover, given that the likelihood represents a (sample) data set with
s1 0s and s2 1s and a data sample size of n = (s1 + s2), it’s clear that

(a) the Beta(α1, α2) prior acts like a (prior) data set with α1 0s and α2

1s and a prior sample size of (α1 + α2), and

(b) to achieve a relatively diffuse (low-information-content) prior for
θ2 (if that’s what context suggests You should aim for) You should try

to specify α1 and α2 not far from 0.

Here’s an easy generalization of all of this: suppose the yi take on
J ≥ 2 distinct values v = (v1, . . . , vJ), and let s = (s1, . . . , sJ) be the

vector of counts (s1 = #(yi = v1) and so on).
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Multinomial Likelihood

If You judge the yi to be part of an infinitely exchangeable sequence,
then to be logically internally consistent Your joint predictive

distribution p(y1, . . . , yn|B) must have the hierarchical form

(θ|B) ∼ p(θ|B) (15)

(s|θB) ∼ Multinomial(n, θ),

where θ = (θ1, . . . , θJ) and θj is the limiting relative frequency of vj
values in the infinite sequence.

The likelihood for (vector) θ in this case has the form

l(θ|y) = c
l∏

j=J

θ
sj
j , (16)

from which it’s evident that the conjugate prior for the Multinomial
likelihood is of the form

p(θ|B) = c
J∏

j=1

θ
αj−1
j , (17)

for some α = (α1, . . . , αJ) with αj > 0 for j = 1, . . . , J;
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Dirichlet Conjugate Prior

this is the Dirichlet(α) distribution, a multivariate generalization of
the Beta family.

Here the conjugate updating rule is{
(θ|B) ∼ Dirichlet(α)

(s|θB) ∼ Multinomial(n, θ)

}
→ (θ|y B) ∼ Dirichlet(α + s), (18)

where s = (s1, . . . , sJ) and sj is the number of vj values (j = 1, . . . , J)
in the data set y = (y1, . . . , yn).

Furthermore, by direct analogy with the J = 2 case,

(a) the Dirichlet(α) prior acts like a (prior) data set with αj vj values

(j = 1, . . . , J) and a prior sample size of
∑J

j=1 αj , and

(b) to achieve a relatively diffuse (low-information-content) prior for θ
(if that’s what context suggests You should aim for) You should try to

choose all of the αj not far from 0.

To summarize:

(A) if the data vector y = (y1, . . . , yn) takes on J distinct values
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Dirichlet-Multinomial Modeling

v = (v1, . . . , vJ) (real numbers or not) and You judge (Your uncertainty
about) the infinite sequence (y1, y2, . . . ) to be exchangeable, then (by
a representation theorem of de Finetti) logical internal consistency
compels You (i) to think about the quantities θ = (θ1, . . . , θJ), where
θj is the limiting relative frequency of the vj values in the infinite

sequence, and (ii) to adopt the Multinomial model

(θ|B) ∼ p(θ|B) (19)

p(yi |θB) = c
J∏

j=1

θ
sj
j ,

where sj is the number of yi values equal to vj ;

(B) if context specifies a diffuse prior for θ, a convenient (conjugate)
choice is Dirichlet(α) with α = (α1, . . . , αJ) and all of the αj positive

but close to 0; and

(C) with a Dirichlet(α) prior for θ the posterior is Dirichlet(α′), where
s = (s1, . . . , sJ) and α′ = (α + s).
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Parametric Modeling on the yi Not Required Here

Note, remarkably, that the vj values themselves make no appearance
in the model; this modeling approach is natural with categorical
outcomes but can also be used when the vj are real numbers.

For example, for real-valued yi , if (as in the IHGA case study) interest
focuses on the (underlying population) mean in the infinite sequence

(y1, y2, . . . ), this is µy =
∑J

j=1 θj vj , which is just a linear function of
the θj with known coefficients vj .

This fact makes it possible to draw an analogy with the
distribution-free methods that are at the heart of frequentist

non-parametric inference: when Your outcome variable takes on a
finite number of real values vj , exchangeability compels a

Multinomial likelihood on the underlying frequencies with which the
vj occur; You’re not required to build a parametric model (e.g.,

normal, lognormal, ...) on the yi values themselves.

In this sense, therefore, model (19) — particularly with the conjugate
Dirichlet prior — can serve as a kind of Bayesian

qualitative-quantitative inference (this is related to the Bayesian
bootstrap (Rubin 1981)).
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Dirichlet Sampling

Moreover, if You’re in a hurry and You’re already familiar with
WinBUGS, You can readily carry out inference about quantities like µy

above in this environment, but there’s no need to do MCMC here:
ordinary Monte Carlo (MC) sampling from the Dirichlet(α′) posterior

distribution is perfectly straightforward, e.g., in R, based on the
following fact:

To generate a random draw θ = (θ1, . . . , θJ) from the Dirichlet(α′)
distribution, with α′ = (α′1, . . . , α

′
J), independently draw

gj
indep∼ Γ(α′j , β), j = 1, . . . , J (20)

(where Γ(a, b) is the Gamma distribution with parameters a and b)
and compute

θj =
gj∑J

m=1 gj
. (21)

Any β > 0 will do in this calculation; β = 1 is a good choice that
leads to fast random number generation.
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Dirichlet Sampling (continued)

The downloadable version of R doesn’t have a built-in function for
making Dirichlet draws (although packages like MCMCpack at CRAN do

have such functions), but it’s easy to write one:

rdirichlet <- function( n.sim, alpha ) {

J <- length( alpha )

theta <- matrix( 0, n.sim, J )

for ( j in 1:J ) {

theta[ , j ] <- rgamma( n.sim, alpha[ j ], 1 )

}

theta <- theta / apply( theta, 1, sum )

return( theta )

}

The Dirichlet(α) distribution has the following moments:
if θ ∼ Dirichlet(α) then

E (θj) =
αj

α0
, V (θj) =

αj(α0 − αj)

α2
0(α0 + 1)

, C (θj , θj′) = − αjαj′

α2
0(α0 + 1)

, (22)

where α0 =
∑J

j=1 αj (note the negative correlation between
components of θ).
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Dirichlet Sampling (continued)

This can be used to test the function above:

alpha <- c( 5.0, 1.0, 2.0 )

alpha.0 <- sum( alpha )

test <- rdirichlet( 100000, alpha ) # 7 seconds (1.6 Unix GHz)

apply( test, 2, mean )

[1] 0.6258544 0.1247550 0.2493905

alpha / alpha.0

[1] 0.625 0.125 0.250

apply( test, 2, var )

[1] 0.02603293 0.01216358 0.02071587

alpha * ( alpha.0 - alpha ) / ( alpha.0^2 * ( alpha.0 + 1 ) )

[1] 0.02604167 0.01215278 0.02083333

cov( test )

[,1] [,2] [,3]

[1,] 0.026032929 -0.008740319 -0.017292610

[2,] -0.008740319 0.012163577 -0.003423259

[3,] -0.017292610 -0.003423259 0.020715869
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BQQI Analysis of IHGA Data

- outer( alpha, alpha, "*" ) / ( alpha.0^2 * ( alpha.0 + 1 ) )

[,1] [,2] [,3]

[1,] -0.043402778 -0.008680556 -0.017361111

[2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals

[3,] -0.017361111 -0.003472222 -0.006944444

BQQI analysis of the IHGA data: recall that the policy and clinical

interest focused on η = µE

µC
; here’s the data:

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24

Experimental 147 83 37 13 3 1 1 0 285 0.768 1.01

In this two-independent-samples setting You can apply de Finetti’s
representation theorem twice, in parallel, on the C and E data.

Not much is known about the underlying frequencies of 0, 1, . . . , 7
hospitalizations under C and E external to the data, so You can use a

Dirichlet(ε, . . . , ε) prior for both θC and θE with ε = 0.001, leading to a
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BQQI Analysis of IHGA Data (continued)

Dirichlet(138.001, . . . , 2.001) posterior for θC and a
Dirichlet(147.001, . . . , 0.001) posterior for θE (other small positive

choices of ε yield similar results).

alpha.C <- c( 138.001, 77.001, 46.001, 12.001, 8.001,

4.001, 0.001, 2.001 )

alpha.E <- c( 147.001, 83.001, 37.001, 13.001, 3.001,

1.001, 1.001, 0.001 )

theta.C <- rdirichlet( 100000, alpha.C ) # 8 sec (1.6 Unix GHz)

theta.E <- rdirichlet( 100000, alpha.E ) # also 8 sec

print( post.mean.theta.C <- apply( theta.C, 2, mean ) )

[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02

[5] 2.784911e-02 1.395287e-02 3.180905e-06 6.959859e-03

print( post.SD.theta.C <- apply( theta.C, 2, sd ) )

[1] 0.0294142963 0.0261001259 0.0216552661 0.0117925465

[5] 0.0096747630 0.0069121507 0.0001017203 0.0048757485

print( post.mean.theta.E <- apply( theta.E, 2, mean ) )

[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02

[5] 1.054681e-02 3.518699e-03 3.506762e-03 3.356346e-06

print( post.SD.theta.E <- apply( theta.E, 2, sd ) )

[1] 0.029593047 0.026915644 0.019859213 0.012302252

[5] 0.006027157 0.003501568 0.003487824 0.000111565
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BQQI IHGA Results

mean.effect.C <- theta.C %*% ( 0:7 )

mean.effect.E <- theta.E %*% ( 0:7 )

mult.effect <- mean.effect.E / mean.effect.C

print( post.mean.mult.effect <- mean( mult.effect ) )

[1] 0.8189195

print( post.SD.mult.effect <- sd( mult.effect ) )

[1] 0.08998323

quantile( mult.effect, probs = c( 0.0, 0.025, 0.5,

0.975, 1.0 ) )

0% 2.5% 50% 97.5% 100%

0.5037150 0.6571343 0.8138080 1.0093222 1.3868332

mean( mult.effect < 1 )

[1] 0.9706

pdf( "bqqi-mult-effect.pdf" )

plot( density( mult.effect, n = 2048 ), type = ’l’,

cex.lab = 1.25, cex.axis = 1.25, main = ’’,

xlab = ’Multiplicative Treatment Effect’ )

dev.off( )

You would estimate that IHGA reduces the mean number of
hospitalizations per two years (in the population P of all elderly
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BQQI IHGA Results (continued)

Danish non-institutionalized people) by about 100(1− 0.8189195)%
.

