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2.8 Continuous Outcomes

For continuous outcomes there’s an analogue of de
Finetti’s Theorem that’s equally central to Bayesian

model-building (e.g., Bernardo and Smith, 1994):

de Finetti’s Theorem for Continuous Outcomes.
If Y1, Y2, . . . is an infinitely exchangeable sequence of

real-valued random quantities with probability measure p,
there exists a probability measure Q over D, the space of all
distribution functions on R, such that the joint distribution

function of Y1, . . . , Yn has the form

p(y1, . . . , yn) =

∫

D

n∏

i=1

F(yi) dQ(F), (70)

where Q(F)
P
= limn→∞ p(Fn) and Fn is the empirical

cumulative distribution function based on Y1, . . . , Yn.

In other words, exchangeability of real-valued observables is
equivalent to the hierarchical model

F ∼ p(F) (prior)

(Y1, . . . , Yn|F)
IID∼ F (likelihood) (71)

for some prior distribution p on the set D of all possible
distribution functions.

This prior makes the continuous form of de Finetti’s
Theorem considerably harder to apply: to take the

elicitation task seriously is to try to specify a measure on a
function space (F is in effect an
infinite-dimensional parameter).

(NB This task is not unique to Bayesians—it’s equivalent to
asking “Where does the likelihood come from?” in

frequentist analyses of observational data.)
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Continuous Outcomes (continued)

What people often do in practice is to appeal to
considerations that narrow down the field, such as an a priori
judgment that the Yi ought to be symmetrically distributed

about a measure of center µ, and then try to use a fairly
rich parametric family satisfying (e.g.) the symmetry

restriction as a substitute for all of D.

Strictly speaking you’re not supposed to look at the Yi while
specifying your prior on D—this can lead to a failure to fully
assess and propagate model uncertainty—but not doing so
can permit the data to surprise you in ways that would make

you want to go back and revise your prior (an example of
Cromwell’s Rule in action).

As mentioned earlier, in this short course I’ll suggest two
potential ways out of this dilemma, based on out-of-sample
predictive validation (the model-checking in the LOS data

above was an example of this; see part 4) and Bayesian
nonparametrics/semi-parametrics (part 7).

Case Study: Measurement of physical constants. What
used to be called the National Bureau of Standards (NBS) in

Washington, DC, conducts extremely high precision
measurement of physical constants, such as the actual

weight of so-called check-weights that are supposed to
serve as reference standards (like the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of
a block of metal called NB10, which was supposed to weigh
exactly 10g, were made under conditions as close to IID as

possible (Freedman et al., 1998).

Value 375 392 393 397 398 399 400 401
Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409
Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437
Frequency 4 1 3 1 1 1 1 1
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NB10 Modeling

Q: (a) How much does NB10 really weigh? (b) How certain
are you given the data that the true weight of NB10 is less
than (say) 405.25? And (c) How accurately can you predict

the 101st measurement?

The graph below is a normal qqplot of the 100
measurements y = (y1, . . . , yn), which have a mean of

ȳ = 404.6 (the units are micrograms below 10g)
and an SD of s = 6.5.

•

•

•

•
•

•

•
•

•
•

•

•

•

••
• • •

•
•

•

••
•

•
•

•

•
•

•
•

•

•

•

•

•

••

•
••

•

•
•

••

•

•

•
•

•
• •

•

••••

• •
• •

•

••
••

•

•
•

•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•

•
•

•
••

•

•

•

•
•

•

•
• •

Quantiles of Standard Normal

N
B

10
 m

ea
su

re
m

en
ts

-2 -1 0 1 2

38
0

39
0

40
0

41
0

42
0

43
0

Evidently it’s plausible in answering these questions to
assume symmetry of the “underlying distribution” F in

de Finetti’s Theorem.

One standard choice, for instance, is the Gaussian:

(µ, σ2) ∼ p(µ, σ2)

(Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
. (72)

Here N
(
µ, σ2

)
is the familiar normal density

p(yi|µ, σ2) =
1

σ
√

2π
exp

[
−1

2

(
yi − µ

σ

)2
]

. (73)
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Gaussian Modeling

Even though you can see from the previous graph that (73)
is not a good model for the NB10 data, I’m going to fit it

to the data for practice in working with the normal
distribution from a Bayesian point of view (later we’ll

improve upon the Gaussian).

