
Bayesian Modeling, Inference,
Prediction and Decision-Making

5a: Simulation-Based Computation (continued)

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

Short Course (Days 1 and 2)
University of Reading (UK)

c© David Draper (all rights reserved)

1 / 1

The MCMC Dataset (continued)

• Iteration 0 would be the value(s) used to initialize the
Markov chain;

• Iterations 1 through b would be the burn-in period, during
which the chain reaches its equilibrium or stationary

distribution (as mentioned above, iterations 0 through b are
generally discarded); and

• Iterations (b+1) through (b+m) would be the
monitoring run, on which summaries of the posterior

(means, SDs, density traces, ...) will be based.

In the second AMI mortality example the MCMC dataset
might look like this:

Iteration Phase θ I(θ ≤ 0.15)

0 Initialization θ∗0 = 0.200 —
1 Burn-in θ∗1 = 0.244 —
...

...
...

...
b = 500 Burn-in θ∗b = 0.098 —

(b+1) = 501 Monitoring θ∗b+1 = 0.275 I∗b+1 = 0
...

...
...

...
(b+m) = 31,700 Monitoring θ∗b+m = 0.120 I∗b+m = 1

Mean (Monitoring 0.2177 (0.009) 0.0538 (0.004)
SD Phase 0.04615 —

Density Only) (like the bottom
Trace plot on p. 29, —

part 3a)

Think of iteration number i in the Monte Carlo sampling
process as a discrete index of time t, so that the columns of
the MC and MCMC datasets can be viewed as time series.

An important concept from time series analysis is
autocorrelation: the autocorrelation ρk of a stationary
time series θ∗t at lag k (see, e.g., Chatfield (1996)) is γk

γ0
,

where γk is C(θ∗t , θ
∗
t−k), the covariance of the series with itself

k iterations in the past—this measures the degree to which
the time series at any given moment depends on its

past history.

2

The MCMC Dataset (continued)

IID draws from p(θ|y) correspond to white noise: a time
series with zero autocorrelations at all lags.

This is the behavior of the columns in the MC data set on
p. 47 (part 3a), produced by ordinary rejection sampling.

Because of the Markov character of the columns of the
MCMC data set on p. 2, each column, when considered as a
time series, will typically have non-zero autocorrelations,

and because Markov chains use their present values to decide
where to go next it shouldn’t surprise you to hear that the

typical behavior will be (substantial) positive
autocorrelations—in other words, every time you get
another draw from the Markov chain you get some new
information about the posterior and a rehash of old

information mixed in.

It’s a marvelous result from time series analysis (the
Ergodic Theorem for Markov chains on p. 44 (part 3a) is an

example of this fact) that all of the usual descriptive
summaries of the posterior are still consistent as long as the
columns of the MCMC data set form stationary time series.

In other words, provided that you can achieve the three
goals back on p. 43 (part 3a) that Metropolis et al. set for
themselves, and provided that you only do your monitoring
after the Markov chain has reached equilibrium, the
MCMC approach and the IID Monte Carlo approach are
equally valid (they both get the right answers), but they

may well differ on their efficiency (the rate per iteration, or
per CPU second, at which they learn about the posterior may
not be the same); and if, as is typically true, the columns of
the MCMC dataset have positive autocorrelations, this will
translate into slower learning (larger MCSEs) than with IID

sampling (compare the MC and MCMC data sets).

3

3.4 The Metropolis Algorithm

Metropolis et al. were able to create what people would now
call a successful MCMC algorithm by the following means

(see the excellent book edited by Gilks et al. (1996) for
many more details about the MCMC approach).

Consider the rejection sampling method (p. 28, part 3a)
as a mechanism for generating realizations of a time series

(where as above time indexes iteration number).

At any time t in this process you make a draw θ∗ from the
proposal distribution g(θ|y) (the normalized version of the
envelope function G) and either accept a “move” to θ∗ or

reject it, according to the acceptance probability
p(θ∗|y)
G(θ∗|y); if

accepted the process moves to θ∗, if not you draw again
and discard the rejected draws until you do make a

successful move.

As noted above, the stochastic process thus generated is an
IID (white noise) series of draws from the target

distribution p(θ|y).

Metropolis et al. had the following beautifully simple idea
for how this may be generalized to situations where IID

sampling is difficult: they allowed the proposal
distribution at time t to depend on the current value θt

of the process, and then—to get the right stationary
distribution—if a proposed move is rejected, instead of

discarding it the process is forced to stay where it is for
one iteration before trying again.

The resulting process is a Markov chain, because (a) the
draws are now dependent but (b) all you need to know in
determining where to go next is where you are now.

4

Metropolis-Hastings
Letting θt stand for where you are now and θ∗ for where

you’re thinking of going, in this approach there is
enormous flexibility in the choice of the proposal
distribution g(θ∗|θt, y), even more so than in ordinary

rejection sampling.

The original Metropolis et al. idea was to work with
symmetric proposal distributions, in the sense that

g(θ∗|θt, y) = g(θt|θ∗, y), but Hastings (1970) pointed out that
this could easily be generalized; the resulting method is the

Metropolis-Hastings (MH) algorithm.

Building on the Metropolis et al. results, Hastings showed
that you’ll get the correct stationary distribution p(θ|y) for
your Markov chain by making the following choice for the

acceptance probability:

αMH(θ
∗|θt, y) = min

1,

p(θ∗|y)
g(θ∗|θt,y)

p(θt|y)
g(θt|θ∗,y)

 . (1)

It turns out that the proposal distribution g(θ∗|θt, y) can be
virtually anything and you’ll get the right equilibrium

distribution using the acceptance probability (1); see, e.g.,
Roberts (1996) and Tierney (1996) for the mild regularity

conditions necessary to support this statement.

A summary of the method is on the next page.

It’s instructive to compare (p. 6) with (p. 28, part 3a) to see
how heavily the MH algorithm borrows from ordinary
rejection sampling, with the key difference that the
proposal distribution is allowed to change over time.

Notice how (1) generalizes von Neumann’s acceptance

probability ratio
p(θ∗|y)
G(θ∗|y) for ordinary rejection sampling: the

crucial part of the new MH acceptance probability becomes
the ratio of two von-Neumann-like ratios, one for where
you are now and one for where you’re thinking of going
(it’s equivalent to work with g or G since the normalizing

constant cancels in the ratio).

5

Metropolis-Hastings (continued)

Algorithm (Metropolis-Hastings sampling). To
construct a Markov chain whose equilibrium
distribution is p(θ|y), choose a proposal dis-
tribution g(θ∗|θt, y), define the acceptance
probability αMH(θ

∗|θt, y) by (1), and

Initialize θ0; t← 0
Repeat {
Sample θ∗ ∼ g(θ|θt, y)
Sample u ∼ Uniform(0,1)
If u ≤ αMH(θ

∗|θt, y) then θt+1 ← θ∗

else θt+1 ← θt
t← (t+1)
}

(2)

When the proposal distribution is symmetric in the
Metropolis et al. sense, the acceptance probability ratio

reduces to
p(θ∗|y)
p(θt|y) , which is easy to motivate intuitively:

whatever the target density is at the current point θt, you
want to visit points of higher density more often and

points of lower density less often, and it turns out that (1)
does this for you in the natural and appropriate way.

As an example of the MH algorithm in action, consider a
Gaussian model with known mean µ and unknown

variance σ2 applied to the NB10 data back in part 3a.

The likelihood function for σ2, derived from the sampling

model (Yi|σ2)
IID∼ N(µ, σ2) for i = 1, . . . , n, is

l(σ2|y) = c

n∏

i=1

(σ2)−
1

2 exp

[
−(yi − µ)2

2σ2

]
(3)

= c (σ2)−
n

2 exp

[
−
∑n

i=1(yi − µ)2

2σ2

]
.

6

MH Sampling (continued)

This is recognizable as a member of the Scaled Inverse χ2

family χ−2(ν, s2) (e.g., Gelman, Carlin, et al. (2003)) of
distributions, which is a rescaled version of the Inverse

Gamma family chosen so that s2 is an estimate of σ2 based
upon ν “observations.”

You can now convince yourself that if the prior for σ2 in this
model is taken to be χ−2(ν, s2), then the posterior for σ2 will

also be Scaled Inverse χ2: with this choice of prior

p(σ2|y) = χ−2
[
ν + n,

νs2 +
∑n

i=1(yi − µ)2

ν + n

]
. (4)

This makes good intuitive sense: the prior estimate s2 of
σ2 receives ν votes and the sample estimate

σ̂2 = 1
n

∑n
i=1(yi − µ)2 receives n votes in the posterior

weighted average estimate νs2+nσ̂2

ν+n
.