= 18%, give or take about 100(0.08998323)%
.

= 9%, with a 95%
interval estimate of (–0.9,34.2)%; the posterior probability that

IHGA would be beneficial in P is estimated to be about
100(0.9706)

.
= 97%; and the posterior distribution for the
multiplicative effect of IHGA is:
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Optimal Bayesian Model Specification

In my view this analysis completely satisfies the criterion for optimal
Bayesian model specification: it conditions only on propositions
rendered true by the study design and data-gathering process.

NB I don’t yet know much (and I don’t think other people do either)
about the generalizability of this finding, except to say that more care
may be required to choose an appropriate function of the θ values when

the yi are closer to continuous.

Another approach: Bayesian nonparametric modeling. Recall back

on page 40 that if You have a real-valued data set y = (y1, . . . , yn)
drawn exchangeably (like a random sample) from P = (y1, y2, . . . ),

then all logically-internally-consistent models are of the form{
(G |B) ∼ p(G |B)

(yi |G B)
IID∼ G

}
(23)

for some prior distribution p(G |B) on the set G of all CDFs on <; how
can such a prior distribution be specified in a way that’s responsive to

the science of the problem?
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Dirichlet Process Priors

This question was answered by Ferguson (1973), who created
Dirichlet Process priors; here’s his reasoning.

• Conjugate priors are nice, for two reasons:

(a) by definition the prior and posterior have the same form, and

(b) the prior is driven exclusively by two ingredients —

(i) a prior estimate (in this case Gprior ) of the unknown quantity G and

(ii) a prior sample size nprior indicating the amount of available
information external to the sample data set (the prior acts like a

prior data set which, when merged with the sample data set, yields a
“posterior data set” that can be analyzed by maximum-likelihood
methods to produce the same answer as the Bayesian analysis with

the indicated prior and sample data set).

• It would be nice, therefore, to be able to create a prior NPP(·, ·) on G
that has this conjugate behavior:
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The Empirical CDF{
(G |B) ∼ NPP(nprior ,Gprior )

(yi |G B)
IID∼ G

}
→ (G |y B) ∼ NPP(nposterior ,Gposterior ) ,

where nposterior = (nprior + n) and where Gposterior is related in some
natural way to (i) Gprior and (ii) a good estimate of G

based solely on the data.

• With (yi |G B)
IID∼ G it can be shown that the nonparametric

maximum likelihood estimator of G is the empirical CDF

Ĝn(t) =
(number of yi ) ≤ t

n
=

1

n

n∑
i=1

I (yi ≤ t) , (24)

where I (A) = 1 if proposition A is true and 0 otherwise; this can serve
as the “good estimate of G based solely on the data.”

• If You take an IID sample of size n from Ĝn (i.e., an IID sample
from y = (y1, . . . , yn) itself; this should remind You of the bootstrap),

obtaining y∗ = (y∗1 , . . . , y
∗
n ), and You keep track of how many

replicates of each observation You see, the result will follow a
multinomial distribution, as follows: sort the yi into k ≤ n bins
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Dirichlet Process Priors (continued)

(b1, . . . , bk) (k < n if there are ties) and let
nj = (the number of yi in bin bj); then

(y∗|Ĝn B) ∼ Ĝn iff p(y∗|Ĝn B) = c θn1
1 · · · θ

nk
k , (25)

for some θ = (θ1, . . . , θk) such that θj ≥ 0 for all 1 ≤ j ≤ k

and
∑k

j=1 θj = 1.

• As noted in the BQQI section, the conjugate prior for the
multinomial sampling distribution is the Dirichlet distribution: with

α = (α1, . . . , αk) such that αj ≥ 0 for all 1 ≤ j ≤ k,

(θ|B) ∼ Dirichlet(α) iff p(θ|B) = c θα1−1
1 · · · θαk−1

k . (26)

• Choose any (k − 1) distinct points −∞ < r1 < · · · < rk−1 <∞ on
the real line — these define a partition (A1, . . . ,Ak) of the line, where
A1 = (−∞, r1], A2 = (r1, r2], and so on — and imagine dropping all of
the data values (y1, . . . , yn) onto the line and counting how many fall
in (A1, . . . ,Ak): if You now think of a density g on < and compute θj
as the mass g assigns to partition element Aj , the counts will follow a

multinomial distribution with probabilities (θ1, . . . , θk).
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Dirichlet Process Definition and Conjugate Updating

• To create a probability distribution such that random draws from it
are CDFs, Ferguson therefore defined the Dirichlet process as follows,

e.g., for CDFs on < and with G having a density g :

Definition: CDF G ∼ DP(α) (i.e., G follows a Dirichlet process with
parameter α, where α is itself a distribution) iff for any partition

(A1, . . . ,Ak) of <, the random vector [G (A1), . . . ,G (Ak)] follows a
Dirichlet distribution with parameter [α(A1), . . . , α(Ak)], where G (Aj)

means the mass assigned to Aj by g .

It’s useful to express α in the form α(·) = c G0(·), where G0 is the
centering or base distribution (the prior estimate) — in the sense

that EDP(cG0)(G ) = G0 — and c acts like a prior sample size.

With this way of writing α, conjugate updating becomes clear:{
(G |B) ∼ DP(c G0)

(yi |G B)
IID∼ G

}
→ (G |y B) ∼ DP(c∗ G∗) , (27)

where c∗ = (c + n) and G∗ = c G0+n Ĝn

c+n ; thus G∗ is a weighted average

of G0 and Ĝn, with weights given by the prior sample size and
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DP Mixture Modeling

data sample size, respectively.

It turns out that DP priors put all their mass on discrete CDFs,
which would be OK for the IHGA data; one possible Bayesian

nonparametric (BNP) model for this data set (Krnjajić, Kottas and
Draper 2008, on the course web page) would involve placing parallel

DPs priors on the population C and T CDFs (below I’ll describe
another BNP model in the IHGA example).

However, You can get as close as You like to any continuous CDF
through a mixture of discrete CDFs; this observation has given rise

to Dirichlet Process mixture modeling (DPMM), which is more
common than just putting a DP prior directly on the scale of the data.

In fact, mixture modeling is needed anyway to make DP priors truly
useful, as follows.

Consider the Kaiser study mentioned earlier, where of n patient
records were chosen randomly, each of which yielded a real-valued

quality of care score yi .
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DP Mixture Modeling (continued)

Before the data arrives Your uncertainty about y = (y1, . . . , yn) is
exchangeable, so (switching notation, here and below: the prior

sample size hyperparameter in the DP prior is usually denoted (a bit
confusingly) by α) You want to use the model

(G |B) ∼ DP(αG0)

(yi |G B)
IID∼ G , (28)

but what should You use for α and G0?

Suppose that previous studies suggest that quality of care scores may
be approximately Gaussian, but (in case that’s not true for Your data
set) You don’t want to be dogmatic about this; then You should take

G0 = Gaussian and α positive but rather small; however,
which Gaussian?

You don’t want to take something like G0 = N(141, 63.72) because (at
design time) You don’t know what the mean and SD will be; You

would rather take G0 = N(µ, σ2) with µ and σ2 unknown and to be
learned from the data.
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Pólya Trees

DP mixture modeling allows You to do this: the model becomes

(G |B) ∼ DP(αG0), G0 = N(µ, σ2)

(yi |G B)
IID∼ G (29)

(µ, σ2|B) ∼ p(µ, σ2|B)

(α|B) ∼ p(α|B) .

Models like this (and considerably more complicated models with
unknown CDFs) are fit via MCMC, for instance with the CRAN

package DPpackage in R (I’ll give an example of the use of this
package below).

It can be non-trivial to choose p(µ, σ2|B) and p(α|B) to get both (a)
well-calibrated results and (b) MCMC chains that mix well; the best
way to solve this problem is through experience in settings where You

know the right answer.