(73) is more complicated than the models in the AMI and
LOS case studies because the parameter θ here is a vector:

θ = (µ, σ2).

To warm up for this new complexity let’s first consider a
cut-down version of the model in which we pretend that σ

is known to be σ0 = 6.5 (the sample SD).

This simpler model is then
{

µ ∼ p(µ)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)
}

. (74)

The likelihood function in this model is

l(µ|y) =

n∏

i=1

1

σ0

√
2π

exp

[
− 1

2σ2
0

(yi − µ)2

]

= c exp

[
− 1

2σ2
0

n∑

i=1

(yi − µ)2

]
(75)

= c exp

[
− 1

2σ2
0

(
n∑

i=1

y2
i − 2µ

n∑

i=1

yi + nµ2

)]

= c exp


− 1

2
(

σ2
0

n

)(µ − ȳ)2


 .

Thus the likelihood function, when thought of as a density
for µ, is a normal distribution with mean ȳ and SD σ0√

n
.
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Gaussian Modeling (continued)

Notice that this SD is the same as the frequentist standard
error for Ȳ based on an IID sample of size n from the

N
(
µ, σ2

0

)
distribution.

(75) also shows that the sample mean ȳ is a sufficient
statistic for µ in model (72).

In finding the conjugate prior for µ it would be nice if the
product of two normal distributions is another normal
distribution, because that would demonstrate that the

conjugate prior is normal.

Suppose therefore, to see where it leads, that
the prior for µ is (say) p(µ) = N

(
µ0, σ

2
µ

)
.

Then Bayes’ Theorem would give

p(µ|y) = c p(µ) l(µ|y) (76)

= c exp

[
− 1

2σ2
µ

(µ − µ0)
2

]
exp

[
− n

2σ2
0

(µ − ȳ)2

]

= c exp

{
−1

2

[
(µ − µ0)

2

σ2
µ

+
n(µ − ȳ)2

σ2
0

]}
,

and we want this to be of the form

p(µ|y) = c exp

{
−1

2

[
A(µ − B)2 + C

]}

= c exp

{
−1

2

[
Aµ2 − 2ABµ + (AB2 + C)

]}
(77)

for some B, C, and A > 0.

Maple can help see if this works:

> collect( ( mu - mu0 )^2 / sigmamu^2 +
n * ( mu - ybar )^2 / sigma0^2, mu );

2 2
/ 1 n \ 2 / mu0 n ybar \ mu0 n ybar
|-------- + -------| mu + |-2 -------- - 2 -------| mu + -------- + -------
| 2 2| | 2 2| 2 2
\sigmamu sigma0 / \ sigmamu sigma0 / sigmamu sigma0
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Gaussian Modeling

Matching coefficients for A and B
(we don’t really care about C) gives

A =
1

σ2
µ

+
n

σ2
0

and B =

µ0

σ2
µ

+ nȳ

σ2
0

1
σ2

µ

+ n
σ2

0

. (78)

Since A > 0 this demonstrates two things: (1) the
conjugate prior for µ in model (72) is normal, and (2) the
conjugate updating rule (when σ0 is assumed known) is




µ ∼ N
(
µ0, σ

2
µ

)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)
,

i = 1, . . . , n





→ (µ|y) = (µ|ȳ) = N
(
µ∗, σ

2
∗
)
, (79)

where the posterior mean and variance are given by

µ∗ = B =

(
1
σ2

µ

)
µ0 +

(
n
σ2

0

)
ȳ

1
σ2

µ

+ n
σ2

0

and σ2
∗ = A−1 =

1
1
σ2

µ

+ n
σ2

0

. (80)

It becomes useful in understanding the meaning of these

expressions to define the precision of a distribution, which

is just the reciprocal of its variance—whereas the variance
and SD scales measure uncertainty, the precision scale

quantifies information about an unknown.

