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The Big Picture

Problems addressed by the discipline of statistics typically have the
following structure.

You (Good 1950) [note the capital Y]: a generic person wishing to
reason sensibly in the presence of uncertainty) are given a problem
P = (Q,C) involving uncertainty about θ, the unknown aspect of
P of principal interest.

Here Q identifies the main questions to be answered, and C
represents the (real-world) context in which the questions are
raised, instantiated through a finite set B of (true/false)
propositions, all rendered true by problem context.

You examine Your resources and find that it’s possible to obtain a
new data set D to decrease Your uncertainty about θ.

In this setting, a Theorem due to Cox (1946) and Jaynes (2002) —
recently rigorized and extended by Terenin and Draper (2015) —
says that
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The Big Picture (continued)
If You’re prepared to specify two probability distributions
— p(θ | B), encoding Your information about θ external
to D, and p(D | θB), capturing Your information about θ
internal to D — then optimal inference about θ is
based on the distribution p(θ |D B) ∝ p(θ | B) p(D | θB),
and optimal prediction of new data D∗ is based on the
distribution p(D∗ |D B) =

∫
Θ p(D∗ | θD B) p(θ |D B) dθ,

where Θ is the set of possible values of θ (another part of
the theorem covers optimal decision-making, but that’s
not relevant to this talk).

Let’s agree to call M = {p(θ | B), p(D | θB)} Your model for Your
uncertainty about θ and D∗.
The two main practical challenges in using this Theorem are

(technical) Integrals arising in computing the inferential and
predictive distributions may be difficult to approximate
accurately, and
(substantive) The mapping from P to M = {p(θ | B),
p(D | θB)} is rarely unique, giving rise to model uncertainty.
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Optimal Model Specification

Definition: In model specification, optimal = {conditioning only
on propositions rendered true by the context of the problem and
the design of the data-gathering process, while at the same time
ensuring that the set of conditioning propositions includes all
relevant problem context}.

Q: Is optimal model specification possible?

A: Yes, sometimes; for instance, Bayesian non-parametric
modeling is an important approach to model specification
optimality.

Example (part I of the talk): A/B testing (randomized
controlled experiments) in data science.

eCommerce company X interacts with users through its
web site; the company is constantly interested in improving
its web experience, so (without telling the users) it randomly
assigns them to treatment (A: a new variation on (e.g.) how
information is presented) or control (B: the current best
version of the web site) groups.
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A/B Testing

Let P be the population of company X users at time (now + ∆),
in which ∆ is fairly small (e.g., several months).

In a typical A/B test, (nC + nT ) users are sampled randomly from
a proxy for P — the population of company X users at time now
— with nC of these users assigned at random to C and nT to T .

The experimental users are monitored for k weeks (typically
2 ≤ k ≤ 6), and a summary y ∈ R of their use of the web site
(aggregated over the k weeks) is chosen as the principal outcome
variable; often y is either monetary or measures user satisfaction;
typically y ≥ 0, which I assume in what follows.

Let yC
i be the outcome value for user i in C , and let yC be the

vector (of length nC ) of all C values; define yT
j and yT (of length

nT ) analogously; Your total data set is then D = (yC , yT ).

Before the data set arrives, Your uncertainty about the yC
i and yT

j
values is conditionally exchangeable given the experimental
group indicators I = (1 if T , 0 if C).
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Bayesian Non-Parametric Modeling

Therefore, by de Finetti’s most important Representation
Theorem, Your predictive uncertainty about D is expressible
hierarchically as
(F C | B) ∼ p(F C | B)

(yC
i |F C B) IID∼ F C

(F T | B) ∼ p(F T | B)
(yT

j |F T B) IID∼ F T (1)

Here F C is the empirical CDF of the y values You would see in
the population P to which You’re interested in generalizing
inferentially

if all users in P were to receive the C version of the web experience,
and F T is the analogous empirical CDF if instead those same users
were to counterfactually receive the T version.
Assume that the means µC =

∫
y dF C (y) and µT =

∫
y dF T (y)

exist and are finite, and define

θ ,
µT − µC

µC ; (2)

in eCommerce this is referred to as the lift caused by the treatment.
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Optimal Bayesian Model Specification
(F C | B) ∼ p(F C | B)