Equation (4) provides a satisfying closed-form solution to
the Bayesian updating problem in this model (e.g., it’s easy
to compute posterior moments analytically, and you can use
numerical integration or well-known approximations to the
CDF of the Gamma distribution to compute percentiles).

For illustration purposes suppose instead that you want to
use MH sampling to summarize this posterior.

Then your main choice as a user of the algorithm is the
specification of the proposal distribution (PD) g

(
σ2|σ2

t , y
)
.

The goal in choosing the PD is getting a chain that mixes
well (moves freely and fluidly among all of the possible
values of θ = σ2), and nobody has (yet) come up with a
sure-fire strategy for always succeeding at this task.

Having said that, here are two basic ideas that often tend
to promote good mixing:

7

MH Sampling (continued)

(1) Pick a PD that looks like a somewhat overdispersed
version of the posterior you’re trying to sample from

(e.g., Tierney (1996)).

Some work is naturally required to overcome the circularity
inherent in this choice (if I fully knew p(θ|y) and all of its

properties, why would I be using this algorithm in the
first place?).

(2) Set up the PD so that the expected value of where
you’re going to move to (θ∗), given that you accept a
move away from where you are now (θt), is to stay

where you are now: Eg(θ∗|θt, y) = θt.

That way, when you do make a move, there will be an
approximate left-right balance, so to speak, in the

direction you move away from θt, which will encourage rapid
exploration of the whole space.

Using idea (1), a decent choice for the PD in the Gaussian
model with unknown variance might well be the Scaled

Inverse χ2 distribution: g
(
σ2|σ2

t , y
)
= χ−2

(
ν∗, σ2

∗
)
.

This distribution has mean ν∗
ν∗−2 σ

2
∗ for ν∗ > 2.

To use idea (2), then, I can choose any ν∗ greater than 2
that I want, and as long as I take σ2

∗ =
ν∗−2
ν∗

σ2
t that will

center the PD at σ2
t as desired.

So I’ll use

g
(
σ2|σ2

t , y
)
= χ−2

(
ν∗,

ν∗ − 2

ν∗
σ2
t

)
. (5)

This leaves ν∗ as a kind of potential tuning constant—the
hope is that I can vary ν∗ to improve the mixing of the chain.

8

MH Sampling (continued)

0 200 400 600 800 1000

30
40

50
60

Iteration Number

0 200 400 600 800 1000

30
40

50
60

Iteration Number

0 200 400 600 800 1000

30
40

50
60

Iteration Number

P
S
fra

g
re
p
la
c
e
m
e
n
ts

σ
2

σ
2

σ
2

The above figure (motivated by an analogous plot in Gilks et
al. (1996)) presents time series traces of some typical
output of the MH sampler with ν∗ = (2.5,20,500).

The acceptance probabilities with these values of ν∗ are
(0.07,0.44,0.86), respectively.

The SD of the χ−2
(
ν∗, ν∗−2ν∗

σ2
t

)
distribution is proportional to

ν2
∗

(ν2
∗−2)2

√
ν∗−4, which decreases as ν∗ increases, and this turns

out to be crucial: when the proposal distribution SD is too
large (small ν∗, as in the top panel in the figure), the

algorithm tries to make big jumps around θ space (good),
but almost all of them get rejected (bad), so there are long
periods of no movement at all, whereas when the PD SD is
too small (large ν∗; see the bottom panel of the figure), the
algorithm accepts most of its proposed moves (good), but
they’re so tiny that it takes a long time to fully explore

the space (bad).

9

MH Sampling (continued)

Gelman, Roberts, et al. (1995) have shown that in simple
canonical problems with approximately normal target

distributions the optimal acceptance rate for MH samplers
like the one illustrated here is about 44% when the vector of
unknowns is one-dimensional, and this can serve as a rough
guide: you can modify the proposal distribution SD until
the acceptance rate is around the Gelman et al. target figure.

The central panel of the figure displays the best possible
MH behavior in this problem in the family of PDs chosen.

Even with this optimization you can see that the mixing is
not wonderful, but contemporary computing speeds enable
huge numbers of draws to be collected in a short period of
time, compensating for the comparatively slow rate at

which the MH algorithm learns about the posterior
distribution of interest.

In this example the unknown quantity θ = σ2 was
real-valued, but there’s nothing in the MH method that
requires this; in principle it works equally well when θ is a

vector of any finite dimension (look back at the algorithm
in (2) to verify this).

Notice, crucially, that to implement this algorithm you only
need to know how to calculate p(θ|y) up to a constant

multiple, since any such constant will cancel in computing
the acceptance probability (1)—thus you’re free to work
with unnormalized versions of p(θ|y), which is a great

advantage in practice.

10

MH Sampling (continued)

There’s even more flexibility in this algorithm than might
first appear: it’s often possible to identify a set A of

auxiliary variables—typically these are latent (unobserved)
quantities—to be sampled along with the parameters, which

have the property that they improve the mixing of the
MCMC output (even though extra time is spent in

sampling them).

When the set (θ,A) of quantities to be sampled is a vector
of length k, there’s additional flexibility: you can block

update all of (θ,A) at once, or with appropriate
modifications of the acceptance probability you can divide
(θ, A) up into components, say (θ,A) = (λ1, . . . , λl), and

update the components one at a time (as Metropolis et
al. originally proposed in 1953).

The idea in this component-by-component version of the
algorithm, which Gilks et al. (1996) call single-component
MH sampling, is to have k different proposal distributions,

one for each component of θ.

Each iteration of the algorithm (indexed as usual by t) has k
steps, indexed by i; at the beginning of iteration t you scan

along, updating λ1 first, then λ2, and so on until you’ve
updated λk, which concludes iteration t.

Let λt,i stand for the current state of component i at the
end of iteration t, and let λ−i stand for the (θ, A) vector with
component i omitted (the notation gets awkward here; it

can’t be helped).

The proposal distribution gi(λ∗i |λt,i, λt,−i, y) for component i is
allowed to depend on the most recent versions of all

components of (θ,A); here λt,−i is the current state of λ−i
after step (i−1) of iteration t is finished, so that components

1 through (i− 1) have been updated but not the rest.

11

3.5 Gibbs Sampling

The acceptance probability for the proposed move to λ∗i
that creates the correct equilibrium distribution turns out

to be

αMH(λ
∗
i |λt,−i, λt,i, y) = min

[
1,

p(λ∗i |λt,−i, y) gi(λt,i|λ∗i , λt,−i, y)

p(λt,i|λt,−i, y) gi(λ∗i |λt,i, λt,−i, y)

]
.

(6)

The distribution p(λi|λ−i, y) appearing in (6), which is called
the full conditional distribution for λi, has a natural

interpretation: it represents the posterior distribution for the
relevant portion of (θ,A) given y and the rest of (θ,A).

The full conditional distributions act like building blocks in
constructing the complete posterior distribution p(θ|y), in
the sense that any multivariate distribution is uniquely

determined by its set of full conditionals (Besag (1974)).

An important special case of single-component MH
sampling arises when the proposal distribution

gi(λ∗i |λt,i, λt,−i, y) for component i is chosen to be the full
conditional p(λ∗i |λt,−i, y) for λi: you can see from (6) that

when this choice is made a glorious cancellation occurs and
the acceptance probability is 1.

This is Gibbs sampling, independently (re)discovered by
Geman and Geman (1984): the Gibbs recipe is to sample

from the full conditionals and accept all
proposed moves.

Even though it’s just a version of MH, Gibbs sampling is
important enough to merit a summary of its own.

Single-element Gibbs sampling, in which each real-valued
coordinate (θ1, . . . , θk) gets updated in turn, is probably the
most frequent way Gibbs sampling gets used, so that’s

what I’ll summarize ((7) details Gibbs sampling in the case
with no auxiliary variables A, but the algorithm works

equally well when θ is replaced by (θ,A) in the summary).

12

Gibbs Sampling (continued)

Algorithm (Single-element Gibbs sampling). To con-
struct a Markov chain whose equilibrium distribution
is p(θ|y) with θ = (θ1, . . . , θk),

Initialize θ∗0,1, . . . , θ
∗
0,k; t← 0

Repeat {
Sample θ∗t+1,1 ∼ p(θ1|y, θ∗t,2, θ∗t,3, θ∗t,4, . . . , θ∗t,k)
Sample θ∗t+1,2 ∼ p(θ2|y, θ∗t+1,1, θ

∗
t,3, θ

∗
t,4, . . . , θ

∗
t,k)

Sample θ∗t+1,3 ∼ p(θ3|y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t,4, . . . , θ

∗
t,k)

...
...