With this convention (80) has a series of intuitive
interpretations, as follows:

• The prior, considered as an information source, is
Gaussian with mean µ0, variance σ2

µ, and precision 1
σ2

µ

, and

when viewed as a data set consists of n0 (to be determined
below) observations;

• The likelihood, considered as an information source, is

Gaussian with mean ȳ, variance
σ2

0

n
, and precision n

σ2
0

, and

when viewed as a data set consists of n observations;
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Gaussian Modeling (continued)

• The posterior, considered as an information source, is
Gaussian, and the posterior mean is a weighted average of
the prior mean and data mean, with weights given by the

prior and data precisions;

• The posterior precision (the reciprocal of the posterior
variance) is just the sum of the prior and data precisions

(this is why Bayesians invented the idea of precision—on this
scale knowledge about µ in model (74) is additive); and

• Rewriting µ∗ as

µ∗ =

(
1
σ2

µ

)
µ0 +

(
n
σ2

0

)
ȳ

1
σ2

µ

+ n
σ2

0

=

(
σ2

0

σ2
µ

)
µ0 + nȳ

σ2
0

σ2
µ

+ n
, (81)

you can see that the prior sample size is

n0 =
σ2

0

σ2
µ

=
1

(
σµ

σ0

)2
, (82)

which makes sense: the bigger σµ is in relation to σ0, the
less prior information is being incorporated in the

conjugate updating (79).

Bayesian inference with multivariate θ. Returning now

to (72) with σ2 unknown, (as mentioned above) this model
has a (p = 2)-dimensional parameter vector θ = (µ, σ2).

When p > 1 you can still use Bayes’ Theorem directly to
obtain the joint posterior distribution,

p(θ|y) = p(µ, σ2|y) = c p(θ) l(θ|y)
= c p(µ, σ2) l(µ, σ2|y), (83)
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Multivariate Unknown θ

where y = (y1, . . . , yn), although making this calculation
directly requires a p-dimensional integration to evaluate the

normalizing constant c; for example, in this case

c = [p(y)]
−1 =

(∫∫
p(µ, σ2, y) dµ dσ2

)−1

=

(∫∫
p(µ, σ2) l(µ, σ2|y) dµ dσ2

)−1

. (84)

Usually, however, you’ll be more interested in the marginal
posterior distributions, in this case p(µ|y) and p(σ2|y).

Obtaining these requires p integrations, each of dimension
(p − 1), a process that people refer to as marginalization or
integrating out the nuisance parameters—for example,

p(µ|y) =

∫ ∞

0

p(µ, σ2|y) dσ2 . (85)

Predictive distributions also involve a p-dimensional
integration: for example, with y = (y1, . . . , yn),

p(yn+1|y) =

∫∫
p(yn+1, µ, σ2|y) dµ dσ2 (86)

=

∫∫
p(yn+1|µ, σ2) p(µ, σ2|y) dµ dσ2.

And, finally, if you’re interested in a function of the
parameters, you have some more hard integrations

ahead of you.

For instance, suppose you wanted the posterior distribution

for the coefficient of variation λ = g1(µ, σ2) =
√

σ2

µ

in model (72).

90



Multivariate Unknown θ

Then one fairly direct way to get this posterior (e.g.,
Bernardo and Smith, 1994) is to (a) introduce a second

function of the parameters, say η = g2(µ, σ2), such that the
mapping f = (g1, g2) from (µ, σ2) to (λ, η) is invertible; (b)

compute the joint posterior for (λ, η) through the usual
change-of-variables formula

p(λ, η|y) = pµ,σ2

[
f−1(λ, η)|y

]
|Jf−1(λ, η)| , (87)

where pµ,σ2(·, ·|y) is the joint posterior for µ and σ2 and |Jf−1|
is the determinant of the Jacobian of the inverse

transformation; and (c) marginalize in λ by integrating out
η in p(λ, η|y), in a manner analogous to (85).

Here, for instance, η = g2(µ, σ2) = µ would create an
invertible f , with inverse defined by (µ = η, σ2 = λ2η2); the
Jacobian determinant comes out 2λη2 and (87) becomes

p(λ, η|y) = 2λη2 pµ,σ2(η, λ2η2|y).

This process involves two integrations, one (of dimension
p) to get the normalizing constant that defines (87) and one

(of dimension (p − 1)) to get rid of η.

