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Your Big-Data Vocabulary Lesson For the Day

1 B = 1 byte = 8 binary digits = 20 bytes

1 KB (kilobyte) .= 1,000 bytes = 210 bytes

1 MB (megabyte) .= 1,000 KB = 220 bytes

1 GB (gigabyte) .= 1,000 MB = 230 bytes

1 TB (terabyte) .= 1,000 GB = 240 bytes

1 PB (petabyte) .= 1,000 TB = 250 bytes

1 EB (exabyte) .= 1,000 TB = 260 bytes

1 ZB (zettabyte) .= 1,000 EB = 270 bytes

1 YB (yottabyte) .= 1,000 ZB = 280 bytes

? 1 humongobyte? 1 gynormobyte? 1 too-f**cking-big-byte?
1 you-gotta-be-kidding-byte? 1 i-have-a-headache-byte?
1 just-kill-me-byte? 1 will-somebody-turn-out-the-lights-
when-they-close-the-door-byte?
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A Brief History of “Big Data”
(1944) It’s estimated that American libraries will double in size
every 16 years; therefore the Yale University Library in 2040 will
have approximately 200,000,000 books, occupying almost 10km of
shelving and requiring 6,000 catalog employees.
(1961) A scientist concludes that the number of new academic
journals is growing exponentially (not linearly), doubling every 15
years.
(1986) It’s estimated that the recording density achieved by
Gutenberg (1450) was 500 bytes per cubic inch, 500 times the
density of Sumerian clay tablets (4,000 BC); prediction: by 2000,
RAM should be storing 1.25 · 1011 bytes per cubic inch.
(1997) The term “Big Data” is used in an academic article for the
first time; a different article uses the word petabytes (1,000,000
Gbytes) for the first time, estimating that the entire world contains
a few hundred petabytes worth of information; therefore by 2000
(a) with tape and disk production there will never be a future need
to throw any information away, and
(b) a typical piece of information will never be looked at by a
human being. 3 / 67



History of “Big Data” (continued)

(1998) The growth rate of traffic on the Internet is estimated at
about 100% per year; at that rate, data traffic will overtake voice
traffic around 2002.
(1999) An influential CACM article has a section called Scientific
Visualization of Big Data:

“Where megabyte data sets were once considered large,
we now find data sets from individual simulations in the
300 GB range. ... But it is just plain difficult to look at
all the numbers.” Hamming: “The purpose of computing
is insight, not numbers; with Big Data we’re in danger of
failing to achieve that purpose.”

(2000) A study found that in 1999 the world produced about
1.5 exabytes (1,000,000,000 GB) of data, about 250 MB for every
human on the planet; by 2003 the volume had increased to
5 exabytes/year, 92% of it stored in disks.
(2001) The defining dimensions of Big Data are identified as the
3Vs: volume, velocity and variety.
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History of “Big Data” (continued)

(2007) Now the estimate is that in 2006 the world created 161
exabytes of data; between 2006 and 2010 this increased six-fold,
to 988 exabytes/year, doubling every 18 months; as of 2012 we
were up to 2.8 zettabytes (1 trillion GB) of data generated/year
worldwide.
(2008) It was estimated that internet protocol (IP) traffic will reach
0.5 zettabytes/year in 2012 (this prediction was correct), an
eightfold increase in 5 years.
(2009) A study finds that in 2008 Americans consumed
information for about 1.3 trillion hours, an average of 12
hours/day/person; consumption totaled 3.6 zettabytes (11 trillion
words), averaging out to 100,000 words and 34 GB per person per
day; this means that you were exposed to about
100 words/minute of your 16 waking hours per day.
(2011) It’s estimated that the world’s information storage capacity
grew at a compound annual rate of 25%/year between 1986 and
2007; moreover, in 1986, 99% of storage was analog, but in 2007
94% was digital.
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History of “Big Data” (continued)

(2011) A study finds that (a) in 2005 people in the U.S. had 1,000
minutes of curated Internet and video content for every minute
available for consumption and (b) the world produced 14.7
exabytes of new information in 2008, triple the volume in 2003.
2015 Experts predict a 4,300% increase in annual data generation
by 2020.
Big Data: “A collection of data sets so large and complex that it

becomes difficult to process using hands-on database management
tools or traditional data processing applications.”
Big Data: “A cultural, technological, and scholarly phenomenon

that rests on the interplay of: (1) Technology: maximizing
computation power and algorithmic accuracy to gather, analyze,
link, and compare large data sets. (2) Analysis: drawing on large
data sets to identify patterns in order to make economic, social,
technical, and legal claims. (3) Mythology: the widespread belief
that large data sets offer a higher form of intelligence and
knowledge that can generate insights that were previously
impossible, with the aura of truth, objectivity, and accuracy.”
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A Popular Frequentist Caricature of “Big-Data” Bayes
Here’s a popular frequentist caricature of Bayesian analysis of
large data sets:

All you Bayesians ever do is attach dubious priors to our
likelihood functions, and with a lot of data this is at best
ineffectual and at worst actually harmful: with so much
data, your priors don’t matter (ineffectual), and with
huge amounts of data, you can’t do your Bayesian
calculations in a realistic amount of time (harmful).
So go back to analyzing your tiny little data sets in
clinical trials and the social sciences, and leave the
important big-data work to the frequentists.