...
...

...
...

Sample θ∗t+1,k ∼ p(θk|y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t+1,3, . . . , θ

∗
t+1,k−1)

t← (t+1)
}

(7)

Example: the NB10 Data. Recall that this data set was

symmetric but heavy-tailed, suggesting a model with
a t likelihood:

(µ, σ2, ν) ∼ p(µ, σ2, ν)

(yi|µ, σ2, ν)
IID∼ tν(µ, σ

2), (8)

where tν(µ, σ2) denotes the scaled t-distribution with mean
µ, scale parameter σ2, and shape parameter ν.

This distribution has variance σ2
(

ν
ν−2

)
for ν > 2 (so that

shape and scale are mixed up, or confounded, in tν(µ, σ2))
and may be thought of as the distribution of the quantity
µ+ σ e, where e is a draw from the standard t distribution

that is tabled at the back of all introductory statistics books.

However, a better way to think about model (8)
is as follows.

13

Model Expansion
It’s a fact from basic distribution theory, probably of more

interest to Bayesians than frequentists, that the t

distribution is an Inverse Gamma mixture of Gaussians .

This just means that to generate a t random quantity you
can first draw from an Inverse Gamma distribution and then
draw from a Gaussian conditional on what you got from the

Inverse Gamma.

(λ ∼ Γ−1(α, β) just means that λ−1 = 1
λ
∼ Γ(α, β)).

In more detail, (y|µ, σ2, ν) ∼ tν(µ, σ2) is the same as the
hierarchical model

(λ|ν) ∼ Γ−1
(ν
2
,
ν

2

)

(y|µ, σ2, λ) ∼ N
(
µ, λ σ2

)
. (9)

Putting (9) together with the conjugate prior for µ and σ2

in a Gaussian (not t) model for the data gives the following
HM for the NB10 data:

ν ∼ p(ν)

σ2 ∼ SI-χ2
(
ν0, σ

2
0

)

(
µ|σ2

)
∼ N

(
µ0,

σ2

κ0

)
(10)

(λi|ν) IID∼ Γ−1
(ν
2
,
ν

2

)

(
yi|µ, σ2, λi

) indep∼ N
(
µ, λi σ

2
)
.

You could try using a Gaussian likelihood (instead of t) with
this data set, and you’d find that this model is inadequate

because it doesn’t predict the data in the tails well.

Remembering also from introductory statistics that the
Gaussian distribution is the limit of the t family as ν →∞,
you can see that the idea in (10) is to expand the Gaussian
model by embedding it in the richer t family, of which it’s a

special case with ν =∞.

14

Implementing Gibbs

Model expansion is often the best way to deal with
uncertainty in the modeling process: when you find
deficiencies of the current model, embed it in a richer

class, with the model expansion in directions suggested by
the deficiencies (we’ll also see this method

in action again later).

The MCMC Dataset. Imagine trying to do Gibbs
sampling on model (10), with the parameter vector

θ = (µ, σ2, ν).

Carrying out the iterative program described in (7) above
would produce the following MCMC Dataset:

Iteration Phase µ σ2 ν
0 Initializing µ0 σ2

0 ν0
1 Burn-In µ1(y, σ2

0, ν0) σ2
1(y, µ1, ν0) ν1(y, µ1, σ2

1)
2 Burn-In µ2(y, σ2

1, ν1) σ2
2(y, µ2, ν1) ν1(y, µ2, σ2

2)· · · · ·
b Burn-In µb σ2

b νb
(b+1) Monitoring µb+1 σ2

b+1 νb+1

(b+2) Monitoring µb+2 σ2
b+2 νb+2

· · · · ·
(b+m) Monitoring µb+m σ2

b+m νb+m

Looking at iterations 1 and 2 you can see that, in addition
to y, the sampler makes use only of parameter values in
the current row and the previous row (this illustrates the

Markov character of the samples).

As we’ve seen above, at the end of the (b+m) iterations, if
you want (say) the marginal posterior for µ, p(µ|y), all you
have to do is take the m values µb+1, . . . , µb+m and summarize

them in any ways that interest you: their sample mean is
your simulation estimate of the posterior mean of µ, their
sample histogram (or, better, their kernel density trace) is

your simulation estimate of p(µ|y), and so on.

15

Practical Issues

Implementation Details. (1) How do you figure out the

full conditionals, and how do you sample from them?

(2) What should you use for initial values?

(3) How large should b and m be?

(4) More generally, how do you know when the chain has
reached equilibrium?

Questions (3–4) fall under the heading of MCMC
diagnostics, which I’ll cover a bit later, and I’ll address

question (2) in the case studies below.

Computing the full conditionals. For a simple example of

working out the full conditional distributions, consider the
conjugate Gaussian model I mentioned earlier:

σ2 ∼ SI-χ2(ν0, σ
2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
(11)

(Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
.

The full conditional distribution for µ in this model is
p(µ|σ2, y), considered as a function of µ for fixed σ2 and

y—but this is just

p(µ|σ2, y) =
p(µ, σ2, y)

p(σ2, y)

= c p(µ, σ2, y) (12)

= c p(σ2) p(µ|σ2) p(y|µ, σ2)

= c exp
[
− κ0

2σ2
(µ− µ0)

2
] n∏

i=1

exp

[
− 1

2σ2
(yi − µ)2

]
.

16

Full Conditionals

From this

p(µ|σ2, y) = c exp
[
− κ0

2σ2
(µ− µ0)

2
]
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
.

Expanding out the squares, collecting powers of µ, and
completing the square in µ gives

p(µ|σ2, y) = c exp

[
−κ0 + n

2σ2

(
µ− κ0µ0 + nȳ

κ0 + n

)2
]
, (13)

from which it’s clear that the full conditional for µ in
model (11) is

(µ|σ2, y) ∼ N

(
κ0µ0 + nȳ

κ0 + n
,

σ2

κ0 + n

)
. (14)

Similarly, the full conditional for σ2 in this model, p(σ2|µ, y),
considered as a function of σ2 for fixed µ and y, is just

p(σ2|µ, y) =
p(σ2, µ, y)

p(µ, y)

= c p(σ2, µ, y) (15)

= c p(σ2) p(µ|σ2) p(y|µ, σ2)

= c
(
σ2

)−(1+1

2
ν0)

exp

(
−ν0 σ2

0

2σ2

)
·

(
σ2

)−1

2 exp
[
− κ0

2σ2
(µ− µ0)

2
]
·

(
σ2

)−n

2 exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
.

When this is simplified you get

17

Full Conditionals (continued)

p(σ2|µ, y) = c
(
σ2

)−(1+ ν0+1+n

2)
exp

[
−
ν0σ2

0 + κ0(µ− µ0)
2 + ns2µ

2σ2

]
,

where s2µ = 1
n

∑n
i=1(yi − µ)2.

From the form of this distribution it becomes clear that

(σ2|µ, y) ∼ SI-χ2

(
ν0 +1+ n,

ν0σ2
0 + κ0(µ− µ0)2 + ns2µ

ν0 +1+ n

)
.

(16)

Thus in conjugate situations the full conditional
distributions have conjugate forms, which are tedious but

straightforward to compute.

Both the directness and the tedium of this calculation
suggest that it should be possible to write a computer
program to work out the full conditionals for you, and

indeed at least two such programs now exist:

• WinBUGS , a fairly general-purpose MCMC program
produced by David Spiegelhalter and others at the MRC
Biostatistics Unit in Cambridge, UK (Spiegelhalter et al.,

1997), and

• MLwiN , a program that does both maximum-likelihood
and Bayesian calculations in hierarchical (multilevel)

models (Rasbash et al. 2000).

WinBUGS is available for free downloading at

www.mrc-bsu.cam.ac.uk/ ;

MLwiN has a nominal charge and can be downloaded from the
web page of the Multilevel Models Project,

www.cmm.bristol.ac.uk/MLwiN/ .

18

Why the Metropolis Algorithm Works

Here’s a sketch of the crucial part of the proof, based on an
argument in Gamerman (1997), of the validity of the

Metropolis algorithm, in the case of a discrete (finite or
countably infinite) state space S (see chapter 1 in Gilks et

al. 1996 for a proof sketch when S is continuous).

I see now that my Markov chain notation up until this
point has not been consistent enough to keep the proof from

becoming confusing, so let’s start over again with the
following notation.