You can see that when p is a lot bigger than 2 all these
integrals may create severe computational problems—this
has been the big stumbling block for applied Bayesian work

for a long time.

More than 200 years ago Laplace (1774)—perhaps the
second Bayesian in history (after Bayes himself)—developed,
as one avenue of solution to this problem, what people now
call Laplace approximations to high-dimensional integrals

of the type arising in Bayesian calculations (see, e.g.,
Tierney and Kadane, 1986).

Starting in the next case study after this one, we’ll use
another, computationally intensive, simulation-based

approach: Markov chain Monte Carlo (MCMC).
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Gaussian Modeling

Back to model (72). The conjugate prior for θ =
(
µ, σ2

)

in this model (e.g., Gelman et al., 2003) turns out to be
most simply described hierarchically:

σ2 ∼ SI-χ2(ν0, σ
2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
. (88)

Here saying that σ2 ∼ SI-χ2(ν0, σ
2
0), where SI stands for

scaled inverse, amounts to saying that the precision τ = 1
σ2

follows a scaled χ2 distribution with parameters ν0 and σ2
0.

The scaling is chosen so that σ2
0 can be interpreted as a

prior estimate of σ2, with ν0 the prior sample size of this
estimate (i.e., think of a prior data set with ν0

observations and sample SD σ0).

Since χ2 is a special case of the Gamma distribution, SI-χ2

must be a special case of the inverse Gamma family—its
density (see Gelman et al. (2003), Appendix A) is

σ2 ∼ SI-χ2(ν0, σ
2
0) ↔ (89)

p(σ2) =

(
1
2
ν0

)1

2
ν0

Γ
(
1
2
ν0

) (σ2
0

)1

2
ν0
(
σ2
)−(1+1

2
ν0)

exp

(
−ν0 σ2

0

2σ2

)
.

As may be verified with Maple, this distribution has mean
(provided that ν0 > 2) and variance (provided that ν0 > 4)

given by

E
(
σ2
)
=

ν0

ν0 − 2
σ2

0 and V
(
σ2
)
=

2ν2
0

(ν0 − 2)2(ν0 − 4)
σ4

0. (90)
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Gaussian Modeling (continued)

The parameters µ0 and κ0 in the second level of the prior

model (88), (µ|σ2) ∼ N
(
µ0,

σ2

κ0

)
, have simple parallel

interpretations to those of σ2
0 and ν0: µ0 is the prior

estimate of µ, and κ0 is the prior effective sample size of
this estimate.

The likelihood function in model (72), with both µ and σ2

unknown, is

l(µ, σ2|y) = c

n∏

i=1

1√
2πσ2

exp

[
− 1

2σ2
(yi − µ)2

]

= c
(
σ2
)−1

2
n
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
(91)

= c
(
σ2
)−1

2
n
exp

[
− 1

2σ2

(
n∑

i=1

y2
i − 2µ

n∑

i=1

yi + nµ2

)]
.

The expression in brackets in the last line of (91) is

[ · ] = − 1

2σ2

[
n∑

i=1

y2
i + n(µ − ȳ)2 − nȳ2

]
(92)

= − 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2

]
,

where s2 = 1
n−1

∑n
i=1 (yi − ȳ)2 is the sample variance. Thus

l(µ, σ2|y) = c
(
σ2
)−1

2
n
exp

{
− 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2

]}
,

and it’s clear that the vector
(
ȳ, s2

)
is sufficient for

θ =
(
µ, σ2

)
in this model, i.e., l(µ, σ2|y) = l(µ, σ2|ȳ, s2).
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Gaussian Analysis

Maple can be used to make 3D and contour plots of this
likelihood function with the NB10 data:

> l := ( mu, sigma2, ybar, s2, n ) -> sigma2^( - n / 2 ) *

exp( - ( n * ( mu - ybar )^2 + ( n - 1 ) * s2 ) / ( 2 * sigma2 ) );

l := (mu, sigma2, ybar, s2, n) ->

2

(- 1/2 n) n (mu - ybar) + (n - 1) s2

sigma2 exp(- 1/2 ---------------------------)

sigma2

> plotsetup( x11 );

> plot3d( l( mu, sigma2, 404.6, 42.25, 100 ), mu = 402.6 .. 406.6,

sigma2 = 25 .. 70 );

403

404

405

406

mu

30

40

50

60

70

sigma2

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

You can use the mouse to rotate 3D plots and get other
useful views of them:
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Gaussian Analysis

403404405406
mu

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

The projection or shadow plot of µ looks a lot like a
normal (or maybe a t) distribution.