Another approach: Pólya trees. Lavine (1992) developed another

approach to creating priors on CDFs called Pólya trees, which turn
out to include DP priors as a special case; here’s the idea.
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NB10

Example: NB10. In 1962 and 1963 (Freedman, Pisani and Purves,

1978), two employees of the U.S. National Bureau of Standards (now
called the National Institute of Standards and Technology) made
n = 100 weighings of a block of metal called NB10 — given this

name because it was supposed to weigh 10 grams — under conditions
that were as close as humanly possible to the statistical ideal of

independent, identically distributed (IID) sampling from the
population PNB10 = {all possible weighings of NB10 with the

given apparatus}.

Here the unknown θ of principal interest is evidently the “true”
weight of NB10, by which I mean the population mean of PNB10; D

consists of the 100 weighings y = (y1, . . . , yn); and B contains the
proposition (y is an IID sample from PNB10) (along with background
propositions known to be true from the context of the problem, such

as (θ > 0} and {θ is close to 10 grams)).

In a situation where You would use a DP(αG0) prior, Lavine’s
approach instead yields the Pólya tree prior PT (Π,Aα), where (a bit

confusingly) Aα plays the role of α and Π acts like G0.
64 / 140



Pólya Trees (continued)

For the NB10 data a natural Pólya-tree model would be

(G |B) ∼ PT (Π,Aα), N(µ, σ2) determines Π

(yi |G B)
IID∼ G (30)

(µ, σ2|B) ∼ p(µ, σ2|B)

(α|B) ∼ p(α|B) .

Here (a) Π = {Bε} is a binary tree partition of the real line, where ε is
a binary sequence that locates the set Bε in the tree.

You get to choose these sets Bε in a way that centers the Pólya tree
on any distribution you want, in this case a Gaussian with unknown

mean and SD.

This is done by choosing the cutpoints on the line, which define the
partitions, based on the quantiles of N(µ, σ2); for example, with

G0 = N(0, 1), You get the table at the top of the next page, in which Φ
is the N(0, 1) CDF.

In practice this process has to stop somewhere; people use a tree defined
down to level M, which is like working with random histograms,
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Pólya Trees (continued)

each with 2M bars.

Level Sets Cutpoint(s)
1 (B0,B1) Φ−1

(
1
2

)
= 0

2
(B00,B01,
B10,B11)

Φ−1
(

1
4

)
= −0.674,Φ−1

(
1
2

)
= 0,

Φ−1
(

3
4

)
= +0.674

...
...

...

And (b) Walker et al. (1998; emphasis added):

“A helpful image is that of a particle cascading through the partitions Bε.
It starts [on the real line] and moves into B0 with probability C0 or into B1

with probability C1 = 1− C0. In general, on entering Bε the particle could
either move into Bε0 or into Bε1; let it move into the former with probability
Cε0 or into the latter with probability Cε1 = 1− Cε0. For Pólya trees, these
probabilities are Beta random variables, (Cε0,Cε1) ∼ Beta(αε0, αε1) with

non-negative αε0 and αε1. If we denote the collection of αs by Aα, a
particular Pólya tree distribution is completely defined by Π and Aα.”

To make a Pólya tree prior choose a continuous distribution with
probability 1, the αs have to grow quickly as the level m of the tree
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Pólya Trees (continued)

increases; following Walker et al. (1998) it’s common to take

αε = αm2 whenever ε defines a set at level m, (31)

and this defines Aα.

As with DP priors, α > 0 acts like a prior sample size: with small α
the posterior distribution for G will be based almost completely on
Ĝn, the empirical CDF (the “data distribution”), whereas with large α
the posterior will be based almost completely on the prior centering

distribution, in this case N(µ, σ2).

NB When the data-generating distribution is multi-modal,
(somewhat confusingly) the α hyper-parameter in DP priors acts both

as a prior sample size and a prior indication of how many clusters
(local modes) the distribution has, but this interpretational

confusion doesn’t occur with PT priors.

Prior to posterior updating is easy with Pólya trees: if

(G |B) ∼ PT (Π,Aα) (32)

(yi |G B)
IID∼ G
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Pólya Trees (continued)

and (say) y1 is observed, then the posterior p(G |y1) for G given y1 is
also a Pólya tree — so the PT priors are again conjugate — with

(αε|y1 B) =

{
αε + 1 if y1 ∈ Bε
αε otherwise

}
. (33)

In other words the updating follows a Pólya urn scheme (e.g., Feller,
1968): at each level of the tree, if y1 falls into a particular partition set

Bε, then 1 is added to the α for that set.

The graphs on the next few pages

(i) show the variation around N(0, 1) obtained by sampling from a
PT (ΠN(0,1),Aα) prior for G as α varies from 10 down to 0.1, and

(ii) illustrate prior-to-posterior updating for the same range of α with
a fairly skewed data set.

R code to perform these Pólya-tree simulations is on the
course web page.
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Sampling From a PT Prior

NB For the next few pages, the main titles of the plots say c when
they mean α.

c =  10

y
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Sampling from a PT (Π,Aα) prior for G centered at N(0, 1) (solid
line) with α = 10; for large α the sampled distribution follows the

prior pretty closely.
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Sampling From a PT Prior (continued)

c = 1

y
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Sampling from a PT (Π,Aα) prior for G centered at N(0, 1) (solid
line) with α = 1; the sampled G s vary more around N(0, 1) with a

smaller α.
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Sampling From a PT Prior (continued)

c =  0.1
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Sampling from a PT (Π,Aα) prior for G centered at N(0, 1) (solid
line) with α = 0.1; with small α the sampled G bears little relation to

the centering distribution.
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PT Prior-To-Posterior Updating
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Draws from the prior (solid lines); data (histogram, n = 100); and
draws from the posterior (dotted lines), with α = 0.1; for α close to 0

the posterior almost coincides with the data.
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PT Prior-To-Posterior Updating (continued)
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Draws from the prior (solid lines); data (histogram, n = 100); and
draws from the posterior (dotted lines), with α = 1; the posterior is

now a compromise between the prior and the data.
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PT Prior-To-Posterior Updating (continued)

-2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n.sim = 25 , c = 10 , n =  100

y

D
en

si
ty

Draws from the prior (solid lines); data (histogram, n = 100); and
draws from the posterior (dotted lines), with α = 10; now the

posterior is much closer to the prior.
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Pólya Tree Analysis of the NB10 Data

I used the functions PTlm and PTdensity in the CRAN package
DPpackage to perform a number of analyses of the NB10 data.

PTdensity fits the model

(G |B) ∼ PT (Π,Aα), N(µ, σ2) determines Π

(yi |G B)
IID∼ G (34)

(µ, σ2|B) ∼ p(µ, σ2|B)

(α|B) ∼ p(α|B) .

You have a number of choices: You can fix µ, σ and/or α at single
numbers rather than giving them non-point-mass prior distributions,
You can set m (the number of levels of the Pólya tree; the symbol for

this in the code is M), You can fiddle with the MCMC tuning
constants — I’ll cover all of this in a real-time demonstration during

the short course.
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BNP Case Study (continued)

To serve as the basis of the M∗ (cheating) approach (in which You
look at the data for inspiration on which models to fit), here’s a

table of the actual data values:

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24

Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently (description) IHGA lowered the mean hospitalization rate
(for these elderly Danish people, at least) by (0.944− 0.768) = 0.176,
which is a

{
100

(
0.768−0.944

0.944

) .
=
}

19% reduction from the control level,
a difference that’s large in clinical terms, but (inference) how strong

is the evidence for a positive effect in P = {all people similar to those
in the experiment}?

It’s natural to think initially of parallel Poisson(λC ) and Poisson(λT )
modeling (M1), but there’s substantial over-dispersion: the C and T

variance-to-mean ratios are 1.242

0.944

.
= 1.63 and 1.012

0.768

.
= 1.33.
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Bayesian Parametric Modeling

Unfortunately we have no covariates to help explain the extra-Poisson
variability, and there’s little information external to the data set

about the treatment effect; this latter state of knowledge is expressed
in prior distributions on parameters by making them diffuse (i.e.,

ensuring they have large variability to express
substantial uncertainty).

In this situation You could fit parallel Negative Binomial models
(M2), but a parametric choice that more readily generalizes is

obtained by letting (xi , yi ) = (C/T status, outcome) — so that xi = 1 if
Treatment, 0 if Control and yi = the number of hospitalizations —

for person i = 1, . . . , n and considering the
random-effects Poisson regression model (M3):

(yi |λi M3 B)
indep∼ Poisson(λi )

log(λi ) = γ0 + γ1xi + εi (35)

(εi |σ2
ε M3 B)

IID∼ N
(
0, σ2

ε

)(
γ0 γ1 σ

2
ε |M3 B

)
∼ diffuse.

In this model the unknown of main policy interest is
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BNP Example

θ = population T̄

population C̄
= eγ1 ; the other parameters can be collected in a

vector η = (γ0, σ
2
ε ); and the random effects εi can be thought of as

proxying for the combined main effect
∑J

j=2 γj(xij − x̄j) of all the
unobserved relevant covariates (age, baseline health status, ...).