A stochastic process {θ∗t , t ∈ T}, T = {0,1, . . .} on a discrete
state space S is a Markov chain iff

P(θ∗t+1 = y|θ∗t = x, θ∗t−1 = xn−1, . . . , θ
∗
0 = x0) = P(θ∗t+1 = y|θ∗t = x)

(17)
for all x0, . . . , xt−1, x, y ∈ S.

In general P(θ∗t+1 = y|θ∗t = x) depends on x, y, and t, but if
the probability of transitioning from x to y at time t is

constant in t things will clearly be simpler; such chains are
called homogeneous (confusingly, some sources call them

stationary, but that terminology seems well worth avoiding).

The random walk described earlier is obviously a
homogeneous Markov chain, and so are any Markov chains
generated by the MH algorithm; I’ll assume homogeneity

in what follows.

Under homogeneity it makes sense to talk about the
transition probability

P(x, y) = P(θ∗t+1 = y|θ∗t = x) for all t, (18)

which satisfies

P(x, y) ≥ 0 for all x, y ∈ S and
∑

y∈S
P(x, y) = 1 for all x ∈ S.

(19)

19

Metropolis Proof Sketch

When S is discrete a transition matrix P can be defined
with element (i, j) given by P(xi, xj), where xi is the ith

element in S according to whatever numbering convention
you want to use (the second part of (19) implies that the
row sums of such a matrix are always 1; this is the defining

condition for a stochastic matrix).

Suppose the chain is initialized at time 0 by making a draw
from a probability distribution π0(x) = P(θ∗0 = x) on S

(deterministically starting it at some point x0 is a special
case of this); then the probability distribution π1(y) for where

it will be at time 1 is

π1(y) = P(θ∗1 = y)

=
∑

x∈S
P(θ∗0 = x, θ∗1 = y)

=
∑

x∈S
P(θ∗0 = x)P(θ∗1 = y|θ∗0 = x) (20)

=
∑

x∈S
π0(x)P(x, y),

which can be written in vector and matrix notation as

π1 = π0 P, (21)

where π0 and π1 are regarded as row vectors.

Then by the same reasoning

π2 = π1 P = (π0 P)P = π0 P
2, (22)

and in general

πt = π0 P
t. (23)

For simple Markov chains this can be used to work out the
long-run behavior of the chain as t→∞, but this becomes
algebraically prohibitive as the transition behavior of the

chain increases in complexity.

20

Proof Sketch (continued)

In any case for ergodic Markov chains the limiting behavior
π(y) is independent of π0 and turns out to be characterized

by the relation

π(y) =
∑

x∈S
π(x)P(x, y), or π = πP, (24)

which defines the stationary distribution π of the chain.

As we’ve seen above, the hard bit in verifying the validity of
the Metropolis algorithm is demonstrating that the Markov
chain created by running the algorithm has the correct

stationary distribution, namely the target posterior p(θ|y);
one way to do this is the following.

It’s possible to imagine running any homogeneous Markov
chain {θ∗t , t = 0,1, . . .} with transition probabilities P(x, y)

backwards in time.

This new reverse-time stochastic process can be shown also
to be a Markov chain, although it may not be

homogeneous.

If it is homogeneous, and if in addition the reverse-time
process has the same transition probabilities as the

original process, the Markov chain is said to be reversible;
all such chains satisfy the detailed balance equation

π(x)P(x, y) = π(y)P(y, x) for all x, y ∈ S. (25)

It turns out that if there’s a distribution π satisfying (25) for
an irreducible Markov chain, then the chain is positive

recurrent (and therefore ergodic) and reversible, and its
stationary distribution is π (sum (25) over y to get (24)).

21

Proof Sketch (continued)

In other words, if you’re trying to create an ergodic Markov
chain and you want it to have some target stationary

distribution π, one way to achieve this goal is to ensure that
the chain is irreducible and that its transition probabilities
P(x, y) satisfy detailed balance with respect to the target π.

Any reasonable proposal distribution in the Metropolis
algorithm will yield an irreducible Markov chain, so the

interesting bit is to verify detailed balance; the argument
proceeds as follows.

Consider a given target distribution px on S; we’re trying to
construct a Markov chain with stationary distribution π

such that π(x) = px for all x ∈ S.

The Metropolis algorithm—(2), with the special case of
the acceptance probabilities (1) reducing to the simpler

form min
[
1, p(θ

∗|y)
p(θt|y)

]
by the assumption of a symmetric

proposal distribution—actually involves two related Markov
chains: the (less interesting) chain that you could create

by accepting all proposed moves, and the (more
interesting) chain created by the actual algorithm.

Let Q(x, y) be any irreducible transition matrix on S such
that Q(x, y) = Q(y, x) for all x, y ∈ S; this is the transition
matrix for the (less interesting) chain induced by the

proposal distribution.

Define the (more interesting) chain {θ∗t , t = 0,1, . . .} (the
actual Metropolis chain) as having transitions from x to y
proposed according to Q(x, y), except that the proposed

value for θ∗t+1 is accepted with probability min
(
1, py

px

)
and

rejected otherwise, leaving the chain in state x.

22

Proof Sketch (continued)

The transition probabilities P(x, y) for the Metropolis
chain are as follows: for y 6= x, and denoting by Axy the
event that the proposed move from x to y is accepted,

P(x, y) = P
(
θ∗t+1 = y|θ∗t = x

)

= P
(
θ∗t+1 = y,Axy|θ∗t = x

)
+ P

(
θ∗t+1 = y,not Axy|θ∗t = x

)

= P
(
θ∗t+1 = y|Axy, θ

∗
t = x

)
P(Axy|θ∗t = x) (26)

= Q(x, y)min

(
1,

py

px

)
.

A similar calculation shows that for y = x

P(x, x) = Q(x, x) +
∑

y 6=x

Q(x, y)

[
1−min

(
1,

py

px

)]
, (27)

but this is not needed to show detailed balance because
(25) is trivially satisfied when y = x.

When y 6= x there are two cases: py ≥ px > 0 (I’ll give details
in this case) and 0 < py < px (the other case follows

analogously).

If py ≥ px, note that min
(
1, py

px

)
= 1 and

min
(
1, px

py

)
py = min

(
py,

px

py
py

)
= min(py, px) = px; then

pxP(x, y) = pxQ(x, y)min

(
1,

py

px

)
= pxQ(x, y)

= pxQ(y, x) = Q(y, x) min

(
1,

px

py

)
py (28)

= py P(y, x)

and the proof of detailed balance, and with it the validity
of the Metropolis algorithm, is complete.

23

Directed Acyclic Graphs

WinBUGS achieves its generality by means of two ideas:

(1) Viewing Bayesian models as
directed (acyclic) graphs (DAGs).

The conditional independence nature of Bayesian
hierarchical models—in which quantities in the model

depend on things one layer higher in the hierarchy but no
higher (e.g., in the NB10 t model (10) the yi depend on
(µ, σ2, λi) but not on ν)—lends itself to thinking of all

quantities in such models as nodes in a directed graph.

A DAG can be thought of as a picture in which known and
unknown quantities are represented either by squares (for
knowns) or circles (for unknowns), connected by arrows

(from the parents to the children) that indicate the
direction of the stochastic dependence.

The acyclic assumption means that by following the
directions of the arrows it’s impossible to return to a node
once you’ve left it, and stacked sheets indicate repetition

(e.g., across conditionally IID data values).

Here’s a DAG for the NB10 model based on
the t distribution.

24

Adaptive Rejection Sampling

(2) Employing adaptive-rejection sampling (Gilks and
Wild, 1992) to generate the random draws from the full
conditional distributions, when they don’t have simple

recognizable forms.

As we’ve seen, rejection sampling is a general method for
sampling from a given density p(θ|y), which requires an

envelope function G which dominates p (chosen so that
G(θ|y) ≥ p(θ|y) for all θ).

A restatement of the algorithm for normalized G (e.g.,
Ripley 1987) is

Repeat {
Sample a point theta from G (. | y);
Sample a Uniform(0, 1) random variable U;
If U <= p (theta | y) / G (theta | y) accept theta;
}

until one theta is accepted.

If p(θ|y) is expensive to evaluate, time can be saved by
identifying squeezing functions a(θ|y) and b(θ|y) with

b(θ|y) ≤ p(θ|y) ≤ a(θ|y); to use these, replace the acceptance
step above (line 4 in the algorithm) by

If U > a(theta | y) / G(theta | y) reject theta;
else if U <= b(theta | y) / G(theta | y) accept theta;
else if U <= p(theta | y) / G(theta | y) accept theta.