30 40 50 60 70
sigma2

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

And the shadow plot of σ2 looks a lot like a Gamma (or
maybe an inverse Gamma) distribution.
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Gaussian Analysis
> plots[ contourplot ]( 10^100 * l( mu, sigma2, 404.6, 42.25, 100 ),

mu = 402.6 .. 406.6, sigma2 = 25 .. 70, color = black );

35

40

45

50

55

sigma2

403.5 404 404.5 405 405.5
mu

The contour plot shows that µ and σ2 are uncorrelated in
the likelihood distribution, and the skewness of the marginal

distribution of σ2 is also evident.

Posterior analysis. Having adopted the conjugate prior

(88), what I’d like next is simple expressions for the
marginal posterior distributions p(µ|y) and p(σ2|y) and for

predictive distributions like p(yn+1|y).
Fortunately, in model (72) all of the integrations (such as

(85) and (86)) may be done analytically (see, e.g.,
Bernardo and Smith 1994), yielding the following results:

(σ2|y,G) ∼ SI-χ2(νn, σ2
n),

(µ|y,G) ∼ tνn

(
µn,

σ2
n

κn

)
, and (93)

(yn+1|y,G) ∼ tνn

(
µn,

κn + 1

κn

σ2
n

)
.
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NB10 Gaussian Analysis

In the above expressions

νn = ν0 + n,

σ2
n =

1

νn

[
ν0σ

2
0 + (n − 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2

]
, (94)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, and

κn = κ0 + n,

ȳ and s2 are the usual sample mean and variance of y, and
G denotes the assumption of the Gaussian model.

Here tν(µ, σ2) is a scaled version of the usual tν distribution,

i.e., W ∼ tν(µ, σ2) ⇐⇒ W−µ

σ
∼ tν.

The scaled t distribution (see, e.g., Gelman et al. (2003)
Appendix A) has density

η ∼ tν(µ, σ2) ↔ p(η) =
Γ
[
1
2
(ν + 1)

]

Γ
(
1
2
ν
)√

νπσ2

[
1 +

1

νσ2
(η − µ)2

]−1

2
(ν+1)

.

(95)

This distribution has mean µ (as long as ν > 1) and
variance ν

ν−2
σ2 (as long as ν > 2).

Notice that, as with all previous conjugate examples, the
posterior mean is again a weighted average of the prior

mean and data mean, with weights determined by the prior
sample size and the data sample size:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ. (96)
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NB10 Gaussian Analysis (continued)

NB10 Gaussian Analysis. Question (a): I don’t know

anything about what NB10 is supposed to weigh (down to
the nearest microgram) or about the accuracy of the NBS’s
measurement process, so I want to use a diffuse prior for µ

and σ2.

Considering the meaning of the hyperparameters, to
provide little prior information I want to choose both ν0 and

κ0 close to 0.

Making them exactly 0 would produce an improper prior

distribution (which doesn’t integrate to 1), but choosing
positive values as close to 0 as you like yields a proper and

highly diffuse prior.

You can see from (93, 94) that the result is then

(µ|y,G) ∼ tn

[
ȳ,

(n − 1)s2

n2

]
.
= N

(
ȳ,

s2

n

)
, (97)

i.e., with diffuse prior information (as with the Bernoulli
model in the AMI case study) the 95% central Bayesian

interval virtually coincides with the usual frequentist 95%
confidence interval

ȳ ± t.975
n−1

s√
n

= 404.6 ± (1.98)(0.647) = (403.3,405.9).

Thus both {frequentists who assume G} and {Bayesians who
assume G with a diffuse prior} conclude that NB10 weighs
about 404.6µg below 10g, give or take about 0.65µg.