(yC
i |F C B) IID∼ F C

(F T | B) ∼ p(F T | B)
(yT

j |F T B) IID∼ F T

I claim that this is an instance of optimal Bayesian model
specification: this Bayesian non-parametric (BNP) model arises
from exchangeability assumptions implied directly by problem
context.
I now instantiate this model with Dirichlet process priors placed
directly on the data scale:

(F C | B) ∼ DP(αC ,F C
0 )

(yC
i |F C B) IID∼ F C

(F T | B) ∼ DP(αT ,F T
0 )

(yT
j |F T B) IID∼ F T (3)

The usual conjugate updating produces the posterior

(F C | yC B) ∼ DP
(
αC + nC ,

αC F C
0 + n F̂ C

n
αC + nC

)
(4)

and analogously for F T , where F̂ C
n is the empirical CDF defined by

the control group data vector yC ; these posteriors for F C and F T

induce posteriors for µC and µT , and thus for θ.
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DP(n, F̂n)

(F C | yC B) ∼ DP
(
αC + nC ,

αC F C
0 + nC F̂ C

n
αC + nC

)
.

How to specify (αC ,F C
0 , α

T ,F T
0 )? In part 2 of the talk I’ll describe

a method for incorporating C information from other experiments;
in eCommerce it’s controversial to combine information across T
groups; so here I’ll present an analysis in which little information
external to (yC , yT ) is available.
This corresponds to αC and αT values close to 0, and — with the
large nC and nT values typical in A/B testing and αC .= αT .= 0 —
it doesn’t matter what You take for F C

0 and F T
0 ; in the limit as

(αC , αT ) ↓ 0 You get the posteriors

(F C | yC B) ∼ DP
(

nC , F̂ C
n

)
(F T | yT B) ∼ DP

(
nT , F̂ T

n

)
. (5)

In my view the DP
(

n, F̂n

)
posterior should get far more use in

Bayesian data science at Big-Data scale than it now does: it
arises directly from problem context in many settings, and (next
slide) is readily computable.
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Fast DP Posterior Simulation at Large Scale

(F C | yC B) ∼ DP
(

nC , F̂ C
n

)
(F T | yT B) ∼ DP

(
nT , F̂ T

n

)
.

How to quickly simulate F draws from DP
(

n, F̂n

)
when n is large

(e.g., O
(
107) or more)? You can of course use stick-breaking

(Sethuramen 1994), but this is slow because the size of the next
stick fragment depends sequentially on how much of the stick has
already been allocated.
Instead, use the Pólya Urn representation of the DP predictive
distribution (Blackwell and MacQueen 1973): having observed
y = (y1, . . . , yn) from the model (F | B) ∼ DP(α,F0),
(yi |F B) IID∼ F , by marginalizing over F You can show that to
make a draw from the posterior predictive for yn+1 You just
sample from F̂n with probability n

α+n (and from F0 with probability
α
α+n ); as α ↓ 0 this becomes simply making a random draw from
(y1, . . . , yn); and it turns out that, to make an F draw from
(F | y B) that stochastically matches what You would get from
stick-breaking, You just make n IID draws from (y1, . . . , yn) and
form the empirical CDF based on these draws.

9 / 30



The Frequentist Bootstrap in BNP Calculations
This is precisely the frequentist bootstrap (Efron 1979), which
turns out to be about 30 times faster than stick-breaking and is
embarrassingly parallelizable to boot (e.g., Alex Terenin tells me
that this is ludicrously easy to implement in MapReduce).
Therefore, to simulate from the posterior for θ in this model: for
large M
(1) Take M independent bootstrap samples from yC , calculating

the sample means µC
∗ of each of these bootstrap samples;

(2) Repeat (1) on yT , obtaining the vector µT
∗ of length M; and

(3) Make the vector calculation θ∗ = µT
∗ −µC

∗
µC

∗
.

I claim that this is an essentially optimal Bayesian analysis (the
only assumption not driven by problem context was the choice of
the DP prior, when other BNP priors are available).