The first line of (35) makes good scientific sense (the yi are counts of
relatively rare events), but the Gaussian assumption for the random
effects is conventional and not driven by the science; a potentially
better model (M4) is obtained by putting a prior distribution on the
CDF of the εi that’s centered at the N

(
0, σ2

ε

)
distribution but that

expresses substantial prior uncertainty about the
Gaussian assumption:

(yi |λi M4 B)
indep∼ Poisson(λi )

log(λi ) = γ0 + γ1xi + εi (36)

(εi |F M4 B)
IID∼ F

(F |ασ2
ε M4 B) ∼ DP(α,F0), F0 = N(0, σ2

ε )(
γ0 γ1 σ

2
ε |M4 B

)
∼ diffuse; (α|M4) ∼ small positive .
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Dirichlet-Process Mixture Modeling

Many Bayesian prior distributions p(θ|Mj B) have two user-friendly
inputs: a quantity θ0 that acts like a prior estimate of the unknown
θ, and a number n0 that behaves like a prior sample size (i.e., a

measure of how tightly the prior is concentrated around θ0); DP
priors are no exception to this pattern.

In equation (36), DP(α,F0) is a Dirichlet-process prior on F with prior
estimate F0 = N(0, σ2

ε ) and a quantity (α) that behaves something like
a prior sample size; this is referred to as Dirichlet-process mixture
modeling, because (36) is a mixture model — each person in the

study has her/his own λ, drawn from FC (control) or FT (treatment) —
in which uncertainty about FC and FT is quantified via a DP.

NB Bayesian model averaging (BMA) with a finite set of models
can be regarded as a crude approximation to what Bayesian

nonparametric (BNP) modeling is trying to do, namely average over
Your uncertainty in model space to provide an honest representation

of Your overall uncertainty that doesn’t condition on things You
don’t know are true.
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Cross-Validation

• Calibration cross-validation (CCV): The way the IHGA example
unfolded looks a lot like the M∗ approach I condemned previously: I

used the entire data set to suggest which models to consider.

This has the (strong) potential to underestimate uncertainty;
Bayesians (like everybody else) need to be able to look at the data to

suggest alternative models, but all of us need to do so
in a way that’s well-calibrated.

Cross-validation — partitioning the data (e.g., exchangeably) into
subsets used for different tasks (modeling, validation, ...) can help.

— The M∗ approach is an example of what might be called 1CV
(one-fold cross-validation): You use the entire data set D both to

model and to see how good the model is (this is clearly inadequate).

— 2CV (two-fold cross-validation) is frequently used: You (a)
partition the data into modeling (M) and validation (V) subsets, (b)
use M to explore a variety of models until You’ve found a “good” one
M∗, and (c) see how well M∗ validates in V (a useful Bayesian way to

do this is to use the data in M
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Calibration Cross-Validation (CCV)

to construct posterior predictive distributions for all of the data
values in V and see how the latter compare with the former).

2CV is a lot better than 1CV, but what do You do (as frequently
happens) if M∗ doesn’t validate well in V?

— CCV (calibration cross-validation): going out one more term in
the Taylor series (so to speak),

(a) partition the data into modeling (M), validation (V) and
calibration (C) subsets,

(b) use M to explore a variety of models until You’ve found one or
more plausible candidates M = {M1, . . . ,Mm},

(c) see how well the models in M validate in V,

(d) if none of them do, iterate (b) and (c) until You do get good
validation, and

(e) fit the best model in M (or, better, use BMA) on the data in M +
V, and report both (i) inferential conclusions based on this fit and (ii)
the quality of predictive calibration of Your model/ensemble) in C.
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CCV (continued)

The goal with this method is both

(1) a good answer, to the main scientific question, that has paid a
reasonable price for model uncertainty (the inferential answer is
based only on M + V, making Your uncertainty bands wider) and

(2) an indication of how well calibrated {the iterative fitting process
yielding the answer in (1)} is in C (a good proxy for future data).

You can use decision theory (Draper, 2011) to decide how much data
to put in each of M, V and C: the more important calibration is to
You, the more data You want to put in C, but only up to a point,

because getting a good answer to the scientific question is also
important to You.

This is related to the machine-learning practice (e.g., Hastie,
Tibshirani, Friedman [HTF] 2009) of Train/Validation/Test

partitioning, with one improvement (decision theory provides an
optimal way to choose the data subset sizes); I don’t agree with HTF

that this can only be done with large data sets: it’s even more
important to do it with small and medium-size data sets (You just

need to work with multiple (M, V, C) partitions and average).
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Modeling Algorithm

CCV provides a way to pay the right price for hunting around in the
data for good models, motivating the following modeling algorithm:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else

(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.

(e) Go to (b).

For human analysts the choice in (a) is not hard, although it might
not be easy to automate in full generality; for humans the choice in

(c) demands creativity, and as a profession, at present, we have no
principled way to automate it; here I want to focus on the questions

in (b) and (d):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?
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The Modeling-As-Decision Principle

These questions sound fundamental but are not: better for what
purpose? Good enough for what purpose? This implies (see, e.g.,

Bernardo and Smith, 1995; Draper, 1996; Key et al., 1999) a

Modeling-As-Decision Principle: Making clear the purpose to which

the modeling will be put transforms model specification into a
decision problem, which should be solved by maximizing expected

utility with a utility function tailored to the specific problem
under study.

Some examples of this may be found (e.g., Draper and Fouskakis, 2008:
variable selection in generalized linear models under cost

constraints), but this is hard work; there’s a powerful desire for
generic model-comparison methods whose utility structure may

provide a decent approximation to problem-specific utility elicitation.

Two such methods are Bayes factors and log scores.

• Bayes factors. It looks natural to compare models on the basis of

their posterior probabilities; from Bayes’s Theorem in odds form,
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Bayes Factors

p(M2|D B)

p(M1|D B)
=

[
p(M2|B)

p(M1|B)

]
·
[
p(D|M2 B)

p(D|M1 B)

]
; (37)

the first term on the right is just the prior odds in favor of M2 over M1,
and the second term on the right is called the Bayes factor,

so in words equation (37) says
posterior

odds
for M2

over M1

 =

 prior odds
for M2

over M1

 ·
 Bayes factor

for M2

over M1

 . (38)

(Bayes factors seem to have first been considered by Turing and Good
(∼ 1941), as part of the effort to break the German Enigma codes.)

Odds o are related to probabilities p via o = p
1−p and p = o

1+o ; these
are monotone increasing transformations, so the decision rules
{choose M2 over M1 if the posterior odds for M2 are greater} and
{choose M2 over M1 if p(M2|D B) > p(M1|D B)} are equivalent.
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Decision-Theoretic Basis for Bayes Factors

This approach does have a decision-theoretic basis, but it’s rather odd:
if You pretend that the only possible data-generating mechanisms are
M = {M1, . . . ,Mm} for finite m, and You pretend that one of the

models in M must be the true data-generating mechanism MDG , and
You pretend that the utility function

U(M,MDG ) =

{
1 if M = MDG

0 otherwise

}
(39)

reflects Your real-world values, then it’s decision-theoretically
optimal to choose the model in M with the highest posterior

probability (i.e., that choice maximizes expected utility).

If it’s scientifically appropriate to take the prior model probabilities
p(Mj |B) to be equal, this rule reduces to choosing the model with the

highest Bayes factor in favor of it; this can be found by (a)
computing the Bayes factor in favor of M2 over M1,

BF (M2 over M1|D B) =
p(D|M2 B)

p(D|M1 B)
, (40)
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Parametric Model Comparison

favoring M2 if BF (M2 over M1|D B) > 1, i.e., if
p(D|M2 B) > p(D|M1 B), and calling the better model M∗; (b)

computing the Bayes factor in favor of M∗ over M3, calling the better
model M∗; and so on up through Mm.

Notice that there’s something else a bit funny about this: p(D|Mj B) is

the prior (not posterior) predictive distribution for the data set D

under model Mj , so the Bayes factor rule tells You to choose the
model that does the best job of predicting the data

before any data arrives.

Let’s look at the general problem of parametric model comparison,
in which model Mj has its own parameter vector γj (of length kj),

where γj = (θ, ηj), and is specified by

Mj :

{
(γj |Mj B) ∼ p(γj |Mj B)

(D|γj Mj B) ∼ p(D|γj Mj B)

}
. (41)

Here the quantity p(D|Mj B) that defines the Bayes factor is
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Integrated Likelihoods

p(D|Mj B) =

∫
p(D|γj Mj B) p(γj |Mj B) dγj ; (42)

this is called an integrated likelihood (or marginal likelihood) because
it tells You to take a weighted average of the sampling

distribution/likelihood p(D|γj Mj B), but NB weighted by the

prior for γj in model Mj ; as noted above, this may seem surprising, but

it’s correct, and it can lead to trouble, as follows.

The first trouble is technical: the integral in (42) can be difficult to
compute, and may not even be easy to approximate.

The second thing to notice is that (42) can be rewritten as

p(D|Mj B) = E(γj |Mj B) p(D|γj Mj B) . (43)

In other words the integrated likelihood is the expectation of the

sampling distribution over the prior for γj in model Mj (evaluated at

the observed data set D).

A few additional words about prior distributions on parameters:
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Instability of Bayes Factors

A distribution (density) for a real-valued parameter θ that
summarizes the information

{θ is highly likely to be near θ0}

will have most of its mass concentrated near θ0,
whereas the information

{not much is known about θ}

would correspond to a density that’s rather flat (or diffuse) across a
broad range of θ values; thus when the scientific context offers little

information about γj external to the data set D, this translates into a
diffuse prior on γj , and this spells trouble for Bayes factors:

p(D|Mj B) = E(γj |Mj B) p(D|γj Mj B) .