As I’ll now show, this argument is partly wrong and partly right.
Unrelated remark: My case studies today are from private
industry, in the field of eCommerce.
If you’re offended by the profit motive, OK, but this doesn’t let you
off the “Big-Data” hook: there are many current examples of “Big
Data” analyses that are non-industrial (e.g., data from Electronic
Medical Records in medicine and health policy).
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Some Sobering Truths About “Big Data”

I’ve put “Big Data” in quotes because, if you think we have a lot
of data now, try imagining what it will be like in 20 years.
Bayesian analysis provides a wonderful approach to
logically-internally-consistent quantitative conclusions; but our
“exact” computational methods (e.g., MCMC) DO NOT SCALE
WELL with increasing sample size n (in the absence of sufficient
statistics) and/or increasing model complexity (e.g., number k of
predictor variables).
The machine-learning (ML) guys have methods that (a) produce
AN answer in tasks such as point prediction and (b) do so very
quickly and in a way that DOES scale with n and k; they don’t
claim that their answer is “best,” but they give the clients AN
answer quickly; we Bayesians know how to give the clients the
OPTIMAL answer (conditional on assumptions), but we make
them wait days, weeks or months for the results; the clients rightly
conclude that we have no practically useful answer for them, and
they turn to ML for AN answer.
ML apocryphal anecdote.
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Sobering Truths About “Big Data” (continued)
For the past two decades the ML guys have been STEALING our
Bayesian ideas, renaming them (e.g., Chinese restaurant and Indian
buffet processes = Dirichlet process/Pólya urn schemes) and
collecting higher consulting fees; they’re taking food off of your
children’s dinner table; this has to stop.
Here’s how we get our food back:

Companies such as Amazon (market capitalization
US$205 billion, 30% annual growth rate) are filled with people
who think that

Quantitative analysis = ML;
we MUST push back against this vigorously and teach them
that

Quantitative analysis = {Econometrics, Statistics,
ML, Optimization (OR), ...}.

The ONLY thing that mediocre ML guys are moderately good
at is point prediction, with (barely) smaller RMSE than the
next guy as success for them; we MUST emphasize that there
is FAR MORE than this in good quantitative analysis.
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Sobering Truths About “Big Data” (continued)
Here’s how we get our food back (continued):

Even the good ML guys only know how to do predictive
inference by bootstrapping their point predictions; in general,
ML guys have no idea how to do (a) parametric inference,
(b) causal inference, (c) experimental design, (d) time series
analysis, (e) decision theory, ...; we MUST emphasize to
management that whenever the real problem is something
other than interval prediction, we are the ONLY guys who
know how to even think about the problem correctly.
BUT we must up our COMPUTING game, by developing
fast and highly accurate approximate methods of Bayesian
computation that SCALE well with n and k; until we do this,
all we can do is TALK about how we’re better than the ML
guys.

The rest of the talk: (a) optimal Bayesian analysis of randomized
controlled experiments with 12 million observations in EACH of
the T and C groups; (b) Bayesian analysis of observational studies
with 10 million participants; and (c) time series forecasting with
30 million outcome variables.

10 / 67



A/B Testing

The randomized controlled trial (RCT, rebranded
A/B testing in eCommerce) has a long and distinguished
history in medicine and agriculture that dates back to the
1920s.
In the early days RCTs were used successfully in settings in
which the noise-to-signal ratio, as measured by the
between-subject standard deviation divided by the size of the
effect the RCT was trying to find, was on the order of 1:1;

sample sizes in the low hundreds in each of the treatment
(T) and control (C) groups sufficed.

Today in eCommerce, people face noise-to-signal-ratios of
100:1 or higher;

I’ve seen a trial that would need 420 million total
experimental subjects to find a business-relevant effect with
(5%/5%) false positive/negative error rates.
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A/B Testing (continued)

How should data from a large A/B test be
optimally analyzed?

Is optimal analysis possible?
(Yes)

How can A/B tests be designed for greater efficiency, so
that hundreds of millions of subjects are not needed?
A promising alternative to the usual static A/B test, in which
sample sizes are fixed at design time, is dynamic, adaptive
design and analysis of experiments, in which

subjects are assigned to treatments sequentially to optimize
expected information gain.

The idea is not new — it goes back at least to WR Thompson
in 1933 — but it’s not yet been fully exploited in
eCommerce, even at cutting-edge companies such as Google
and Amazon.
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A/B Experimentation
Suppose You have an idea for improving the Amazon web experience.

You run an A/B experiment — in which some visitors (the
treatment group (A or T )) get {the current best Amazon web
experience} + {your innovation} and others (the control group

(B or C)) get {the current best Amazon web experience} — over
(say) a 3–week time period.

You choose Gross Merchandise Volume Bought (GMB) as the
outcome (or response) variable y of principal interest to you.

(Other outcomes may also be relevant, including the number of
Bought Items (BI) and a variable measuring whether a successful

sale involved a New or Re-activated Buyer (NoRB).)

It turns out that all of the four basic statistical activities arise in
analyzing the results from this A/B experiment:

• (Description) What was the mean value ȳT of GMB in the
treatment group?

How about ȳC , the control mean?
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The Four Basic Statistical Activities
How much bigger was ȳT relative to ȳC , as measured (for example)

by the lift θ̂ = ȳT−ȳC
ȳC

?

• (Inference) If the experiment were repeated for a much longer
period of time than 3 weeks, how likely is it that the 3–week lift

value might diminish or disappear, just because of random
fluctuations in who shows up at amazon.com?

In other words, was the apparent change in lift caused by the
treatment intervention, or could it easily have been the result of

haphazard fluctuations of unknown cause?

• (Prediction) If the treatment intervention were accepted as useful,
how much extra GMB would result in (say) the second half of 2015?

• (Decision) Should this experimental intervention be adopted as
part of the new current best Amazon web experience?

Of these four activities, only description involves no uncertainty:
we’re not sure about the answers to the inferential, predictive and

decision questions above, even after the experiment has been run.
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Bayesian Analysis of A/B Test Results
Case Study: experiment 5108, initial outcome variable raw GMB;

visitors randomized to T or C and followed for 2 weeks.

The treatment intervention consisted of a change to the basic
search engine that was supposed to increase the relevance of the

search findings.

In this case study I use the
freeware statistical analysis environment R.