Adaptive rejection sampling (ARS; Gilks and Wild 1992) is
a method of adaptive envelope construction that works as

a basis for Gibbs sampling if all of the full conditional
densities are log concave (formally, a function p(θ|y) of a
vector argument θ is log concave if the determinant of

d2 log g

dy dyT
(29)

is non-positive).

25

ARS (continued)

For univariate θ the idea (see the figure on p. 29, part 3a) is
that an envelope function logGS(θ|y) can be constructed on
the log scale by drawing tangents to log p(θ|y) at each point

in a given set of θ values S.

An envelope between any two adjacent points is then
constructed from the tangents at each end of the interval

defined by the points:

The envelope is linear on the log scale, so rejection
sampling on the original scale is performed with scaled

exponential distributions (as noted earlier, this can be done
efficiently), and you get a lower squeezing function

for free.

The useful thing about this idea is that the envelope can be
constructed adaptively, by adding points to S as new θ are

sampled—thus the envelope improves as more samples
are drawn.

26

WinBUGS (continued)

WinBUGS uses a hierarchy of methods to sample from the full
conditionals: it first tries to verify conjugacy; if that fails it
then tries to verify log concavity of the full conditionals and
uses ARS if so; and if that fails WinBUGS switches over to

(non-Gibbs) Metropolis-Hastings sampling.

Log concavity includes many, but not all, distributions
occurring in standard models, e.g., a uniform U(a, b) prior on
the degrees of freedom parameter ν in the NB10 t model

fails log-concavity.

Running WinBUGS. You make three kinds of files:

(1) a program file, containing the specification of
your model;

(2) one or more data files; and

(3) an initial values file (to start the Markov chain).

Here’s the data file in the NB10 example.

list(y = c(409., 400., 406., 399., 402., 406., 401., 403., 401., 403.,
398., 403., 407., 402., 401., 399., 400., 401., 405., 402., 408.,

399., 399., 402., 399., 397., 407., 401., 399., 401., 403., 400.,

410., 401., 407., 423., 406., 406., 402., 405., 405., 409., 399.,

402., 407., 406., 413., 409., 404., 402., 404., 406., 407., 405.,

411., 410., 410., 410., 401., 402., 404., 405., 392., 407., 406.,

404., 403., 408., 404., 407., 412., 406., 409., 400., 408., 404.,
401., 404., 408., 406., 408., 406., 401., 412., 393., 437., 418.,

415., 404., 401., 401., 407., 412., 375., 409., 406., 398., 406.,

403., 404.), n = 100)

The initial values file looks like this:

list(mu = 404.59, tau = 0.04, nu = 5.0)

27

WinBUGS (continued)

And the model file looks like this:

{

mu ~ dnorm(0.0, 1.0E-6); # specifying the
tau ~ dgamma(0.001, 0.001); # prior distributions
nu ~ dunif(2.0, 12.0) #

for (i in 1:n) { #
specifying the

y[i] ~ dt(mu, tau, nu); # likelihood
#

} #

sigma <- 1.0 / sqrt(tau); # defining any other
quantities to be

y.new ~ dt(mu, tau, nu) # monitored

}

Some Details. (1) The priors: (a) I want to use a diffuse
prior for µ, since I don’t know anything about the true

weight of NB10 a priori.

The phrase mu ∼ dnorm(0.0, 1.0E-6) in WinBUGS-speak
means that µ has a Gaussian prior with mean 0 and

precision 10−6, i.e., SD = 1/
√
precision = 1,000, i.e., as far

as I’m concerned a priori µ could be just about anywhere
between −3,000 and 3,000.

(b) Similarly I want a diffuse prior for σ2, or equivalently for
the precision τ = 1

σ2 .

One popular conventional choice is τ ∼ Γ(ε, ε) for a small ε
like 0.001, which in WinBUGS-speak is said tau ∼ dgamma(

0.001, 0.001).

28

Implementation Details

This distribution is very close to flat over an extremely
wide range of the interval (0,∞), although it does have a

nasty spike at 0 (as τ ↓ 0,Γ(ε, ε)(τ) ↑ ∞).

As noted earlier, the idea behind diffuse priors is to make
them approximately constant in the region in which the

likelihood is appreciable.

For this purpose it’s useful to remember what the
frequentist answers for µ and σ would be, at least in the

Gaussian model I mentioned earlier.

As an approximate Bayesian method, with the NB10 data a
95% confidence interval (CI) for µ comes out (403.3,405.9),

so you can guess that the likelihood for µ would be
non-negligible in the range from (say) 402 to 407.

As for σ (or σ2 or τ), in the model (Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
, it’s

a standard result from frequentist distribution theory that
in repeated sampling

(n− 1)s2

σ2
∼ χ2

n−1, (30)

where s2 = 1
n−1

∑n
i=1(yi − ȳ)2 is random and σ2 is fixed,

from which

Pf

[
A ≤ (n− 1)s2

σ2
≤ B

]
= 0.99 (31)

for A,B such that

Pf

(
χ2
n−1 ≤ A

)
= Pf

(
χ2
n−1 ≥ B

)
= 0.005. (32)

Thus, using Neyman’s confidence trick,

Pf

[
(n− 1)s2

B
≤ σ2 ≤ (n− 1)s2

A

]
= 0.99; (33)

in other words,
[
(n−1)s2

B
, (n−1)s

2

A

]
is a

99% confidence interval for σ2.

29

Diffuse Priors

With the NB10 data n = 100 and s2 = 41.82, and you can
use R to do this analysis:

> y

[1] 409 400 406 399 402 406 401 403 401 403 398 403 407 402 401 399 400 401

[19] 405 402 408 399 399 402 399 397 407 401 399 401 403 400 410 401 407 423

[37] 406 406 402 405 405 409 399 402 407 406 413 409 404 402 404 406 407 405

[55] 411 410 410 410 401 402 404 405 392 407 406 404 403 408 404 407 412 406
[73] 409 400 408 404 401 404 408 406 408 406 401 412 393 437 418 415 404 401

[91] 401 407 412 375 409 406 398 406 403 404

> print(n <- length(y))

[1] 100

> print(s2 <- var(y))

[1] 41.8201

> qchisq(0.005, 99)

[1] 66.5101

> qchisq(0.995, 99)

[1] 138.9868

> (n - 1) * s2 / qchisq(0.995, 99)

[1] 29.78837

> (n - 1) * s2 / qchisq(0.005, 99)

[1] 62.24904

> qchisq(0.005, 99) / ((n - 1) * s2)

[1] 0.01606451

> qchisq(0.995, 99) / ((n - 1) * s2)

[1] 0.03357015

30

More Details

mu

P
rio

r
D

en
si

ty

-3000-2000-1000 0 1000 2000 3000

0.
0

0.
00

01
0.

00
03

mu

P
rio

r
D

en
si

ty

402 403 404 405 406 407

0.
0

0.
00

02
0.

00
06

tau

P
rio

r
D

en
si

ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
00

04
0.

00
08

tau

P
rio

r
D

en
si

ty

0.020 0.025 0.030 0.035 0.040

0.
0

0.
00

01
0

0.
00

02
0

So the conclusion is that the likelihood for τ = 1
σ2 should be

non-negligible roughly in the region from about
0.015 to 0.035.

The figure above plots the prior distributions for µ and τ and
verifies their diffuseness in the relevant regions.

(c) As for the prior on ν, you can tell from the normal
qqplot of the NB10 data that the degrees of freedom

parameter in the underlying t distribution is fairly small.

I’m going to use a uniform U(c1, c2) prior, where c1 is small
but not too small (as noted earlier, with ν < 2 the variance is
infinite, which is not realistic as a model for actual data)

and c2 is big enough not to truncate the likelihood function
(experience tells me that c2 = 12 will suffice; this can also be

determined via MCMC experimentation).

31

More Details

(2) Initial Values. I can make fairly decent guesses at all
the parameters as starting values for the Markov chain:

(a) The sample mean is 404.59, which should be close to
the posterior mean for µ in the t model;

(b) I’m just going to guess that ν is around 5.

(c) Earlier I said that V
[
tν(µ, σ2)

]
= σ2

(
ν

ν−2

)
, so with ν

.
= 5

and a sample variance of 41.82 you get τ = 1
σ2

.
= 0.04.

A Running Strategy. With a problem like this with

relatively few parameters, I often start off with a burn-in
of roughly 1,000 and a monitoring run of 10,000–100,000

and then look at the MCMC diagnostics.