Question (b). If interest focuses on whether NB10 weighs
less than some value like 405.25, when reasoning in a
Bayesian way you can answer this question directly: the

posterior distribution for µ is shown below, and
PB(µ < 405.25|y,G,diffuse prior)

.
= .85, i.e., your betting

odds in favor of the proposition that µ < 405.25 are about
5.5 to 1.
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NB10 Gaussian Analysis (continued)

Weight of NB10
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0.
5

0.
6

When reasoning in a frequentist way PF(µ < 405.25) is
undefined; about the best you can do is to test

H0 : µ < 405.25, for which the p-value would (approximately)
be p = PF,µ=405.25(ȳ > 405.59) = 1 − .85 = .15, i.e.,

insufficient evidence to reject H0 at the usual significance
levels (note the connection between the p-value and the

posterior probability, which arises in this example because the
null hypothesis is one-sided).

NB The significance test tries to answer a different
question: in Bayesian language it looks at P(ȳ|µ)

instead of P(µ|ȳ).

Many people find the latter quantity more interpretable.

Question (c). We saw earlier that in this model

(yn+1|y,G) ∼ tνn

[
µn,

κn + 1

κn

σ2
n

]
, (98)

and for n large and ν0 and κ0 close to 0 this is

(yn+1|y,G)
·∼ N(ȳ, s2), i.e., a 95% posterior predictive
interval for yn+1 is (392,418).
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Model Expansion

A standardized version of this predictive distribution
is plotted below, with the standardized NB10

data values superimposed.

Standardized NB10 Values
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0.
1

0.
2

0.
3

0.
4

It’s evident from this plot (and also from the normal qqplot
given earlier) that the Gaussian model provides a poor fit for
these data—the three most extreme points in the data set in

standard units are −4.6,2.8, and 5.0.

With the symmetric heavy tails indicated in these plots, in
fact, the empirical CDF looks quite a bit like that of a t

distribution with a rather small number of
degrees of freedom.

This suggests revising the previous model by expanding it:
embedding the Gaussian in the t family and adding a

parameter k for tail-weight.

Unfortunately there’s no standard closed-form conjugate
choice for the prior on k.

A more flexible approach to computing is evidently
needed—this is where Markov chain Monte Carlo methods

(our next main topic) come in.
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2.9 The Exponential Family

It was noticed a long time ago that many of the standard
sampling distributions that you’re likely to want to use in
constructing likelihood functions have the same general

form, which is referred to as the exponential family :

Definition (e.g., Bernardo and Smith, 1994): Given data y1

(a sample of size 1) and a parameter vector θ = (θ1, . . . , θk),
the (marginal) sampling distribution p(y1|θ) belongs to the

k-dimensional exponential family if it can be expressed in
the form

p(y1|θ) = c f1(y1) g1(θ) exp




k∑

j=1

φj(θ)hj(y1)


 (99)

for y1 ∈ Y and 0 otherwise; if Y does not depend on θ the
family is called regular.

(φ1(θ), . . . , φk(θ)) in (99) is referred to as the natural
parameterization of the exponential family.

In this case the joint distribution p(y|θ) of a sample
y = (y1, . . . , yn) of size n which is conditionally IID from (99)
(which also defines, as usual, the likelihood function l(θ|y))

will be

p(y|θ) = l(θ|y) =

n∏

i=1

p(yi|θ) (100)

= c

[
n∏

i=1

f1(yi)

]
[g1(θ)]

n exp




k∑

j=1

φj(θ)

n∑

i=1

hj(yi)


 .
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The Exponential Family (continued)

This leads to another way to define the

exponential family: in (99) take f(y) =
∏n

i=1 f1(yi)

and g(θ) = [g1(θ)]
n to yield

Definition: Given data y = (y1, . . . , yn) (a conditionally IID
sample of size n) and a parameter vector θ = (θ1, . . . , θk), the

(joint) sampling distribution p(y|θ) belongs to the
k-dimensional exponential family if it can be expressed in

the form

p(y|θ) = c f(y) g(θ) exp




k∑

j=1

φj(θ)

n∑

i=1

hj(yi)


 . (101)

Either way you can see that {
∑n

i=1 h1(yi), . . . ,
∑n

i=1 hk(yi)} is a
set of sufficient statistics for θ under this sampling model,
because the likelihood l(θ|y) depends on y only through the

values of {h1, . . . , hk}.