The first thing to know about raw GMB, even in a multi-week trial, is
that most of the data values at the visitor level (i.e., aggregated

across 1 or more visits during the 2 weeks) are $0:
# experiment id: 5108

# Group n zeros n nonzeros n total

# Treatment 11,100,587 1,133,706 12,234,293
# Control 11,096,065 1,135,435 12,231,500

Each group had about 12 million observations,
of which about 90% were 0.
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Initial Descriptive Analysis
# analysis (1): read in the non-zero treatment data and
# look at it descriptively

setwd( "C:/e-Bay/Lift" )

nonzero.treatment.values <-
scan( "pgmb-raw-5108-treatment-v1.txt" )

# Read 1133706 items

print( n.nonzero.treatment.values <-
length( nonzero.treatment.values ) )

# 1133706

nonzero.treatment.values <- sort( nonzero.treatment.values )

print( mean.nonzero.treatment.values <-
mean( nonzero.treatment.values ) )

# 98.50182
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Initial Descriptive Analysis (continued)

n.zero.treatment.values <- 11100587

print( n.treatment.total <- n.nonzero.treatment.values +
n.zero.treatment.values )

# 12234293

print( overall.treatment.mean <- ( n.zero.treatment.values * 0 +
n.nonzero.treatment.values * mean.nonzero.treatment.values ) /
n.treatment.total )

# 9.127794

So the mean raw GMB value in the treatment group was $9.13.

hist( nonzero.treatment.values, breaks = 100000, probability = T,
main = ’’, xlab = ’Nonzero Treatment Values’,
ylab = ’Density’ )

The histogram on the next page offers a way to get information
about the distributional shape of the nonzero raw GMB variable.
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Initial Descriptive Analysis (continued)

Nonzero Treatment Values
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Nonzero treatment raw GMB had an enormously heavy right-hand
tail: most of the values were near $0, but the largest value was

$91,417.
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The Normal, or Gaussian, Distribution
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The most-studied distributional shape is that of the normal,
or Gaussian, distribution.

Its skewness (degree of asymmetry) and kurtosis (heaviness of
tails) values are both 0.

By contrast, the nonzero treatment raw GMB variable had skewness
and kurtosis values of +51.0 and +6,017, respectively.
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Nonzero Raw GMB on the Log Scale

Log( Nonzero Treatment Values )
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With heavily positively skewed variables that don’t take on negative
values, it’s typically helpful to look at the histogram of the logarithm

of the variable.
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Porcupine Quills

Nonzero Treatment Values
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Here we see an interesting behavior that looks like porcupine quills:
individual values along the number line with much higher frequency

than that of their neighbors.
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Psychological Price-Points

table( nonzero.treatment.values[
nonzero.treatment.values <= 10 ] )

# 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
# 1506 179 20 13 12 186 35 12 28 ...
# 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 ...
# 23 34 58 251 76 127 221 13106 2534 ...
# 1.96 1.97 1.98 1.99 2 2.01 2.02 2.03 2.04 ...
# 128 109 1963 3864 1618 139 115 174 123 ...

The porcupine quills are evidently psychological price-points: people
would vastly rather transact at $0.99 and $1.99 than at $1 and $2.

How about the control raw GMB variable?

print( mean.nonzero.control.values <-
mean( nonzero.control.values ) )

# 99.14066
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Treatment Versus Control, in Raw GMB Terms

print( overall.control.mean <- ( n.zero.control.values * 0 +
n.nonzero.control.values * mean.nonzero.control.values ) /
n.control.total )

# 9.203105

The control mean raw GMB value was $9.20,
versus $9.13 in treatment.

print( sample.mean.based.lift.estimate <-
( overall.treatment.mean - overall.control.mean ) /
overall.control.mean )

# -0.00818323

In this experiment the treatment was actually a bit worse than the
control using the raw GMB outcome, by about

82 basis points (0.82%).

The control histograms were similar to those in treatment, but the
largest value in the control group was $161,572, leading to skewness

and kurtosis values of +106 and +26,661, respectively.
23 / 67



Treatment Versus Control (continued)
It’s helpful to report lift in two parts: the change in the percentage

of 0 values and the change in the nonzero mean.
print( treatment.percent.zero <- n.zero.treatment.values /

n.treatment.total )

# 0.9073338

print( control.percent.zero <- n.zero.control.values /
n.control.total )

# 0.9071712

percent non-zero overall
# group zeros mean mean

# treatment 90.73 $98.50 $9.128
# control 90.72 $99.14 $9.203

The treatment had 0.02% more zeros than control; the treatment
nonzero mean was 0.64% lower than the control nonzero mean; the

net result was a lift of –0.82%.
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Building a Full Stochastic Model
So in this experiment the treatment was worse both ways on raw

GMB: it had a slightly higher percentage of zero transactions, and it
also had a somewhat lower mean for the nonzero transactions.

One way to build a full stochastic model — for the raw GMB
variable, one group at a time — would be to break it up into three

parts, or mixture components (this is
Bayesian hierarchical/mixture modeling):

• The spike at $0, which is modeled with the Bernoulli (0/1)
distribution with unknown probability p0 of being $0;

• The psychological price-points, which can be handled with the
multinomial distribution with known locations on the $ scale and

unknown probabilities (p1, . . . , pk); and

• an appropriate continuous distribution for what’s left over.

The histograms on the next page (for the treatment group) show that
what’s left over looks roughly Gaussian on the log scale:
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Bayesian Hierarchical/Mixture Modeling

Log( Non−Frequent Positive Treatment Values )
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However, careful analysis demonstrates that a mixture of 2 Gaussian
distributions on the log scale

(a) fits a lot better than a single Gaussian and
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Bayesian Hierarchical/Mixture Modeling (continued)

(b) fits the treatment data well (blue dotted curve = 1 Gaussian;
red solid curve = mixture of 2 Gaussians):

Log( Non−Frequent Positive Treatment Values )
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Taking a Step Back
It looks like we have a good Bayesian (parametric) probability

model for the raw GMB data: a mixture of Bernoulli for the spike at
0, multinomial for the psychological price-points, and a mixture of 2

Gaussians on the log scale for what’s left; however,

• Exact Bayesian computations with 12 million observations in each
of the treatment and control groups in this model are infeasible, and

• raw GMB appears to have a serious defect, which seems to make
it unacceptable as the basis for decisions on whether to launch

promising-looking treatment interventions.

There was a hint of this earlier, when I mentioned that the largest
treatment value was $91,417 and the largest control value was

$161,572 (77% larger than the corresponding treatment maximum).