3.6 Practical MCMC monitoring and
convergence diagnostics.

Remember questions (3) and (4) awhile ago?—(3) How
large should b and m be? (4) More generally, how do you

know when the chain has reached equilibrium?

A large body of research has grown up just in the last
eight years or so to answer these questions (some good
reviews are available in Gelman et al. 2003, Gilks et

al. 1995, and Cowles and Carlin 1996).

The theoretical bottom line is unpleasant: you can’t ever
be sure you’ve reached equilibrium, in the sense that
every MCMC diagnostic invented so far has at least one

example in which it failed to diagnose problems.

However, a collection of four of the best diagnostics has
been brought together in a set of R functions called CODA by

Best, Cowles, and Vines (1995) (downloadable from
the R web site).

32

MCMC Diagnostics (continued)

I’ll briefly discuss each of these in the context of the
NB10 analysis.

Geweke (1992) proposed a simple diagnostic based on
time series ideas.

Thinking of each column of the MCMC dataset as a time
series (with iterations indexing time), he reasoned that, if
the chain were in equilibrium, the means of the first (say)
10% and the last (say) 50% of the iterations should be

nearly equal.

His diagnostic is a z-score for testing this equality, with a
separate value for each quantity being monitored: Geweke
z-scores a lot bigger than 2 in absolute value indicate

that the mean level of the time series is still drifting, even
after whatever burn-in you’ve already done.

GEWEKE CONVERGENCE DIAGNOSTIC (Z-score):

==

Iterations used = 1002:6001 Fraction in

Thinning interval = 1 1st window = 0.1

Sample size per chain = 5000 Fraction in

2nd window = 0.5

-+----------+-------------+-

| VARIABLE | bugs1 |
| ======== | ===== |

| | |

| mu | 2.39 |

| nu | 1.78 |

| sigma | 1.14 |

| | |
-+----------+-------------+-

Here with the NB10 data there’s some evidence of
nonstationarity with a burn-in of only 1,000 (although a

z-value of 2.39 is not overwhelming).

33

Gelman-Rubin Shrink Factors

Gelman-Rubin (1992) have suggested a diagnostic that
looks for multimodality of the posterior distribution.

If the posterior has (say) two major modes that are far away
from each other in parameter space, and you initialize the

chain near one of the modes,
you may never find the other one.

The idea is to run the chain two or more times from
widely-dispersed starting points and see if you always

converge to the same place.

Gelman and Rubin do what amounts to an analysis of
variance within and between the chains, looking for evidence

of large variability between them.

“This comparison is used to estimate the factor by which the
scale parameter of the marginal posterior distribution of each
[quantity being monitored] might [shrink] if the chain were

run to infinity” (Best et al., 1995).

The output is the 50% and 97.5% quantiles of the
distributions of shrink factors, one for each

quantity monitored.

If these quantiles are both close to 1.0 then there is little
evidence of dispersion between the distributions to which

the chains are converging.

GELMAN AND RUBIN 50% AND 97.5% SHRINK FACTORS:

==

Iterations used for diagnostic = 2501:5000

Thinning interval = 1

Sample size per chain = 5000

34

Raftery-Lewis Dependence Factors

-+----------+-----------------------------+-

| VARIABLE | Point est. 97.5% quantile |

| ======== | ========== ============== |

| | |

| mu | 1.00 1.00 |
| nu | 1.00 1.01 |

| sigma | 1.00 1.00 |

| | |

-+----------+-----------------------------+-

Here, with initial values as different as
(µ, τ, ν) = (405.0,0.1823,5.0) and (402.0,0.03,11.0) there is

no evidence of multimodality at all.

(To be really safe I should run a number of additional
chains—Gelman and Rubin (1992) give advice on how to
generate the set of initial values to try—but with even

modest sample sizes (like n = 100) the posterior in t models
is unimodal so there would be no point in this case.)

Raftery-Lewis (1992) suggested a diagnostic that directly

helps to answer question (3)—How do you pick b and m?

The answer to this question depends on how accurate you
want your posterior summaries to be, so Raftery and Lewis

require you to input three values:

(a) Which quantiles of the marginal posteriors are you
most interested in?

Usually the answer is the 2.5% and 97.5% points, since
they’re the basis of a 95% interval estimate.

(b) How close to the nominal levels would you like the
estimated quantiles to be?

35

Raftery-Lewis (continued)

The CODA default is 0.5%, e.g., if the left-hand value of your
95% interval is supposed to be at the 2.5% point of the

distribution, CODA will recommend a length of monitoring run
so that the actual level of this quantile will be between 2.0%

and 3.0%.

(NB This is sometimes more, and often less, Monte Carlo
accuracy than you really need.)

(c) With what minimum probability do you want to achieve
these accuracy goals? The default is 95%.

Having input these values, the output is of five kinds for
each quantity monitored:

(a) A recommended thinning interval. When the Gibbs
sampler is performing poorly people say the output is not
mixing well, and what they mean is that the Markovian

nature of the time series for each quantity has led to large
positive serial autocorrelations in time, e.g., µ1000 depends

highly on µ999, µ998, and so on.

This is another way to say that the random draws in the
simulation process are not moving around the parameter

space quickly.

When this happens, one way to reduce the autocorrelation is
to run the chain a lot longer and only record every kth

iteration—this is the thinning interval.

(b) A recommended length of burn-in to use, above and
beyond whatever you’ve already done.

(c) A recommended total length of run N (including
burn-in) to achieve the desired accuracy.

(d) A lower bound Nmin on run length—what the minimum
would have needed to be if the quantity in question had an

IID time series instead of an autocorrelated series.

36

Heidelberger-Welch Diagnostic

(e) And finally, the ratio I = N/Nmin, which Raftery and
Lewis call the dependence factor—values of I near 1

indicate good mixing.

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

===

Iterations used = 1001:6000

Thinning interval = 1

Sample size per chain = 5000

Quantile = 0.025

Accuracy = +/- 0.005

Probability = 0.95

-+----------+--+-
| | Thin Burn-in Total Lower bound Dependence |

| VARIABLE | (k) (M) (N) (Nmin) factor (I) |

| ======== | ==== ======= ===== =========== ========== |

| | |

| mu | 1 3 4533 3746 1.21 |

| nu | 3 18 39720 3746 10.6 |
| sigma | 3 12 13308 3746 3.55 |

| | |

-+----------+--+-

Here µ is mixing well—5,000 iterations are sufficient to
achieve the default accuracy goal—but σ and (especially) ν
require longer monitoring periods: the recommendation is

to run for about 40,000 iterations and store every third.

Heidelberger-Welch (1983) propose a diagnostic approach

that uses the Cramér-von Mises statistic
to test for stationarity.

If overall stationarity fails for a given quantity being
monitored, CODA discards the first 10% of the series for that
quantity and recomputes the C-vonM statistic, continuing in

this manner until only the final 50% of the data remain.

37

MCMC Diagnostics (continued)

If stationarity still fails with the last half of the data then
CODA reports overall failure of the stationarity test.

CODA also computes a half-width test, which tries to judge
whether the portion of the series that passed the stationarity

test is sufficient to estimate the posterior mean with a
particular default accuracy (NB this default is often not

stringent enough for careful numerical work).

Here the table below shows that the first run with the NB10
data clears the Heidelberger-Welch hurdle with ease.

HEIDELBERGER AND WELCH STATIONARITY AND INTERVAL HALFWIDTH TESTS:

===

Precision of halfwidth test = 0.1

-+----------+--+-

| | Stationarity # of iters. # of iters. C-vonM |
| VARIABLE | test to keep to discard stat. |

| ======== | ============ =========== =========== ====== |

| | |

| mu | passed 5000 0 0.126 |
| nu | passed 5000 0 0.349 |

| sigma | passed 5000 0 0.176 |

| | |

-+----------+--+-
| | Halfwidth |

| VARIABLE | test Mean Halfwidth |

| ======== | ========= ==== ========= |

| | |
| mu | passed 404.00 0.0160 |

| nu | passed 3.75 0.1500 |

| sigma | passed 3.89 0.0344 |

| | |
-+----------+---------------------------------+-

Autocorrelations and Cross-correlations. CODA also
computes the autocorrelations for each monitored quantity
at lags from 1 to 50 and the cross-correlations between all

of the variables.