You can see that if the available information implies that p(γj |Mj B)
should be diffuse, the expectation defining the integrated likelihood

can be highly unstable with respect to small details in how the
diffuseness is specified.

Example: Integer-valued data set D = (y1 . . . yn); ȳ = 1
n

∑n
i=1 yi ;
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Instability of Bayes Factors (continued)

M1 = Geometric(θ1) likelihood with a Beta(α1, β1) prior on θ1;

M2 = Poisson(θ2) likelihood with a Gamma(α2, β2) prior on θ2.

The Bayes factor in favor of M1 over M2 turns out to be

Γ(α1 + β1) Γ(n + α1) Γ(nȳ + β1) Γ(α2) (n + β2)nȳ+α2
(∏n

i=1 yi !
)

Γ(α1) Γ(β1) Γ(n + nȳ + α1 + β1) Γ(nȳ + α2)βα2
2

. (44)

With standard diffuse priors — take (α1, β1) = (1, 1) and
(α2, β2) = (ε, ε) for some ε > 0 — the Bayes factor reduces to

Γ(n + 1) Γ(nȳ + 1) Γ(ε) (n + ε)nȳ+ε
(∏n

i=1 yi !
)

Γ(n + nȳ + 2) Γ(nȳ + ε) εε
. (45)

This goes to +∞ as ε ↓ 0, i.e., You can make the evidence in favor of
the Geometric model over the Poisson as large as You want, no

matter what the data says, as a function of a quantity near 0 that
scientifically You have no basis to specify.

If instead You fix and bound (α2, β2) away from 0 and let (α1, β1) ↓ 0,
You can completely reverse this and make the evidence in favor of the
Poisson model over the Geometric as large as You want (for any y).
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Approximating Integrated Likelihoods

The bottom line is that, when scientific context suggests diffuse
priors on the parameter vectors in the models being compared, the
integrated likelihood values that are at the heart of Bayes factors

can be hideously sensitive to small arbitrary details in how the
diffuseness is specified.

This has been well-known for quite awhile now, and it’s given rise to an
amazing amount of fumbling around, as people who like Bayes

factors have tried to find a way to fix the problem: at this point the list
of attempts includes {partial, intrinsic, fractional} Bayes factors,

well-calibrated priors, conventional priors, intrinsic priors, expected
posterior priors, ... (e.g., Pericchi 2004), and all of them exhibit a level
of ad-hockery that’s otherwise absent from the Bayesian paradigm.

Approximating integrated likelihoods. The goal is

p(D|Mj B) =

∫
p(D|γj Mj B) p(γj |Mj B) dγj ; (46)

maybe there’s an analytic approximation to this that will suggest
how to avoid trouble.
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Laplace Approximation

Laplace (1785) already faced this problem 225 years ago, and he
offered a solution that’s often useful, which people now call a Laplace

approximation in his honor (it’s an example of what’s also known in the
applied mathematics literature as a saddle-point approximation).

Noticing that the integrand P∗(γj) ≡ p(D|γj Mj B) p(γj |Mj B) in
p(D|Mj B) is an un-normalized version of the posterior distribution

p(γj |D Mj B), and appealing to a Bayesian version of the Central Limit
Theorem — which says that with a lot of data, such a posterior

distribution should be close to Gaussian, centered at the posterior
mode γ̂j — You can see that (with a large sample size n) logP∗(γj)

should be close to quadratic around that mode; the Laplace idea is to
take a Taylor expansion of logP∗(γj) around γ̂j and retain only the

terms out to second order; the result is

log p(D|Mj B) = log p(D|γ̂j Mj B) + log p(γ̂j |Mj B)

+
kj
2

log 2π − 1

2
log |Îj |+ O

(
1

n

)
; (47)

here γ̂j is the maximum likelihood estimate of the parameter vector

γj under model Mj and Îj is the observed information matrix under Mj .
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BIC

Notice that the prior on γj in model Mj enters into this approximation
through log p(γ̂j |Mj B), and this is a term that won’t go away with

more data: as n increases this term is O(1).

Using a less precise Taylor expansion, Schwarz (1978) obtained a
different approximation that’s the basis of what has come to be

known as the Bayesian information criterion (BIC):

log p(y |Mj B) = log p(y |γ̂j Mj B)− kj
2

log n + O(1). (48)

People often work with a multiple of this for model comparison:

BIC (Mj |D B) = −2 log p(D|γ̂j Mj B) + kj log n (49)

(the −2 multiplier comes from deviance considerations); multiplying
by –2 induces a search (with this approach) for models with small BIC.

This model-comparison method makes an explicit trade-off between
model complexity (which goes up with kj at a log n rate) — and model

lack of fit (through the −2 log p(D|γ̂j Mj B) term).
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BIC and the Unit-Information Prior

BIC is called an information criterion because it resembles
AIC (Akaike, 1974). which was derived using

information-theoretic reasoning:

AIC (Mj |D B) = −2 log p(D|γ̂j Mj B) + 2 kj . (50)

AIC penalizes model complexity at a linear rate in kj and so can have
different behavior than BIC, especially with moderate to large n (BIC

tends to choose simpler models; more on this later).

It’s possible to work out what implied prior BIC is using, from the
point of view of the Laplace approximation; the result is

(γj |Mj B) ∼ Nkj (γ̂j , nÎ
−1
j ). (51)

In the literature this is called a unit-information prior, because in large
samples it corresponds to the prior being equivalent to 1 new

observation yielding the same sufficient statistics
as the observed data.

This prior is data-determined, but this effect is close to negligible
even with only moderate n.
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Bayes Factors; Log Scores

The BIC approximation to Bayes factors has the extremely desirable
property that it’s free of the hideous instability of integrated

likelihoods with respect to tiny details, in how diffuse priors are
specified, that do not arise directly from the science of the problem;

in my view, if You’re going to use Bayes factors to choose among
models, You’re well advised to use a method like BIC that protects

You from Yourself in mis-specifying those tiny details.

I said back on page 84 that there are two generic utility-based
model-comparison methods: Bayes factors and log scores.

• Log scores are based on the

Prediction Principle: Good models make good predictions, and bad

models make bad predictions; that’s one scientifically important way
You know a model is good or bad.

This suggests developing a generic utility structure based on predictive
accuracy: consider first a setting in which D = y = (y1 . . . yn) for

real-valued yi and the models to be compared are (as before)
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Log Scores

Mj:

{
(γj |Mj B) ∼ p(γj |Mj B)

(y |γj Mj B) ∼ p(y |γj Mj B)

}
. (52)

When comparing a (future) data value y∗ with the predictive
distribution p(·|y Mj B) for it under Mj , it’s been shown that (under

reasonable optimality criteria) all optimal scores measuring the
discrepancy between y∗ and p(·|y Mj B) are linear functions of

log p(y∗|y Mj B) (the log of the height of the predictive distribution at
the observed value y∗).

Using this fact, perhaps the most natural-looking form for a composite
measure of predictive accuracy of Mj is a cross-validated version of

the resulting log score,

LSCV (Mj |y B) =
1

n

n∑
i=1

log p(yi |y−i Mj B) , (53)

in which y−i is the y vector with observation i omitted.

Somewhat surprisingly, Draper and Krnjajić (2010) have shown that a
full-sample log score that omits the leave-one-out idea,
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Full-Sample Log Score

LSFS(Mj |y B) =
1

n

n∑
i=1

log p(yi |y Mj B) , (54)

made operational with the rule {favor M2 over M1 if
LSFS(M2|y B) > LSFS(M1|y B)}, can have better small-sample model

discrimination ability than LSCV (in addition to being faster to
approximate in a stable way).

If, in the spirit of calibration, You’re prepared to think about an
underlying data-generating model MDG , LSFS also has a nice
interpretation as an approximation to the Kullback-Leibler
divergence between MDG and p(·|y Mj B), in which MDG is

approximated by the empirical CDF:

KL[MDG ||p(·|y Mj B)] = EMDG
logMDG − EMDG

log p(·|y Mj B)
.

= EMDG
logMDG − LSFS(Mj |y B) ; (55)

the first term on the right side of (55) is constant in p(·|y Mj B), so
minimizing KL[MDG ||p(·|y Mj B)] is approximately the same as

maximizing LSFS .
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Bayes Factors/BIC Versus Log Scores

What follows is a sketch of recent results (Draper, 2011) based on
simulation experiments with realistic sample sizes; in my view

standard asymptotic calculations — choosing between the models
in M = {M1,M2} as n→∞ with M remaining fixed — are

essentially irrelevant in calibration studies, for two reasons:

(1) With increasing n, You’ll want M to grow to satisfy Your desire
to do a better job of capturing real-world complexities, and

(2) Data usually accumulate over time, and with increasing n it
becomes more likely that the real-world process You’re modeling is

not stationary.

• Versions of Bayes factors that behave sensibly with diffuse priors
on the model parameters (e.g., intrinsic Bayes factors: Berger and

Pericchi, 1996, and more recent cousins) tend to have model
discrimination performance similar to that of BIC in calibration

(repeated-sampling with known MDG ) environments; I’ll show results
for BIC here.