The basic apparent problem is that

Raw GMB can be extremely sensitive to a small number of very
large observations that, arguably, were not causally influenced by

offering or withholding the treatment intervention.
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Sensitivity of Lift Estimate to a Single Outlier
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Shifting only the 3 largest C values to T drives the estimated lift
from –0.8% to 0%, and shifting only the largest 14 observations (out

of 12,231,500) from C to T is enough to move the posterior
probability that T is better than C from 0.1 to over 0.95.
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A/B Testing Problem 1: To Cap or Not to Cap?
The sensitivity illustrated on the previous page has led some

experimenters to recommend an analysis method that is sometimes
called capping (the technical statistical term is Winsorizing) for

outcomes such as GMB:

• In C , find the 100(1− ε)th GMB percentile, for a value of ε such as
0.0001 (this number depends on nC ); call the

resulting GMB value yC ,1−ε;

• Replace all GMB values in C that are > yC ,1−ε with yC ,1−ε; now
define ȳC ,Winsorized = the mean of the resulting modified C data set;

• In T , find the 100(1− ε)th GMB percentile, for a value of ε such as
0.0001 (this number depends on nT and is generally chosen to be the

same as the ε in C); call the resulting GMB value yT ,1−ε;

• Replace all GMB values in T that are > yT ,1−ε with yT ,1−ε; now
define ȳT ,Winsorized = the mean of the resulting modified T data set;

• Compute θ̂Winsorized = ȳT,Winsorized−ȳC,Winsorized
ȳC,Winsorized

, and base decisions on
θ̂Winsorized instead of on θ̂ = ȳT−ȳC

ȳC
.
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Capping Is a Bad Idea

This is current “best” practice in some eCommerce companies, but
it turns out to be a bad idea, and should immediately be stopped

and replaced by θ̂.

Capping has sometimes been justified on the ground of diminished
root mean squared error (RMSE RS , in repeated sampling) of

θ̂Winsorized as an estimate of θ, when compared with θ̂, and it’s true
that θ̂Winsorized does indeed have lower RMSE than θ̂ for this task;

however, in general, when γ̂ is used to estimate γ,

RMSE RS(γ̂) =
√

[bRS(γ̂)]2 + [SERS(γ̂)]2
, (1)

in which bRS(γ̂) = [ERS(γ̂)− γ] is the (repeated-sampling) bias of γ̂
and SERS(γ̂) is its (repeated-sampling) standard error.

RMSE is an acceptable (frequentist) criterion to use when choosing
among estimators, but only when the bias of the RMSE -minimizing

estimator is low; otherwise (in A/B experimentation) You get a
distorted view of lift.

31 / 67



Capping Should Be Stopped Immediately (continued)

I’ll now give an example in which θ̂Winsorized is biased by more than
–82%, making it completely unacceptable as the basis of good

decision-making.

Case Study: Treatment T : a marketing email in the Business and
Industrial category; Control C : no such email.

Design: controlled trial (A/B test), with 256,721 representative
users randomized (128,349 to T , 128,372 to C) and followed for 7

days, starting on 14 July 2014.

Outcome of interest: Gross Merchandise Bought (GMB),
i.e., total $ generated by buyers in the 7–day period.

θ = lift
(
µT−µC
µC

)
that would be observed if all users in the

population P of interest (future users) were to counterfactually
either receive the email (resulting population mean = µT ) or not

receive it (population mean = µC ): here k = 1.
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Capping Should Be Stopped Immediately (continued)

Un−Winsorized Estimate of theta
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Top panel: Inference with θ̂ is unbiased, and noisy because the
sample sizes are small.

Bottom panel: Inference with θ̂Winsorized appears to be less noisy,
because extreme observations have been Winsorized, but is

enormously biased on the low side.
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It’s Possible to Run Too Many “Small” Experiments
As an outcome variable, GMB is a nightmare: in typical

experiments, its noise-to-signal ratio is on the order of 15 to 1 (this
is exceptionally noisy, meaning that You’ll need a lot of data to find

small-but-still-business-relevant improvements).

Typical 4–week sample sizes in treatment (T ) and control (C)
groups in some eCommerce companies are about 12 million.

sample size
false false required

positive negative true in each of
rate rate lift T and C groups

5% 20% 1.0% 12,365,114
5 50 1.0 12,174,946

15 50 0.5 19,334,495
10 20 1.0 20,285,382
10 50 0.5 29,562,739
10 10 1.0 29,562,739
5 10 1.0 38,537,313
5 50 0.5 48,699,782
5 10 0.5 154,149,252
5 5 0.5 221,307,004
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∴ Either Option I or Option II
Along many dimensions that many eCommerce companies want to

explore experimentally, most of the big incremental, at-the-margin lifts
(≥ 1%) have already been found (this doesn’t preclude finding future big

lifts from bold, non-incremental, big-think treatment interventions).

Conclusion from the table on the previous page:

• With GMB as the outcome of principal interest, to find 0.5% lifts with
decently low false positive and false negative rates, current sample sizes

in each of T and C would have to go up multiplicatively by a factor of 15
or more.

The total number of users available for experimentation per year is
essentially fixed; if you currently perform N too-small experiments per

year, this would mean performing N
15 right-sized experiments in the

future.
There are two main static-design options.

Option I : Run fewer, larger, better-designed experiments; or

Option II : Concentrate on performance variables that have lower
noise-to-signal ratios.
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Pros and Cons of Option II

Option II : Concentrate on performance variables that have lower
noise-to-signal ratios.

These will typically be process items (such as number of clicks in
“desirable” places inside your web-page tree) rather than outcomes (such

as GMB or Bought Items (BI)).

For this to work, you need to pick process items that are strongly related
to (correlated with) your desired outcomes (if the T intervention drives

more red-haired people to your site,
this will probably not make GMB go up).

Advantage of focusing on process items with good process-outcome links:
• Most users give you process information more often than outcome

information (e.g., many days, most users don’t buy anything at all, but
many users click around inside your web-page tree on many days).