Case Studies: Two experiments at company X , conducted a
few years ago; E1 involved about 24.5 million users, and E2 about
257,000 users; in both cases the outcome y was monetary,
expressed here in Monetary Units (MUs), a monotonic
increasing transformation of US$.
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Visualizing E1

In both C and T in E1, 90.7% of the users had y = 0, but the
remaining non-zero values ranged up to 162,000.
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Numerical Summaries of E1 and E2

Descriptive summaries of a monetary outcome y measured in two A/B
tests E1 and E2 at eCommerce company X; SD = standard deviation.

MU
Experiment n % 0 Mean SD Skewness Kurtosis

E1: T 12,234,293 90.7 9.128 129.7 157.6 59,247
E1: C 12,231,500 90.7 9.203 147.8 328.9 266,640
E2: T 128,349 70.1 1,080.8 33,095.8 205.9 52,888
E2: C 128,372 70.0 1,016.2 36,484.9 289.1 92,750

The outcome y in C in E1 had skewness 329 (Gaussian 0) and
kurtosis 267,000 (Gaussian 0); the noise-to-signal ratio
(SD/mean) in C in E2 was 36.

The estimated lift in E1 was θ̂ = 9.128−9.203
9.203

.= –0.8% (i.e., if
anything T made things worse); in E2, θ̂ = 1080.8−1016.2

1016.2
.=

+6.4% (highly promising), but the between-user variability in
the outcome y in E2 was massive (SDs in C and T on the order of
36,000).

12 / 30



Sampling from The Posteriors For F C and F T
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In E1, with n = 12 million in each group, posterior uncertainty about F
does not begin to exhibit itself (reading left to right) until about

e9 .= 8,100 MUs, which corresponds to the logit−1( 10 ) = 99.9995th
percentile; but with the mean at stake and violently skewed and
kurtotic distributions, extremely high percentiles are precisely the

distributional locations of greatest leverage.
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What Does The Central Limit Theorem Have To Say?

θ̂ is driven by the sample means ȳC and ȳT , so with large enough
sample sizes the posterior for θ will be close to Gaussian (by the
Bayesian CLT), rendering the bootstrapping unnecessary, but the
skewness and kurtosis values for the outcome y are large; when
does the CLT kick in?
Not-widely-known fact: under IID sampling,

skewness(ȳn) = skewness(y1)√
n

and kurtosis(ȳn) = kurtosis(y1)
n . (6)

E1 (C)
n skewness(ȳn) kurtosis(ȳn)
1 328.9 266,640.0

10 104.0 26,664.0
100 32.9 2,666.4

1,000 10.4 266.6
10,000 3.3 26.7

100,000 1.0 2.7
1,000,000 0.3 0.3

10,000,000 0.1 0.0
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Exact and Approximate Posteriors for θ
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BNP posterior distributions (solid curves) for the lift θ in E1 (upper
left) and E2 (upper right), with Gaussian approximations (dotted lines)
superimposed; lower left: the θ posteriors from E1 and E2 on the same

graph, to give a sense of relative information content in the two
experiments; lower right: BNP and approximate-Gaussian posteriors for θ

in a small subgroup (segment) of E2.
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eCommerce Conclusions
BNP inferential summaries of lift in the two A/B tests E1 and E2.

Posterior for θ (%) P(θ > 0 | yT yC B)
Experiment Total n Mean SD BNP Gaussian

E1 24,465,793 −0.818 0.608 0.0894 0.0892
E2 full 256,721 +6.365 14.01 0.6955 0.6752

E2 segment 23,674 +5.496 34.26 0.5075 0.5637

The bottom row of this table presents the results for a small subgroup
(known in eCommerce as a segment) of users in E2, identified by a
particular set of covariates; the combined sample size here is “only”

about 24,000, and the Gaussian approximation to P(θ > 0 | yT yC B)
is too high by more than 11%.

From a business perspective, the treatment intervention in E1 was
demonstrably a failure, with an estimated lift that represents a loss of

about 0.8%; the treatment in E2 was highly promising — θ̂
.= +6.4%

— but (with an outcome variable this noisy) the total sample size of
“only” about 257,000 was insufficient to demonstrate

its effectiveness convincingly.
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Combining Information Across Similar Control Groups
NB In the Gaussian approximation, the posterior for θ is Normal with

mean θ̂ = ȳT −ȳC

ȳC and (by Taylor expansion)

SD(θ | yT yC B) .=

√
ȳ2

T s2
C

ȳ4
C nC

+ s2
T

ȳ2
C nT

. (7)