Example: Consider assessing the performance of a drug, for lowering

98 / 140



Clinical Trial to Quantify Improvement

systolic blood pressure (SBP) in hypertensive patients, in a phase–II
clinical trial, and suppose that a Gaussian sampling distribution for
the outcome variable is reasonable (possibly after transformation).

Two frequent designs in settings of this type have as their goals
quantifying improvement and establishing bio-equivalence.

• (quantifying improvement) Here You want to estimate the mean
decline in blood pressure under this drug, and it would be natural to
choose a repeated-measures (pre-post) experiment, in which SBP

values are obtained for each patient, both before and after taking the
drug for a sufficiently long period of time for its effect to

become apparent.

Let θ stand for the mean difference (SBPbefore − SBPafter ) in the
population of patients to which it’s appropriate to generalize from

the patients in Your trial, and let D = y = (y1 . . . yn). where yi is the
observed difference (SBPbefore − SBPafter ) for patient i (i = 1, . . . , n).

The real-world purpose of this experiment is to decide whether to
take the drug forward to phase III; under the weight of 20th-century
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Decision, Not Inference

inertia (in which decision-making was strongly — and incorrectly —
subordinated to inference), Your first impulse might be to treat this

as an inferential problem about θ, but it’s not;
it’s a decision problem that involves θ.

This is an example of the

• Decision-Versus-Inference Principle: We should all get out of the

habit of using inferential methods to make decisions: their implicit
utility structure is often far from optimal.

The action space here is A = (a1, a2) = (don’t take the drug forward
to phase III, do take it forward), and a sensible utility function

U(aj , θ) should be continuous and monotonically increasing in θ over
a broad range of positive θ values (the bigger the SBP decline for

hypertensive patients who start at (say) 160 mmHg, the better, up
to a drop of about 40 mmHg, beyond which the drug starts inducing

fainting spells).

However, to facilitate a comparison between BIC and log scores, here
I’ll compare two models M1 and M2 that dichotomize the θ range,
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Models For Quantifying Improvement

but not at 0: despite a century of textbook claims to the contrary,
there’s nothing special about θ = 0 in this setting, and in fact You

know scientifically that θ is not exactly 0 (because the outcome

variable in this experiment is conceptually continuous).

What matters here is whether θ > ∆, where ∆ is a
practical significance improvement threshold below which the drug is

not worth advancing into phase III (for example, any drug that did
not lower SBP for severely hypertensive patients — those whose

pre-drug values average 160 mmHg or more — by at least 15 mmHg
would not deserve further attention).

With little information about θ external to this experimental data
set, what counts in this situation is the comparison of the following

two models:

M1:

{
(θ|B) ∼ diffuse for θ ≤ ∆

(yi |θB)
IID∼ N(θ, σ2)

}
and (56)

M2:

{
(θ|B) ∼ diffuse for θ > ∆

(yi |θB)
IID∼ N(θ, σ2)

}
, (57)
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Quantifying Improvement: Model Comparison Methods

in which for simplicity I’ll take σ2 to be known (the results are similar
with σ2 learned from the data).

This gives rise to three model-selection methods that can be
compared calibratively:

• Full-sample log scores: choose M2 if LSFS(M2|y B) > LSFS(M1|y B).

• Posterior probability: let

M∗ = {(θ|B) ∼ diffuse on <, (yi |θB)
IID∼ N(θ, σ2)} and choose M2 if

p(θ > ∆|y M∗ B) > 0.5.

• BIC: choose M2 if BIC (M2|y B) < BIC (M1|y B).

Simulation experiment details, based on the SBP drug trial: ∆ = 15;
σ = 10; n = 10, 20, . . . , 100; data-generating θDG = 11, 12, . . . , 19;

α = 0.05; 1,000 simulation replications; Monte-Carlo approximations
of the predictive ordinates in LSFS based on 10,000 posterior draws.

The figures below give Monte-Carlo estimates of the
probability that M2 is chosen.
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LSFS Results: Quantifying Improvement
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This exhibits all the monotonicities that it should, and correctly
yields 0.5 for all n with θDG = 15.
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Posterior Probability Results: Quantifying Improvement
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Even though the LSFS and posterior-probability methods are quite
different, their information-processing in discriminating between M1

and M2 is identical to within ± 0.003 (well within simulation noise
with 1,000 replications).
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BIC Results: Quantifying Improvement
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Here BIC and the posterior-probability approach are algebraically
identical, making the model-discrimination performance of all three

approaches the same in this problem.

105 / 140



Establishing Bio-Equivalence

• (establishing bio-equivalence) In this case there’s a previous
hypertension drug B (call the new drug A) and You’re wondering if

the mean effects of the two drugs are close enough to regard them as
bio-equivalent.

A good design here would again have a repeated-measures character,
in which each patient’s SBP is measured four times: before and after

taking drug A, and before and after taking drug B (allowing enough
time to elapse between taking the two drugs for the effects of the first

drug to disappear).

Let θ stand for the mean difference

[(SBPbefore,A − SBPafter ,A)− (SBPbefore,B − SBPafter ,B)] (58)

in the population of patients to which it’s appropriate to generalize
from the patients in Your trial, and let yi be the corresponding

difference for patient i (i = 1, . . . , n).

Again in this setting there’s nothing special about θ = 0, and as

before You know scientifically that θ is not exactly 0;
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Bio-Equivalence Modeling

what matters here is whether |θ| ≤ λ, where λ > 0 is a practical
significance bio-equivalence threshold (e.g., 5 mmHg).

Assuming as before a Gaussian sampling story and little information
about θ external to this experimental data set, what counts here is a

comparison of

M3:

{
(θ|B) ∼ diffuse for |θ| ≤ λ

(yi |θB)
IID∼ N(θ, σ2)

}
and (59)

M4:

{
(θ|B) ∼ diffuse for |θ| > λ

(yi |θB)
IID∼ N(θ, σ2)

}
, (60)

in which σ2 is again taken for simplicity to be known.

A natural alternative to BIC and LSFS here
is again based on posterior probabilities: as before, let

M∗ = {(θ|B) ∼ diffuse on <, (yi |θB)
IID∼ N(θ, σ2)}, but this time favor

M4 over M3 if p(|θ| > λ|y M∗ B) > 0.5.

As before, a careful real-world choice between M3 and M4 in this case
would be based on a utility function that quantified the
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Bio-Equivalence Model Comparison

costs and benefits of

{claiming the two drugs were bio-equivalent when they were,
concluding that they were bio-equivalent when they were not,

deciding that they were not bio-equivalent when they were,
judging that they were not bio-equivalent when they were not},

but here I’ll again simply compare the calibrative performance of
LSFS , posterior probabilities, and BIC.

Simulation experiment details, based on the SBP drug trial: λ = 5;
σ = 10; n = 10, 20, . . . , 100; data-generating

θDG = {−9,−7,−5,−3,−1, 0, 1, 3, 5, 7, 9}; α = 0.05; 1,000 simulation
replications, M = 10,000 Monte-Carlo draws for LSFS .

NB It has previously been established that when making the
(unrealistic) sharp-null comparison θ = 0 versus θ 6= 0 in the context

of (yi |θB)
IID∼ N(θ, σ2), as n→∞ LSFS selects the θ 6= 0 model with

probability → 1 even when θDG = 0; this “inconsistency of log scores
at the null model” has been used by some people as a reason to

dismiss log scores as a model-comparison method.
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LSFS Results: Bio-Equivalence
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In this more realistic setting, comparing |θ| ≤ λ versus |θ| > λ with
λ > 0, LSFS has the correct large-sample behavior, both when

|θDG | ≤ λ and when |θDG | > λ.
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Posterior Probability Results: Bio-Equivalence
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The qualitative behavior of the LSFS and posterior-probability
methods is identical, although there are some numerical differences

(highlighted later).
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BIC Results: Bio-Equivalence
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In the quantifying-improvement case, the BIC and
posterior-probability methods were algebraically identical; here they

nearly coincide (differences of ± 0.001 with
1,000 simulation repetitions).
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LSFS Versus BIC Results: Bio-Equivalence
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If You call choosing M4: |θ| > λ when |θDG | ≤ λ a false-positive error
and choosing M3: |θ| ≤ λ when |θDG | > λ a false-negative mistake,

with n = 10 there’s a trade-off: LSFS has more false positives and BIC
has more false negatives.
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LSFS Versus BIC Results: Bio-Equivalence
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By the time You reach n = 50 in this problem, LSFS and BIC are
essentially equivalent.
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For People Who Like to Test Sharp-Null Hypotheses

An extreme example of the false-positive/false-negative differences
between LSFS and BIC in this setting may be obtained, albeit

unwisely, by letting λ ↓ 0.

This is unwise here (and is often unwise) because it amounts, in
frequentist language, to testing the sharp-null hypothesis H0: θ = 0

against the alternative HA: θ 6= 0.

It’s necessary to distinguish between problems in which there is or is
not a structural singleton in the (continuous) set Θ of possible

values of θ: settings where it’s scientifically important to distinguish
between θ = θ0 and θ 6= θ0 — an example would be discriminating

between {these two genes are on different chromosomes (the
strength θ of their genetic linkage is θ0 = 0)} and {these two genes

are on the same chromosome (θ > 0)}.