Disadvantage of focusing on such process items:

• The lower the correlation between a process item and your desired
outcomes, the less relevant any process improvements you find will be.
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Another Experimentation Flaw: One-At-A-Time Thinking

(Static-Design) Recommendation: Run some experiments under each of
Options I and II .

The founder of statistical experimental design was Sir Ronald Aylmer
Fisher FRS OBE (1890–1962), who did his initial pioneering work on

design in 1926.

“No aphorism is more frequently repeated ... than that we
must ask Nature few questions, or ideally, one question at a
time. The writer is convinced that this view is wholly
mistaken. Nature, he suggests, will best respond to a logically
and carefully thought out questionnaire; indeed if we ask her a
single question, she will often refuse to answer until some
other topic has been discussed.” (Fisher, 1935)

It’s unwise to ignore Fisher’s advice on the topic of experimental design.

And yet that’s exactly what many eCommerce companies are doing now:
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Another Recommendation
People run each experiment in a vacuum with respect to all other

experiments, which is like asking Nature only a single question at a time.
Not only is this one-at-a-time approach inefficient (you obtain less

information per experimented-upon user than you should);
It’s also flatly wrong in situations in which the combined effect of two T

interventions is anything other than the sum of their separate effects
(this is the problem of interactions, and it’s currently being completely

ignored at some companies).
Another recommendation:

The right way to “ask Nature a questionnaire” is with experiments in
which multiple factors are varied simultaneously;

everybody should do this.
For example,

• factor A = {10 different possible improvements to your current best
search engine};

• factor B = {6 different versions of a discount offer}; and
• factor C = {3 different ways to re-structure the Amazon server farm to
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Interactions; Fractional-Factorial Designs
Note that factors A, B and C explore rather independent (orthogonal)

directions in improvement space, but may still interact with each other in
their effects on Amazon users.

As part of finding the very best combination of treatments, you need to
be able to estimate the sizes of those interactions.

(10 · 6 · 3) is 180 different T groups simultaneously, if all possibilities
need to be explored.

That’s a lot of T groups, but fractional-factorial experimental design
technology (which permits you to experiment with a well-chosen subset
of the 180 groups and still get the information You want — has been

available since the 1950s to help structure these designs efficiently, and
the analysis of variance (which is a good method to analyze

fractional-factorial designs) has been around since the 1920s to help
analyze the results from these experiments.

The one-at-a-time approach was best practice
around the year 1915.

It would be good for eCommerce to at least get up to 1950s-era speed in
experimentation.
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Recommendation: Sequential Multi-Arm Bandits

Suppose you have dozens or hundreds of variations on a basic theme
(e.g., search-engine strategies, or the 180 different groups above).

You want to know which ones are best, and you don’t care that much
about full causal understanding of why they’re best.
Then you can use an experimentation method called

sequential multi-arm bandit,
in which (e.g.)

(a) you get a little bit of information about how well variations 1 to k1 do
(e.g., k1 = 10), and you immediately drop the worst k2 of them (e.g.,

k2 = 5);
(b) now get a little bit of information about how well variations (k1 + 1)

to 2 k1 do, and again drop the worst k2 of the ones you’ve looked at
so far;

(c) repeat (b), except that from time to time at random you bring back
some of the rejected variations to see if your rejection of them was hasty.

Recommendation: eCommerce should do more of this.
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Sequential Design; Longitudinal Analysis
The sequential multi-arm bandit idea dates back to 1933, but

improvements to the basic plan are still at the research forefront.
Other versions of Bayesian sequential optimal experimental design exist,

and should also be tried (e.g., the Google approach): search on
google analytics multi-armed bandits

and go to the top page to see how Google currently does this (there are
better sequential designs than theirs: use Bayesian decision theory).

• Some eCommerce companies have a long-standing problem: they don’t
really know who some of their users are until they buy something.

• This cripples your ability to do sensible longitudinal data analysis:

— To stratify on important variables at design time, to improve accuracy
of A/B tests; and

— To move eCommerce into the era of “personalized medicine,” in which
users get targeted treatments that are known to work in the recent past

on similar users.
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Technical Interlude: Optimal Analysis
Q: From an information-processing point of view, can (static) A/B tests

be analyzed optimally, even with sample sizes in the tens of millions?

A: Yes.

To see how, first look at a tiny case study, then go big.

Case Study (1970s Version): Captopril, a new type of
anti-hypertension drug, was developed in the mid-1970s.

• Nothing was known about captopril’s effects prior to the first
experiment on it (MacGregor et al., 1979; I’ve changed a few of the
details for ease of exposition): 24 representative hypertensive people,
randomized (12 to C [placebo], 12 to T [captopril]; SD = standard

deviation; outcome variable = systolic blood pressure [mmHg] at the end
of the trial).

group sample size sample mean sample SD
C 12 185.3 17.1
T 12 166.8 14.9
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Captopril Case Study

Summary: sample sizes (nC , nT ) = (12, 12); sample means
(ȳC , ȳT ) = (185.3, 166.8); sample SDs (sC , sT ) = (17.1, 14.9).

Intuitive estimated lift θ̂ = ȳT−ȳC
ȳC

= 166.8−185.3
185.3

.= −0.0998 = −10.0%.

We estimate that captopril causes a 10% reduction in systolic blood
pressure (sounds like a big win), but how much uncertainty is associated
with this estimate, in generalizing inferentially from the patients in the

experiment to P = {all hypertensive patients}?

We need to finish the model specification to answer this question.

• p(θ|B) — the “prior” distribution for θ (given B):

Since nothing was known about captopril prior to this experiment, the
external-information distribution should contain essentially no

information.

In other words, from an entropy point of view it should be close to
uniform, so take p(θ|B) ·∝ 1 (this is a diffuse or flat prior).
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Captopril Case Study (continued)
• p(D|θB) — the “sampling” distribution for D given θ and B:

Off-the-shelf specification for this is as follows — let {yiC}nC
i=1 and

{yjT}nT
j=1 be the C and T outcome values, respectively; then

(yiC |µC σ
2
C B G) IID∼ N(µC , σ

2
C )

(yjT |µT σ
2
T B G) IID∼ N(µT , σ

2
T ) , (2)

in which G = assumption of Gaussian sampling distributions in C and T .