38

MCMC Diagnostics (continued)

As mentioned previously, the autocorrelation at lag k of a
time series {θ∗t , t = 1, . . . ,m} (e.g., Chatfield 1996) measures
the extent to which the series at time (t+ k) and at time t

are linearly related, for k = 1,2,

The usual sample estimate of this quantity is

rk =
ck

c0
, where ck =

1

m− k

m−k∑

t=1

(
θ∗t − θ̄∗

) (
θ∗t+k − θ̄∗

)
(34)

and θ̄∗ = 1
m

∑m
t=1 θ

∗
t .

The cross-correlation at lag k of two time series
{θ∗t , t = 1, . . . ,m} and {η∗t , t = 1, . . . ,m} measures the extent
to which the first series at time (t+ k) and the second at

time t are linearly related, for k = 1,2,

A natural sample estimate of this quantity is

rθη(k) =
cθη(k)√

cθθ(0)cηη(0)
, where

cθη(k) =
1

m− k

m−k∑

t=1

(
θ∗t − θ̄∗

) (
η∗t+k − η̄∗

)
. (35)

LAGS AND AUTOCORRELATIONS WITHIN EACH CHAIN:

==

-+---------+------------+-------------------------------+-

| Chain | Variable | Lag 1 Lag 10 Lag 50 |

| ===== | ======== | ===== ====== ====== |

| | | |

-+---------+------------+-------------------------------+-
| bugs1 | mu | 0.29400 0.00118 -0.01010 |

| | nu | 0.97200 0.78900 0.32100 |

| | sigma | 0.62100 0.30300 0.10800 |

| | | |

-+---------+------------+-------------------------------+-

39

Diagnostic and Summary Plots
CROSS-CORRELATION MATRIX:
=========================

-+----------+-------------------------------+-
VARIABLE	mu nu sigma
========	
mu	1.0000
nu	0.0946 1.0000
sigma	0.0534 0.5540 1.0000

-+----------+-------------------------------+-

You can see (a) that the series for ν is especially strongly
autocorrelated, and (b) that ν and σ are fairly strongly

positively correlated, which connects with the observation
earlier about confounding of scale and shape in the t family.

Diagnostic and Summary Plots. The figure below

presents four plots that are useful as MCMC diagnostics
and for graphical summaries of posterior distributions, in
the case of the parameter ν with run 1 from the NB10 data.

0 1000 2000 3000 4000 5000

2
4

6
8

10

nu

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : nu

Lag

P
ar

tia
l A

C
F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : nu

40

Diagnostic and Summary Plots

(WinBUGS can produce all but the lower right panel of this
figure; MLwiN makes this plot routinely.)

The upper left panel is a time series trace, which
documents the poor mixing that has been evident from

several of the numerical diagnostics.

The lower left panel is a plot of the autocorrelation
function (ACF) for ν, and the lower right panel plots the

partial autocorrelation function (PACF).

One of the most common behaviors observed in time series
in general, and in the output of MCMC samplers in
particular, is that of an autoregressive process.

Letting et denote an IID (or white-noise or purely random)
process with mean 0 and variance σ2

e , the time series θ∗t is
said to be an autoregressive process of order p (ARp) if

θ∗t = α1θ
∗
t−1 + . . .+ αpθ

∗
t−p + et. (36)

Equation (36) is like a multiple regression model except
that θ∗t is being regressed on past values of itself instead of

on other predictor variables; this gives rise
to the term autoregressive.

The partial autocorrelation function (PACF) measures the
excess correlation between θ∗t and θ∗t+k not accounted for by
the autocorrelations r1, . . . , rk−1, and is useful in diagnosing
the order of an ARp process: if θ∗t is ARp then the PACF at
lags 1, . . . , p will be significantly different from 0 and then

close to 0 at lags larger than p.

The lower right-hand plot above shows the characteristic
single spike at lag 1 which diagnoses an AR1 series (the

dotted lines in the ACF and PACF plots represent 2
standard error traces around 0, indicating how big an ACF

or PACF value needs to be
to be significantly different from 0).

41

MCMC Accuracy

This is reinforced by the ACF plot: if θ∗t is AR1 with positive
first-order autocorrelation ρ1 then the autocorrelation

function should show a slow geometric decay (a ski-slope
shape), which it clearly does in this case.

We would conclude that the Gibbs sampling output for ν,
when thought of as a time series, behaves like an AR1

process with first-order autocorrelation roughly r1 = 0.972
(from the table above).

MCMC Accuracy. Suppose that θ∗t is a stationary time

series with underlying true mean µθ and variance σ2
θ .

It can be shown that if {θ∗t , t = 1, . . . ,m} is AR1 with
first-order autocorrelation ρ1 then in repeated sampling the
uncertainty about µθ on the basis of the sample mean θ̄∗ is

quantified by

V
(
θ̄∗
)
=

σ2
θ

m

(
1+ ρ1

1− ρ1

)
. (37)

Thus if you want to use MCMC to estimate the posterior
mean of a given quantity θ with sufficient accuracy that
the standard error of the Monte Carlo mean estimate θ̄∗

based on a monitoring run of length m is no larger than a
specified tolerance T , and the MCMC output θ∗ behaves
like an AR1 series with first-order autocorrelation ρ1, you

would need m to satisfy

ŜE
(
θ̄∗
)
=

σ̂θ√
m

√
1+ ρ̂1

1− ρ̂1
≤ T, (38)

from which

m ≥ σ̂2
θ

T 2

(
1+ ρ̂1

1− ρ̂1

)
. (39)

42

Diagnostic Plots (continued)

This formula explains why monitoring runs with MCMC
often need to be quite long: as ρ1 → 1 the required m→∞.

For example, we have seen that ρ̂1 = r1 for ν in the NB10 t
model is +0.972, and we will see below that the sample

mean and SD based on the output for ν are roughly 3.628
and 1.161, respectively.

If you wanted to be able to report the posterior mean of ν to
3–significant-figure accuracy (3.63) with reasonably high
Monte Carlo probability, you would want T to be on the

order of 0.01, giving an enormous monitoring run:

m ≥
(
1.161

0.01

)2(
1 + 0.972

1− 0.972

)
.
= (13,479)(70.4)

.
= 949,322. (40)

This is much larger than the Raftery-Lewis default
recommendation above (there is no conflict in this fact;

the two diagnostics are focusing on
different posterior summaries).

Note from (40) that if you could figure out how to sample in
an IID manner from the posterior for θ you would only need

mIID ≥ σ̂2
θ

T 2, which in this case is about 13,500 draws.

The term
(
1+ρ̂1

1−ρ̂1

)
in (40) represents the amount by which

mIID would need to be multiplied to get the same accuracy
from MCMC output—it’s natural to call this the sample
size inflation factor (SSIF), which for ν comes out a

whopping 70.4.

The upper right panel in the diagnostic plots above gives a
density trace for ν, which shows a mode at about 3 degrees

of freedom and a long right-hand tail.

43

Numerical Summaries

0 1000 2000 3000 4000 5000

40
3

40
4

40
5

40
6

mu
D

en
si

ty
402 403 404 405 406

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : mu

Lag

P
ar

tia
l A

C
F

0 10 20 30

-0
.0

3
-0

.0
1

0.
01

0.
03

 Series : mu

All the parameters are mixing well now, so numerical
posterior summaries are worth making, as in the table below.

Posterior Posterior 95%
Parameter Mean SD Interval

µ 404.3 0.4641 (403.4, 405.2)
ν 3.63 1.16 (2.2, 6.6)
σ 3.873 0.4341 (3.100, 4.778)

44

WinBUGS Implementation

I read in three files—the model, the data, and the initial
values—and used the Specification Tool from the Model

menu to check the model, load the data, compile the model,
load the initial values, and generate additional initial values

for uninitialized nodes in the graph.

I then used the Sample Monitor Tool from the Inference menu
to set the mu, sigma, nu, and y.new nodes, and clicked on

Dynamic Trace plots for mu and nu.

Then choosing the Update Tool from the Model menu,
specifying 2000 in the updates box, and clicking update

permitted a burn-in of 2,000 iterations to occur with the
time series traces of the two parameters displayed

in real time.

45

WinBUGS Implementation (continued)

After minimizing the model, data, and inits windows and killing the
Specification Tool (which are no longer needed until the model is

respecified), I typed 10000 in the updates box of the Update Tool and
clicked update to generate a monitoring run of 10,000 iterations (you
can watch the updating of mu and nu dynamically to get an idea of the

mixing, but this slows down the sampling).