I bring up the exponential family in part because, if the
likelihood l(θ|y) is of the form (101), then in searching for a
conjugate prior p(θ)—that is, a prior of the same functional
form as the likelihood—you can see directly what will work:

p(θ) = c g(θ)τ0 exp




k∑

j=1

φj(θ) τj


 , (102)

for some τ = (τ0, . . . , τk).
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The Exponential Family (continued)

With this choice the posterior for θ will be

p(θ|y) = c g(θ)1+τ0 exp





k∑

j=1

φj(θ)


τj +

n∑

i=1

hj(y)





 ,

(103)

which is indeed of the same form (in θ) as (102).

As a first example, with s =
∑n

i=1 yi, the Bernoulli/binomial
likelihood in (41) can be written

l(θ|y) = θs(1 − θ)n−s

= (1 − θ)n

(
θ

1 − θ

)s

(104)

= (1 − θ)n exp

[
s log

(
θ

1 − θ

)]
,

which shows (a) that this sampling distribution is a member
of the exponential family with k = 1, g(θ) = (1 − θ)n, the

natural parameterization φ1(θ) = log
(

θ
1−θ

)
(NB the basis of

logistic regression), and h1(yi) = yi, and (b) that∑n
i=1 h1(yi) = s is sufficient for θ.

Then (102) says that the conjugate prior for the
Bernoulli/binomial likelihood is

p(θ) = c (1 − θ)nτ0 exp

[
τ1 log

(
θ

1 − θ

)]

= c θα−1(1 − θ)β−1 = Beta(α, β) (105)

for some α and β, as we’ve already seen is true.
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The Exponential Family (continued)

As an example of a non-regular exponential

family, suppose that a reasonable model for the

data is to take the observed values (yi|θ) to be

conditionally IID from the uniform distribution

U(0, θ) on the interval (0, θ) for unknown θ:

p(y1|θ) =

{
1
θ

for 0 < y1 < θ

0 otherwise

}
=

1

θ
I(0, θ), (106)

where I(A) = 1 if A is true and 0 otherwise.

θ in this model is called a range-restriction parameter; such
parameters are fundamentally different from location and
scale parameters (like the mean µ and variance σ2 in the

N(µ, σ2) model, respectively) or shape parameters (like the
degrees of freedom ν in the tν model).

(106) is an example of (99) with
c = 1, f1(y) = 1, g1(θ) = 1

θ
, h1(y) = 0, and φ1(θ) = anything

you want (e.g., 1), but only when the set Y = (0, θ) is taken
to depend on θ.

(Truncated distributions with unknown truncation point
also lead to non-regular exponential families.)

It turns out that inference in non-regular exponential families
is similar in some respects to the story when the exponential
family is regular, but there are some important differences

too (e.g., with a conditionally IID sample of size n from
(106), V (θ|y) = O

(
n−2

)
(!) instead of the

more familiar O
(
n−1

)
).
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The Exponential Family (continued)

For an example with p > 1, take θ = (µ, σ2) with

the Gaussian likelihood:

l(θ|y) =
n∏

i=1

1

σ
√

2π
exp

[
− 1

2σ2
(yi − µ)2

]
(107)

= σ−n(2π)−
n
2 exp


− 1

2σ2




n∑

i=1

y2
i

−2µ
n∑

i=1

yi + nµ2




 .

This is of the form (101) with k = 2, c =

(2π)−
n
2 , f(y) = 1, g(θ) = σ−n exp

(
−nµ2

2σ2

)
, φ1(θ) =

− 1
2σ2, φ2(θ) = µ

σ2, h1(yi) = y2
i , and h2(yi) = yi,

which shows that

[h1(y) =
∑n

i=1 y2
i , h2(y) =

∑n
i=1 yi] or equivalently

(ȳ, s2) is sufficient for θ.

Some unpleasant algebra then demonstrates that

an application of (102) leads to (88) as the

conjugate prior for the Gaussian likelihood when

both µ and σ2 are unknown.
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