Fact: With this sampling distribution, the induced likelihood distribution
for θ is

`(θ|D B G) .= Normal with mean θ̂ and SD

√
ȳ 2

T s2
C

ȳ 4
C nC

+ s2
T

ȳ 2
C nT

, (3)

and, with the prior distribution p(θ|B) ·∝ 1, the resulting posterior
distribution is

(θ|D B G) .= N
(
θ̂,

√
ȳ 2

T s2
C

ȳ 4
C nC

+ s2
T

ȳ 2
C nT

)
.= N(−0.0998, 0.03342) . (4)
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Captopril Case Study (continued)
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The signal-to-noise ratio here is |posterior mean of θ|
posterior SD of θ

.= 0.0998
0.0334

.= 2.99,
and the posterior probability p(θ < 0|D B G) that captopril would be

beneficial, on average, if administered to the population of {all
hypertensive patients similar to those in this study} — given the data set
D, the background information B, and the Gaussian sampling-distribution

assumption G — is about 0.999.
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Optimal Bayesian Model Specification
Of course we don’t want p(θ < 0|D B G), because G is not part of the
known-to-be-true background information B; we want p(θ < 0|D B).

Definition (Draper, 2015): Given (θ,D,B) from

C = (problem context, data-gathering protocol),

a Bayesian model specification [p(θ|B), p(D|θB)] is optimal if it includes
only assumptions rendered true by the structure of C.

Fact: One way to achieve optimal Bayesian model specification is via
Bayesian non-parametric (BNP) methods, which place prior distributions

on cumulative distribution functions (CDFs).

Fact: With little loss of generality, an optimal Bayesian model
specification for {yiC}nC

i=1 and {yjT}nT
j=1 in the current Case Study involves

Dirichlet-process (DP) priors, as follows:
(FC |B) ∼ DP(α,F0C )

(yiC |FC B) IID∼ FC (5)

and similarly for {yjT}nT
j=1, where FC is the CDF of the outcome values in

the population of (patients, users) similar to those in experiment.
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Bayesian Non-Parametric Methods
Fact: With no information about FC external to D, the optimal BNP

analysis is based on the DP posterior

(FC |D B) ∼ DP
(

nC , F̂nC C

)
, (6)

where F̂nC C is the empirical CDF based on {yiC}nC
i=1.

Definition: Given a real-valued data set y = (y1, . . . , yn), the
(frequentist) bootstrap distribution of the sample mean ȳ = 1

n
∑n

i=1 yi
may be approximated by

(a) choosing a sample of values y∗i at random with replacement from the
y vactor and computing ȳ∗ = 1

n
∑n

i=1 y∗i , and

(b) repeating (a) M times (for large positive integer M ≥ 100,000) and
making a histogram or kernel density trace of the values (ȳ∗1 , . . . , ȳ∗M).

Fact (Draper 2015): The posterior distribution p(µC |D B) induced by
DP

(
nC , F̂nC C

)
distribution may be sampled from accurately and quickly

by (frequentist) bootstrapping the sample mean and interpreting the
resulting distribution as a good approximation to p(µC |D B).
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Summary of Conclusions

fact: (a) bootstrap is 30 times faster than standard DP sampling
algorithm (stick-breaking), and

(b) bootstrap is embarrassingly parallelizable

• captopril: bnp analysis coincides with gaussian-assumption analysis,
because clt has kicked in even with only 12 obs per group, because

skewness and kurtosis values in C and T are both so close to 0

• gold-standard analysis in some eCommerce companies: hope that
captopril gaussian-assumption analysis is ‘close to optimal’; no proof that

this hope is justified

fact: gmb has hideously non-gaussian skewness and kurtosis values

fact: but the gaussian-assumption analysis is still approximately optimal,
provided that the C and T sample sizes n.C and n.T are large enough for

the Central Limit Theorem (CLT) to save us
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Case Study Details

number number of total proportion nonzero total
of zero nonzero number of of zero

group values values values values mean SD mean SD

treatment 90,006 38,343 128,349 0.7013 3,618.0 60,476 1080.9 33,096
control 89,863 38,509 128,372 0.7000 3,387.5 66,554 1016.2 36,485

all values non-zero values
all values non-zero values noise-to- noise-to-

group skewness kurtosis skewness kurtosis signal ratio signal ratio

treatment 205.9 52,887.9 112.8 15,861.1 30.62 16.72
control 289.1 92,750.5 158.7 27,902.6 35.90 19.65

nonzero values
min max

treatment 0.09 9,381,532
control 0.09 12,018,199

lift estimate +0.0636 = + 6.36%
sd of lift estimate 0.1400 = +14.00%
p( theta > 0 | data, background information ): gaussian 0.675 optimal 0.696
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Example of Setting Where CLT is Not Good Enough
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Let η = P(θ > 0|data, background information) in a segment
(subset, stratum) of users that comprises 10% of traffic in the

Case Study (12,837 observations in each of T and C).

Here Gaussian analysis (current best practice in some of
eCommerce) produces an estimate of η that’s too low by about 5%,

in relation to an optimal analysis; this underestimation gets worse
with decreasing segment sample size.
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eCommerce Case Study Details (continued)
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R Code For Parallel Bootstrapping

library( doParallel )
n.processors <- makeCluster( 1024 )
registerDoParallel( n.processors )

parallel.mean.bootstrap <- function( y, M, n, p.hat.0 ) {
foreach( i = 1:M, .inorder = F, .multicombine = T,

.combine = ’c’ ) %dopar% {
sum( sample( y, n - rbinom( 1, n, p.hat.0 ),

replace = T ) ) / n
}

}

seed <- 1
set.seed( seed )
M.b <- 100000

system.time(
mu.T.star.uncapped.1 <-

parallel.mean.bootstrap( nonzero.T.values.uncapped, M.b, n.T,
p.hat.0.T )

)
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Summary of Conclusions (continued)

(eCommerce, not captopril) case study: n.C and n.T are just barely big
enough for gaussian-assumption analysis to be decent

fact: when clt has not yet kicked in, gaussian-assumption analysis will be
conservative in the right tail (positive lift) and liberal in the left tail

conservative in the right tail means that the gaussian-assumption analysis
might say p(θ > 0|D B G) = 0.88 when really the optimal analysis

concludes that p(θ > 0|D B) = 0.97

this conservatism can be noticeable if n.C and n.T are quite small and
the outcome variable is quite skewed and kurtotic
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Summary of A/B Testing Analysis Algorithms
Design: Identify n = (nC + nT ) users representative of

P = {all future users relevant to this experiment}

(You have to specify relevant).