After killing the Dynamic Trace window for nu (to concentrate on mu for
now), in the Sample Monitor Tool I selected mu from the pull-down menu,
set the beg and end boxes to 2001 and 12000, respectively (to summarize
only the monitoring part of the run), and clicked on history to get the
time series trace of the monitoring run, density to get a kernel density
trace of the 10,000 iterations, stats to get numerical summaries of the

monitored iterations, quantiles to get a trace of the cumulative
estimates of the 2.5%, 50% and 97.5% points in the estimated

posterior, and autoC to get the autocorrelation function.

46

WinBUGS Implementation (continued)

You can see that the output for µ is mixing fairly well—the
ACF looks like that of an AR1 series with first-order serial

correlation of only about 0.3.

σ is mixing less well: its ACF looks like that of an AR1 series
with first-order serial correlation of about 0.6.

This means that a monitoring run of 10,000 would probably
not be enough to satisfy minimal Monte Carlo accuracy
goals—for example, from the Node statistics window the
estimated posterior mean is 3.878 with an estimated MC
error of 0.0128, meaning that we’ve not yet achieved

three-significant-figure accuracy in this
posterior summary.

47

WinBUGS Implementation (continued)

And ν’s mixing is the worst of the three: its ACF looks like that of an
AR1 series with first-order serial correlation of a bit less than +0.9.

WinBUGS has a somewhat complicated provision for printing out the
autocorrelations; alternately, you can approximately infer ρ̂1 from an
equation like (39) above: assuming that the WinBUGS people are taking
the output of any MCMC chain as (at least approximately) AR1 and

using the formula

ŜE
(
θ̄∗
)
=

σ̂θ√
m

√
1+ ρ̂1

1− ρ̂1
, (41)

you can solve this equation for ρ̂1 to get

ρ̂1 =
m
[
ŜE

(
θ̄∗
)]2
− σ̂2

θ

m
[
ŜE

(
θ̄∗
)]2

+ σ̂2
θ

. (42)

48

WinBUGS Implementation (continued)

Plugging in the relevant values here gives

ρ̂1 =
(10,000)(0.04253)2− (1.165)2

(10,000)(0.04253)2 + (1.165)2
.
= 0.860. (43)

To get more MCMC accuracy I typed 30000 in the updates window in the
Update Tool and hit update, yielding a total monitoring run of 40,000;

the summaries below for µ are satisfactory in every way.

49

WinBUGS Implementation (continued)

A monitoring run of 40,000 also looks good for σ: on this
basis, and conditional on this model and prior, I think σ is
around 3.87 (posterior mean, with an MCSE of 0.006),

give or take about 0.44 (posterior SD), and my 95% central
posterior interval for σ runs from about 3.09 to about 4.81
(the distribution has a bit of skewness to the right, which

makes sense given that σ is a scale parameter).

50

WinBUGS Implementation (continued)

If the real goal were ν I would use a longer monitoring
run, but the main point here is µ, and we saw back on p. 40
that µ and ν are close to uncorrelated in the posterior, so

this is good enough.

If you wanted to report the posterior mean of ν with an
MCSE of 0.01 (to come close to 3-sigfig accuracy) you’d
have to increase the length of the monitoring run by a

multiplicative factor of
(
0.02213
0.01

)2 .
= 4.9, which would yield a

recommended length of monitoring run of about 196,000
iterations (the entire monitoring phase would take about 3

minutes at 2.0 (PC) GHz).

51

WinBUGS Implementation (continued)

The posterior predictive distribution for yn+1 given
(y1, . . . , yn) is interesting in the t model: the predictive mean
and SD of 404.3 and 6.44 are not far from the sample mean

and SD (404.6 and 6.5, respectively), but the predictive
distribution has very heavy tails, consistent with the

degrees of freedom parameter ν in the t distribution being so
small (the time series trace has a few simulated values less
than 300 and greater than 500, much farther from the

center of the observed data than the most outlying
actual observations).

52

Gaussian Comparison

The posterior SD for µ, the only parameter directly
comparable across the Gaussian and t models for the NB10

data, came out 0.47 from the t modeling, versus 0.65
with the Gaussian, i.e., the interval estimate for µ from the
(incorrect) Gaussian model is about 40% wider that that

from the (much better-fitting) t model.

0 1000 2000 3000 4000 5000

2
4

6
8

10

nu

D
en

si
ty

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : nu

Lag

P
ar

tia
l A

C
F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

 Series : nu

53

A Model Uncertainty Anomaly?

NB Moving from the Gaussian to the t model involves a
net increase in model uncertainty, because when you

assume the Gaussian you’re in effect saying that you know
the t degrees of freedom are ∞, whereas with the t model
you’re treating ν as unknown. And yet, even though there’s

been an increase in model uncertainty, the inferential
uncertainty about µ has gone down.

This is relatively rare—usually when model uncertainty
increases so does inferential uncertainty (Draper

2004)—and arises in this case because of two things: (a) the
t model fits better than the Gaussian, and (b) the Gaussian

is actually a conservative model to assume as far as
inferential accuracy for location parameters

is concerned.

0 1000 2000 3000 4000 5000

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

sigma

D
en

si
ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sigma

Lag

P
ar

tia
l A

C
F

0 10 20 30

0.
0

0.
1

0.
2

0.
3

 Series : sigma

54

CODA in R

If you go to http://www.r-project.org/ , click on CRAN (the

Comprehensive R Archive Network), click on one of the CRAN
mirror sites, and click on Package Sources, you’ll find a lot of

contributed packages, one of which is CODA.

Clicking on coda will get you the source code for CODA (you

can also visit http://www-fis.iarc.fr/coda/ , a web site

maintained by Martyn Plummer, the guy who ported CODA
from S+ to R).

In this way you can download the source for R-CODA and
follow the instructions for installing it.

An easier way, if you’re running R on a machine that’s
connected to the internet, is to go into R and just type

install.packages("coda")

If everything goes smoothly this will automatically install
R-CODA on your machine.

Once you have it in your local library you can invoke it from
inside R with the command

library(coda)

and you can find out what it can do with the command

help(package = coda)

The idea is to run classicBUGS or WinBUGS, store the MCMC
dataset somewhere handy, go into R, and use R-CODA to read

the MCMC dataset in and analyze it.

All of the MCMC diagnostics described above are available
to you with this approach.

55

3.7 References

Best NG, Cowles MK, Vines SK (1995). CODA Manual version 0.30. MRC
Biostatistics Unit, Cambridge, UK.

Cowles MK, Carlin BP (1996). Markov chain Monte Carlo convergence
diagnostics: A comparative review. Journal of the American Statistical
Association, 91, 883–904.

Draper D (2004). On the relationship between model uncertainty and infer-
ential/predictive uncertainty. Under revision.

Gelfand AE, Smith AFM (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85,
398–409.

Gelman A, Carlin JB, Stern HS, Rubin DB (2003). Bayesian Data Analysis,
second edition. London: Chapman & Hall.

Gelman A, Rubin DB (1992). Inference from iterative simulation using mul-
tiple sequences. Statistical Science, 7, 457–472.

Geweke J (1992). Evaluating the accuracy of sampling-based approaches to
calculating posterior moments. In Bayesian Statistics 4, JM Bernardo, JO
Berger, AP Dawid, AFM Smith (eds.). Oxford: Clarendon Press.

Gilks WR, Wild P (1992). Adaptive rejection sampling for Gibbs sampling.
Applied Statistics, 41, 337–348.

Gilks WR, Clayton DG, Spiegelhalter DJ, Best NG, McNeil AJ, Sharples LD,
Kirby AJ (1993). Modeling complexity: Applications of Gibbs sampling in
medicine. Journal of the Royal Statistical Society, Series B, 55, 39–52.

Gilks WR, Richardson S, Spiegelhalter DJ (eds.) (1995). Markov Chain
Monte Carlo in Practice. London: Chapman & Hall.

Heidelberger P, Welch P (1983). Simulation run length control in the pres-
ence of an initial transient. Operations Research, 31, 1109–1144.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953).
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21, 1087–1092.

Raftery AL, Lewis S (1992). How many iterations in the Gibbs sampler? In
Bayesian Statistics 4, JM Bernardo, JO Berger, AP Dawid, AFM Smith
(eds.). Oxford: Clarendon Press, 763–774.

56

	Reading-2016-days-1-and-2-notes-part-5b
	Reading-2015-days-1-and-2-notes-part-5b
	part-5b-title-page
	Reading-2014-day-1-notes-part-3-b
	Reading-2014-day-1-notes-part-3-b
	Reading-2013-day-1-notes-part-3-b
	Reading-2013-day-1-notes-part-3-b
	Reading-2012-day-1-notes-part-3-b