Sharp-null testing without structural singletons is always unwise
because

(a) You already know from scientific context, when the outcome
variable is continuous, that H0 is false, and (relatedly)
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Testing Sharp-Null Hypotheses (continued)

(b) it’s silly from a measurement point of view: with a
(conditionally) IID N(θ, σ2) sample of size n, Your measuring

instrument ȳ is only accurate to resolution σ√
n
> 0; claiming to be

able to discriminate between θ = 0 and θ 6= 0 — with realistic values
of n — is like someone with a scale that’s only accurate to the

nearest ounce telling You that Your wedding ring has 1 gram (0.035
ounce) less gold in it than the jeweler claims it does.

Nevertheless, for people who like to test sharp-null hypotheses, here
are some results: here I’m comparing the models (i = 1, . . . , n)

M5:

{
(σ2|B) ∼ diffuse on (0, large)

(yi |σ2 B)
IID∼ N(0, σ2)

}
and (61)

M6:

{
(θ σ2|B) ∼ diffuse on (−large, large)× (0, large)

(yi |θ σ2 B)
IID∼ N(θ, σ2)

}
, (62)

In this case a natural Bayesian competitor to BIC and LSFS would be
to construct the central 100(1− α)% posterior interval for θ under

M6 and choose M6 if this interval doesn’t contain 0.
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Testing Sharp-Null Hypotheses (continued)

Simulation experiment details: data-generating σDG = 10;
n = 10, 20, . . . , 100; data-generating θDG = {0, 1, . . . , 5}; 1,000

simulation replications, M = 100,000 Monte-Carlo draws for LSFS ;
the figures below give Monte-Carlo estimates of the

probability that M6 is chosen.

As before, let’s call choosing M6: θ 6= 0 when θDG = 0 a false-positive
error and choosing M5: θ = 0 when θDG 6= 0 a false-negative mistake.
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LSFS Results: Sharp-Null Testing
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In the limit as λ ↓ 0, the LSFS approach makes hardly any
false-negative errors but quite a lot of false-positive mistakes.

117 / 140



Interval (α = 0.05) Results: Sharp-Null Testing
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The behavior of the posterior interval approach is of course quite
different: it makes many false-negative errors because its rate of

false-positive mistakes is fixed at 0.05.
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Interval (α Modified to LSFS Behavior) Results
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When the interval method is modified so that α matches the LSFS
behavior at θDG = 0 (letting α vary with n), the two approaches have

identical model-discrimination ability.
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BIC Results: Sharp-Null Testing
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BIC’s behavior is quite different from that of LSFS and fixed-α
posterior intervals: its false-positive rate decreases as n grows, but it

suffers a high false-negative rate to achieve this goal.
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Interval (α Modified to BIC Behavior) Results

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior Interval (alpha Modified to BIC Behavior)

Data−Generating Theta

P
( 

M
.6

 C
ho

se
n 

)

n = 10

n = 100

n = 10

n = 100

When the interval method is modified so that α matches the BIC
behavior at θDG = 0 (again letting α vary with n), the two approaches

have identical model-discrimination ability.

121 / 140



LSFS Versus BIC: Geometric Versus Poisson

As another model-comparison example, suppose You have an
integer-valued data set D = y = (y1 . . . yn) and You wish to compare

M7 = Geometric(θ1) sampling distribution with a
Beta(α1, β1) prior on θ1, and

M8 = Poisson(θ2) sampling distribution with a
Gamma(α2, β2) prior on θ2.

LSFS and BIC both have closed-form expressions in this situation:
with s =

∑
i=1 yi and θ̂1 = α1+n

α1+β1+s+n ,

LSFS(M7|y B) = log Γ(α1 + n + β1 + s) + log Γ(α1 + n + 1)

− log Γ(α1 + n)− log Γ(β1 + s) (63)

+
1

n

n∑
i=1

[log Γ(β1 + s + yi )

− log Γ(α1 + n + β1 + s + yi + 1)] ,

BIC (M7|y B) = −2[n log θ̂1 + s log(1− θ̂1)] + log n , (64)
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Geometric Versus Poisson (continued)

LSFS(M8|y B) = (α2 + s) log(β2 + n)− log Γ(α2 + s)

−(α2 + s) log(β2 + n + 1) (65)

+
1

n

n∑
i=1

[log Γ(α2 + s + yi )− yi log(β2 + n + 1)

− log Γ(yi + 1)] , and

BIC (M8|y B) = −2[s log θ̂2 − n θ̂2 −
n∑

i=1

log(yi !)] + log n , (66)

where θ̂2 = α2+s
β2+n .

Simulation details: n = {10, 20, 40, 80}, α1 = β1 = α2 = β2 = 0.01,
1,000 simulation replications; it turns out that with (θ1)DG = 0.5

(Geometric) and (θ2)DG = 1.0 (Poisson), both data-generating
distributions are monotonically decreasing and not easy to tell apart

by eye.

Let’s call choosing M8 (Poisson) when MDG = Geometric a
false-Poisson error and choosing M7 (Geometric) when MDG =

Poisson a false-Geometric mistake.
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Geometric Versus Poisson (continued)

The table below records the Monte-Carlo probability that the
Poisson model was chosen.

M.DG = Poisson M.DG = Geometric

n LS.FS BIC n LS.FS BIC

10 0.8967 0.8661 10 0.4857 0.4341

20 0.9185 0.8906 20 0.3152 0.2671

40 0.9515 0.9363 40 0.1537 0.1314

80 0.9846 0.9813 80 0.0464 0.0407

Both methods make more false-Poisson errors than false-Geometric
mistakes; the results reveal once again that neither BIC nor LSFS

uniformly dominates — each has a different pattern of false-Poisson
and false-Geometric errors (LSFS correctly identifies the Poisson

more often than BIC does, but as a result BIC gets the Geometric
right more often than LSFS).
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Properties of LSFS

• Log scores are entirely free from the diffuse-prior problems
bedeviling Bayes factors:

LSFS(Mj |y B) =
1

n

n∑
i=1

log p(yi |y Mj B) ,

in which

p(yi |y Mj B) =

∫
p(yi |γj Mj B) p(γj |y Mj B) dγj (67)

= E(γj |y Mj B)p(yi |γj Mj B) ;

this expectation is over the posterior (not the prior) distribution for
the parameter vector γj in model Mj , and is therefore completely
stable with respect to small variations in how prior diffuseness (if
scientifically called for) is specified, even with only moderate n.

• Following the Modeling-As-Decision Principle, the
decision-theoretic justification for Bayes factors involves not only

the Bayes factors themselves but also the prior model probabilities,
which can be hard to specify in a scientifically-meaningful way: under

the Bayes-factor (possibly unrealistic) 0/1 utility structure,
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Properties of LSFS (continued)

You’re supposed to choose the model with the highest posterior
probability, not the one with the biggest Bayes factor.

By contrast, specification of prior model probabilities doesn’t arise
with log scores, which have a direct decision-theoretic justification

based on the Prediction Principle.

• It may seem that log scores have no penalty for unnecessary model
complexity, but this is not true: for example, if one of Your models
carries around a lot of unnecessary parameters, this will needlessly
inflate its predictive variances, making the heights of its predictive

densities go down, thereby lowering its log score.

• It may also seem that the behavioral rule based on
posterior Bayes factors (Aitkin 1991) is the same as the rule based on

LSFS , which favors model Mj over Mj′ if

n LSFS(Mj |y ,B) > n LSFS(Mj′ |y ,B). (68)

But this is not true either: for example, in the common situation in
which the data set D consists of observations yi that are conditionally

IID from p(yi |ηj ,Mj ,B) under Mj ,
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Summary

nLSFS(Mj |y ,B) = log
n∏

i=1

[∫
p(yi |ηj ,Mj ,B) p(ηj |y ,Mj ,B) dηj

]
, (69)

and this is not the same as

log

∫ [ n∏
i=1

p(yi |ηj ,Mj ,B)

]
p(ηj |y ,Mj ,B) dηj = L̄PBFj (70)

because the product and integral operators do not commute.

• Some take-away messages:

— In the bio-equivalence example, even when You (unwisely) let
λ ↓ 0, thereby testing a sharp-null hypothesis, the asymptotic

behavior of log scores is irrelevant; what counts is the behavior of

log scores and Bayes factors with Your sample size and the models

being compared, and for any given n it’s not possible to say that

the false-positive/false-negative trade-off built into Bayes factors is
universally better for all applied problems than the

false-positive/false-negative trade-off built into log scores,
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Summary (continued)

or vice versa — You have to think it through in each problem.

For instance, the tendency of log scores to choose the “bigger”
model in a nested-model comparison is exactly the right qualitative

behavior in the following two examples (and many more such
examples exist):

— Variable selection in searching through many compounds or
genes to find successful treatments: here a false-positive mistake

(taking an ineffective compound or gene forward to the next level of
investigation) costs the drug company $C , but a false-negative error

(failing to move forward with a successful treatment, in a
highly-competitive market) costs $k C with k = 10–100.