Randomize nC of these users to C (current best environment without the
T intervention) and nT to T (identical to C but with the T

intervention).

(This is a completely-randomized experiment; better designs exist, but
that’s another talk.)

Data summaries: sample means (ȳC , ȳT ), sample SDs (sC , sT ) for an
outcome y such as GMB.

Inferential target: population lift θ = µT−µC
µC

, in which µC (µT ) is the
population mean of y under the C (T ) condition.

Algorithm (Gaussian approximation): (extremely fast, but may
underestimate the posterior probability that the T intervention is

beneficial, especially in segments with small sample sizes)
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Gaussian Approximation Algorithm

θ̂ = ȳT − ȳC
ȳC

, ŜD(θ̂) =

√
ȳ 2

T s2
C

ȳ 4
C nC

+ s2
T

ȳ 2
C nT

p(θ > 0|D B G) .= 1− Φ
[
−θ̂

ŜD(θ̂)

]
, (7)

in which Φ(·) is the standard normal CDF.

inferential suggestion (not yet a proper decision algorithm): consider
launching the T if p(θ > 0|D B G) > c, where conventional (not

necessarily in any sense optimal) values of c include 0.9, 0.95, and 0.99

this logic may be applied not only to the entire data set but also to
smaller segments defined by covariates (features) (e.g., separately for

male and female users)

arriving at many such inferential suggestions —

{entire data set, segment 1, segment 2, . . . , segment S}

— (for large S) creates a multiplicity problem that’s best solved with
Bayesian decision theory (another talk)
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Gaussian Approximation Algorithm (continued)
R code to implement this approximate algorithm:

lift.estimate <- ( y.bar.T - y.bar.C ) / y.bar.C

SD.lift.estimate <- sqrt( ( y.bar.Tˆ2 * s.Cˆ2 ) /
( y.bar.Cˆ4 * n.C ) + s.Tˆ2 / ( y.bar.Cˆ2 * n.T ) )

gaussian.posterior.probability.of.improvement <-
1 - pnorm( ( 0 - lift.estimate ) / SE.lift.estimate )

even with (nC , nT ) each on the order of 10–100 million, this code takes
less than 1 second to run on a laptop with one decent core and decent

RAM

approximate validity of Gaussian algorithm depends on (nC , nT ) and the
sample skewness and kurtosis values in each of C and T

(∗) unfavorable conditions for this algorithm: {small sample size, large
skewness, large kurtosis} in either or both groups

in a future white paper (published to the experimentation wiki) i’ll
quantify (∗)
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Optimal Analysis Algorithm
Algorithm (optimal analysis): (accurate assessment of the posterior
probability that the T intervention is beneficial, but may be slow;

however, the bootstrap is embarrassingly parallelizable)

to make a valid draw µ∗T from the posterior distribution p(µT |yT B)
induced by the DP

(
n, F̂T

)
posterior on FT ,

(a) choose a random sample (yT∗
1 , . . . , yT∗

nT
) of size nT with replacement

from the data vector yT , and

(b) compute µ∗T = 1
nT

∑nT
`=1 yT∗

` ;

now repeat this Mb times (for large Mb) and use a histogram or kernel
density trace of the resulting µ∗T draws to approximate p(µT |yT B).

this reasoning obviously applies in parallel to obtain the corresponding
posterior p(µC |yC B) for the control-group population mean, and then to

simulate from p(θ|y B), where y =
(
yC , yT ), You just

(a) bind the columns (µ∗C1, . . . , µ
∗
CMb

) and (µ∗T 1, . . . , µ
∗
TMb

) together to
make a matrix with Mb rows and 2 columns,
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Optimal Analysis Algorithm

(b) calculate θ∗m = µ∗
Tm−µ

∗
Cm

µ∗
Cm

in row m = 1, . . . ,Mb of this matrix, and

(c) use a histogram or kernel density trace of the resulting Mb θ
∗ draws

to approximate p(θ|D B).

Elapsed Time (Sec) With Bootstrap Distribution of mu.T.star
Mb 8 Threads 24 Threads Mean SD Skewness Kurtosis

10,000 104.82 65.67 9.1279 0.036707 0.070319 -0.095457
9.1276 0.037139 0.053797 0.017913

100,000 1049.81 694.97 9.1278 0.037074 0.041394 0.00094482
9.1276 0.037086 0.048562 0.0087070

Elapsed Time (Sec) With Bootstrap Distribution of mu.C.star
Mb 8 Threads 24 Threads Mean SD Skewness Kurtosis

10,000 114.64 --- 9.2031 0.042402 0.046275 0.019909
100,000 1076.14 --- 9.2031 0.042352 0.086158 0.058135
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Analysis of Large-Scale Observational Studies

Sometimes you can’t run randomized controlled trials in eCommerce.

Example: you release a new version of your mobile app every 4–6
months, but you allow users to choose when to pull it (rather than

pushing it to everyone at the same time)

Q: Is the new app a disaster? (Want answer to this as fast as possible
after release)

Users in the “treatment” group (early adopters of the new release) and
the “control” group (people who initially continue to use the old release)
are not assigned to T and C at random: the early adopters choose when

to early-adopt, and they’re systematically different from the
later-adopters (this is called selection bias)

typically the early-adopters are enthusiastic buyers

if you just look at monetary outcomes among T and C users (say) 4
weeks after release, the new release will look (much) better than it really

is, because of selection bias
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Large-Scale Observational Studies (continued)

there will be millions of users in each of T and C,
but this does not save you:

taking more measurements with a systematically biased data-gathering
process just perpetuates the bias (unlike non-systematic noise, which you

can damp down by averaging over many users)

there are many ways to attempt to estimate the size of the selection bias
and adjust for it: standardization, regression, propensity scores, ...

with a Ph.D. student who’s interning in eCommerce, i’m currently
working on large-scale time-series methods (based on dynamic linear

models) for solving this problem

the idea is to let each user’s past buying behavior help you estimate what
her/his buying would have been if she/he did/didn’t early adopt (plus

adjusting for lots of other things too)

this method works well (paper coming soon)
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Data Science Homework
Define the following terms:

foreach; %dopar%;
Hadoop;
MapReduce;
Scala.

Write a program that validly and quickly makes 1,000,000
monitoring draws, from a posterior distribution in k > 100
dimensions, without a for loop.
Your hardware consists of 10,000 cores and 20,000 threads, and 1
TB of fast RAM; write a valid and efficient program that fits a
series of regression models to the following data set:

1,000,000,000 rows, 1,000 outcome variables (some binary,
some quantitative on R+, some quantitative on R) and 10,000
predictors (some binary, some quantitative on R+, some
quantitative on R), including the possibility of important
two-way interactions; validate your model and construct
well-calibrated predictive intervals for a new set of
1,000,000 rows.

Do all of this better than the machine-learning guys.
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A/B Testing From First Principles, Again

At company X , you have

(b) B, your current best web experience (e.g., users browse,
looking at things they might buy), and

(a) A, a proposed modification to (b) (e.g., make the pictures
of the items for sale a bit bigger).

(eCommerce Q:) Is (a) better than (b) at generating revenue?

(Statistical Reformulation:) If you cause the replacement of B by
A, will the effect on future company X users constitute a net
revenue gain?

In more detail:

— P = company X users in the time window
T1 = (4 weeks from now, 8 weeks from now).

— µB = mean aggregate revenue across P in interval T1 if web
experience B continues.
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Conventional Static A/B Testing

In more detail:
— P = company X users in the time window

T1 = (4 weeks from now, 8 weeks from now).

— µB = mean aggregate revenue across P in interval T if web
experience B continues.

— µA = mean aggregate revenue across P in interval T1 if web
experience (A + B) instead occurs.

— Relative effect caused by (A + B) versus B = lift =
θ = µA−µB

µB
.

Conventional static A/B testing approach to estimating θ:
— Let nA = nB = n; randomly choose (2 n) company X users;

randomize n of them to A and n to B; let ȳA and ȳB be the
observed mean aggregate revenue in groups A and B,
respectively, in the time window

T0 = (now, 4 weeks from now);
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Conventional Static A/B Testing: Error # 1

Conventional static A/B testing approach to estimating θ:
— Let nA = nB = n; randomly choose (2 n) company X users;

randomize n of them to A and n to B; let ȳA and ȳB be the
observed mean aggregate revenue in groups A and B,
respectively, in the time window

T0 = (now, 4 weeks from now);

— Estimated lift is (posterior mean) θ̂ = ȳA−ȳB
ȳB

; posterior SD is

SD(θ̂ | data) .=
√

ȳ2
A s2

B
ȳ4

B n + s2
A

ȳ2
B n (sA = SD of y in group A); hope

n is big enough for Central Limit Theorem (CLT) to yield
approximately Gaussian posterior for θ; if so
p(θ > 0 | data) .= 1− Φ

[
θ̂

SD(θ̂ |data)

]
; implement A if

p(θ > 0 | data) is “big enough.”
Error # 1: This uses inference to make a business
decision; Bayesian decision-theoretic reformulation leads to
a completely different (and better) action rule.
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Conventional Static A/B Testing: Error # 2

Error # 2: Outcome y has noise-to-signal ratio of sy
ȳ
.=

30–100 (!); no point in looking for tiny lifts with
inadequate sample sizes:

sample size
false false required

positive negative true in each of
rate rate lift A and B groups

5% 20% 1.0% 12,365,114
5 50 1.0 12,174,946

15 50 0.5 19,334,495
10 20 1.0 20,285,382
10 50 0.5 29,562,739
10 10 1.0 29,562,739
5 10 1.0 38,537,313
5 50 0.5 48,699,782
5 10 0.5 154,149,252
5 5 0.5 221,307,004
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Conventional Static A/B Testing: Errors # 3 and # 4
Error # 3: Get clever: try to incentivize A/B testing
employees by linking their bonuses to how much lift they seem
to have found (maybe OK so far); but (not OK) allow them
to keep “throwing wet spaghetti against the wall” by
permitting them to run the same A/B test repeatedly with
tiny variations until they get “statistical significance”; initial
false positive rate of 5% rises to 50% and company X is
managing noise; proof: aggregate all the lift “found” in year
N, get 70%; actual company-wide lift in year N was only 7%.
Error # 4: Concerned over heaviness of right tail of outcome
y , you decide to ‘‘cap” (Winsorize) y by replacing all values
bigger than (say) the 99.9th percentile with the 99.9th
percentile, before doing the previous estimated-lift analysis;
now your outcome variable has a much smaller
noise-to-signal ratio, and you feel a lot better; but this
introduces negative bias into your lift estimate of up to
85% (!); don’t do this.
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What to Do Instead

If you can, find process (intermediate-outcome) variables
upon which to experiment that (a) have smaller
noise-to-signal ratios and (b) are not only correlated with
revenue but legitimately on the causal path for revenue
improvement.
Experiment with many different factors at once, in a
fractional-factorial design, and estimate 2–way
interactions along with main effects.
Sequential adaptive (not static) Bayesian design and
analysis of experiments (e.g., multi-armed bandits)
can reduce necessary sample sizes by up to 90%.
If you can, use longitudinal (time-series) information on
each user to (dramatically) sharpen causal understanding.
When the CLT is not relevant, use Bayesian
non-parametric analyses to get at the underlying CDFs in
the A and B groups; the frequentist bootstrap
can dramatically speed up the computations.
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