— In a two-arm clinical-trial setting, consider the random-effects
Poisson regression model

(yi |λi ,B)
indep∼ Poisson(λi )

log λi = β0 + β1xi + ei (71)

(ei |σ2
e ,B)

IID∼ N(0, σ2
e ) , (β0, β1, σ

2
e ) ∼ diffuse ,
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Summary (continued)

where the yi are counts of a relatively rare event and xi is 1 for the
treatment group and 0 for control; You would consider fitting this
model instead of its fixed-effects counterpart, obtained by setting

σ2
e = 0, to describe unexplainable heterogeneity (Poisson

over-dispersion).

In this setting, Bayes factors will make the mistake of {telling You
that σ2

e = 0 when it’s not} more often than log scores, and log
scores will make the error of {telling You that σ2

e > 0 when it’s
actually 0} more often than Bayes factors, but the former mistake is

much worse than the latter, because You will underpropagate
uncertainty about the fixed effect β1, which is the whole point of the

investigation.

• All through this discussion it’s vital to keep in mind that

the gold standard for false-positive/false-negative behavior is
provided neither by Bayes factors nor by log scores but instead by

Bayesian decision theory in Your problem.
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Summary (continued)

• Asymptotic conclusions are often misleading: while it’s true that

Old Theorem: PθDG =0(LSFS chooses θ = 0)→ 0 as n→∞,

it’s also true that

New Theorem (Draper, 2011): for any λ > 0,
P|θDG |≤λ(LSFS chooses |θ| ≤ λ)→ 1 as n→∞,

and the second theorem would seem to call the relevance of the first
theorem into question.

• As a profession, we need to strengthen the progression

Principles → Axioms → Theorems

in optimal model specification; the Calibration Principle, the
Modeling-As-Decision Principle, the Prediction Principle and the

Decision-Versus-Inference Principle seem helpful in moving toward
this goal.
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Is M1 Good Enough?

What about Q2 : Is M1 good enough?

As discussed previously, by the Modeling-As-Decision Principle a full
judgment of adequacy requires real-world input (“To what purpose

will the model be put?”), so it’s not possible to propose generic
methodology to answer Q2 (apart from maximizing expected utility,
with a utility function that’s appropriately tailored to the problem at

hand), but the somewhat related question

Q2′ : Could the data have arisen from model Mj?

can be answered in a general way by simulating from Mj many
times, developing a distribution of (e.g.) LSFS values, and seeing how

unusual the actual data set’s log score is in this distribution.

This is related to the posterior predictive model-checking method of
Gelman et al. (1996), which produces a P-value.

However, this sort of thing needs to be done carefully (Draper 1996),
or the result will be poor calibration; indeed, Bayarri and Berger (2000)

and Robins et al. (2000) have demonstrated that the
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Is M1 Good Enough? (continued)

Gelman et al. procedure may be (sharply) conservative: You may get
P = 0.4 from Gelman et al. (indicating that Your model is fine) when a
well-calibrated version of their idea would have P = 0.04 (indicating

that it’s not fine).

Using a modification of an idea suggested by Robins et al., Draper and
Krnjajić (2010) have developed a simulation-based method for

accurately calibrating the log-score scale (I’d be happy to send You
the paper).

How should You judge how unusual the actual data set’s log score is
in the simulation distribution?

In all of Bayesian inference, prediction and decision-making, except
for calibration concerns, there’s no need for P-values, but — since
this is a calibrative question — it’s no surprise that tail areas (or
something else equally ad-hoc, such as the ratio of the attained

height to the maximum height of the simulation distribution) arise.

I don’t see how to avoid this ad-hockery except by directly answering
Q2 with decision theory (instead of answering Q2′ with a tail area).

132 / 140



Summary

• I’ve offered an axiomatization of inferential, predictive and
decision-theoretic statistics based on information, not belief, and RT

Cox’s (1946) notion of probability as a measure of the weight of
evidence in favor of the truth of a true-false proposition whose truth

status is uncertain for You.

• Cox’s Theorem lays out a progression from

Principles → Axioms → Theorem

to prove that Bayesian reasoning is justified under natural logical
consistency assumptions; for me this secures the foundations of

applied probability.

• But Cox’s Theorem does not go far enough for statistical work in
science, in two ways related to model specification:

— Nothing in its consequences requires You to
pay attention to how often You get the right answer,

which is a basic scientific concern, and
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Summary (continued)

— it doesn’t offer any advice on how to specify the required
ingredients: with θ as the unknown of principal interest, B as Your

relevant background assumptions and judgments, and an
information source (data set) D relevant to decreasing Your

uncertainty about θ, the ingredients are

∗ {p(θ|B), p(D|θB)} for inference and prediction, and

∗ in addition {A,U(a, θ)} for decision, where A is Your set of
available actions and U(a, θ) is Your utility function (mapping from

actions a and unknown θ to real-valued consequences).

• To secure the foundations of statistics, work is needed laying out
the logical progression

Principles → Axioms → Theorems

for model specification; progress in this area is part of the
Theory of Applied Statistics.

• A Calibration Principle helps address the first of the
two deficiencies above:
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Summary (continued)

Calibration Principle: In model specification, You should pay

attention to how often You get the right answer, by creating
situations in which You know what the right answer is and seeing how

often Your methods recover known truth.

Interest in calibration can be seen to be natural in Bayesian work by
thinking decision-theoretically, with a utility function that rewards
both quality of scientific conclusions and good calibration of the

modeling process yielding those conclusions.

• In problems of realistic complexity You’ll generally notice that (a)
You’re uncertain about θ but (b) You’re also uncertain about how to

quantify Your uncertainty about θ, i.e., You have
model uncertainty.

• This acknowledgment of Your model uncertainty implies a
willingness by You to consider two or more models in an ensemble
M = {M1,M2, . . . }, which gives rise immediately to two questions:

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?
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Summary (continued)

• These questions sound fundamental but are not: better for what
purpose? Good enough for what purpose? To address the second of

the two deficiencies above (lack of guidance from Cox’s Theorem on
model specification), this implies a

Modeling-As-Decision Principle: Making clear the purpose to which

the modeling will be put transforms model specification into a
decision problem, solvable by maximizing expected utility with a

utility function tailored to the specific problem under study.

This solves the model-specification problem but is hard work; there’s
a powerful desire for generic model-comparison methods whose

utility structure may provide a decent approximation to
problem-specific utility elicitation.

Two such methods are Bayes factors (whose utility justification is less
than compelling) and log scores, which are based on the

Prediction Principle: Good models make good predictions, and bad

models make bad predictions; that’s one scientifically important way
You know a model is good or bad.
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Summary (continued)

• I’m aware of three approaches to improved assessment and
propagation of model uncertainty: Bayesian model averaging

(BMA), Bayesian nonparametric (BNP) modeling, and calibration
(3-fold) cross-validation (CCV).

• CCV provides a way to pay the right price for hunting around in the
data for good models, motivating the following modeling algorithm:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else

(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.

(e) Go to (b).

• For the choice in (a), there’s usually a default off-the-shelf initial
model based on the structure of the data set D and the

scientific context.
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Summary (continued)

• In manual model search the choice in (c) is typically based on the
results of a variety of diagnostics, with the new model suggested by

deficiencies revealed in this way; at present, we have no better way to
automate this choice in many cases than choosing Mnew at random (I

offer no new ideas on this topic today).

• In comparing M1 with M2 (the choice in (d)), consider a calibrative
scenario in which the the data-generating model MDG is one or the
other of M = {M1,M2} (apart from parameter estimation), and call
{choosing M2 when MDG = M1} a false positive and {choosing M1

when MDG = M2} a false negative; then

— The right way to do this, following the Modeling-As-Decision
Principle, is to build a utility function by quantifying the real-world

consequences of

{choosing M1 when MDG = M1, choosing M1 when MDG = M2,
choosing M2 when MDG = M1, choosing M2 when MDG = M2}

and maximize expected utility.
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Summary (continued)

— If instead You contemplate using Bayes factors/BIC or log scores,
it is not the case that one of these two methods uniformly dominates
the other in calibrative performance; in some settings they behave
the same, in others (for Your sample size) they will have a different
balance of false positives and false negatives; it’s a good idea to

investigate this before settling on one method or the other.

• See Draper and Krnjajić (2010) for a method for answering the

question Q2′ : Could the data have arisen from model Mj? in a

well-calibrated way.

• CCV provides an approach to finding a good ensemble M of
models, and gives You a decent opportunity both to arrive at good

answers to Your main scientific questions and to evaluate the
calibration of the iterative modeling process that led You to Your

answers.

• Decision-Versus-Inference Principle: We should all get out of the

habit of using inferential methods to make decisions: their implicit
utility structure is often far from optimal.
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Another Unsolved Foundational Problem

• One more unsolved foundational problem: how can good decisions
be arrived at when “You” is a collective of individuals, all with their

own utility functions that imply partial cooperation and
partial competition?

Example: Allocation of finite resources by two or more people who

have agreed to band together in some sense (i.e., politics, at the level
of family or nation or ...).

An instance of this: Defining and funding good quality of health
care — the actors in the drama include

{patient, doctor, hospital, state and local regulatory bodies, federal
regulatory system};

all are in partial agreement and partial disagreement on how (and
how many) resources should be allocated to the problem of addressing

this patient’s immediate health needs.

(But that’s for another day, as is the topic of Bayesian computing
with large data sets.)
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