Example (part II of the talk): Borrowing strength across
similar control groups.
In practice eCommerce company X runs a number of experiments
simultaneously, making it possible to consider a modeling
strategy in which T data in experiment E is compared with a
combination of {C data from E plus data from similar C groups in
other experiments}.
Suppose therefore that You judge control groups (C1, . . . ,CN)
exchangeable — not directly poolable, but like random draws
from a common C reservoir (as with random-effects hierarchical
models, in which between-group heterogeneity among the Ci is
explicitly acknowledged).
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BNP For Combining Information
An extension of the BNP modeling in part I to accommodate this
new borrowing of strength would look like this: for i = 1, . . . ,N
and j = 1, . . . , ngroup,

(F T | B) ∼ DP(αT ,F T
0 )

(yT
j |F T B) IID∼ F T

(F C
0 | B) ∼ DP(γ,G)

(F Ci |F C
0 B) IID∼ DP(αC ,F C

0 )
(yCi

j |F Ci B) IID∼ F Ci

(8)

The modeling in the C groups is an example of a hierarchical
Dirichlet process (Teh, Jordan, Beal and Blei 2005).
I’ve not yet implemented this model; with the large sample sizes
in eCommerce, DP

(
n, F̂n

)
will again be central, and some version

of frequentist bootstrapping will again do the calculations
quickly.
Suppose for the rest of the talk that the sample sizes are large
enough for the Gaussian approximation in part I to hold:

(µT | yT B) ·∼ N
[
ȳT ,

(sT )2

nT

]
and (µCi | yCi B) ·∼ N

[
ȳCi ,

(sCi )2

nCi

]
. (9)
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Approximate BNP With 100 Million Observations

(µT | yT B) ·∼ N
[
ȳT ,

(sT )2

nT

]
and (µCi | yCi B) ·∼ N

[
ȳCi ,

(sCi )2

nCi

]
With nT and the nCi .= 10 million each and (e.g.) N .= 10, the above

equation represents a fully efficient summary of an approximate BNP
analysis of O(100 million) observations.

Now simply turn the above Gaussian relationships around to
induce the likelihood function in a hierarchical Gaussian
random-effects model (the sample sizes are so large that the
within-groups sample SDs (e.g., sT ) can be regarded as known):

(µT | B) ∝ 1
(ȳT |µT B) ∼ N

[
µT , (sT )2

nT

] (σ | B) ∼ U(0,A)
(µC |σ B) ∝ 1

(µCi |µC σ B) IID∼ N(µC , σ2)
(ȳCi |µCi B) ∼ N

[
µCi , (sCi )2

nCi

] (10)

The Uniform(0,A) prior on the between-C -groups SD σ has been
shown (e.g., Gelman 2006) to have good calibration properties
(choose A just large enough to avoid likelihood truncation).

19 / 30



In Spiegelhalter’s Honor

{

eta.C ˜ dflat( )
sigma.mu.C ˜ dunif( 0.0, A )
mu.T ˜ dflat( )

y.bar.T ˜ dnorm( mu.T, tau.mu.T )

for ( i in 1:N ) {

y.bar.C[ i ] ˜ dnorm( mu.C[ i ], tau.y.bar.C[ i ] )
mu.C[ i ] ˜ dnorm( eta.C, tau.mu.C )

}

tau.mu.C <- 1.0 / ( sigma.mu.C * sigma.mu.C )

theta <- ( mu.T - eta.C ) / eta.C
theta.positive <- step( theta )

}
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One C Group First

list( A = 0.001,
y.bar.T = 9.286,
tau.mu.T = 727.28,
N = 1,
y.bar.C = c( 9.203 ),
tau.y.bar.C = c( 559.94 )

)

list( eta.C = 9.203,
sigma.mu.C = 0.0,
mu.T = 9.286

)
y mu theta

group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03708
C 12231500 9.203 147.8 9.203 0.04217 0.008904 0.006165 0.9276

Start with one C group: simulated data similar to E1 in part I but
with a bigger treatment effect — total sample size 24.5 million,
ȳT = 9.286, ȳC = 9.203, θ̂ =+0.9% with posterior SD 0.6%,
posterior probability of positive effect 0.93.
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Two C Groups

y mu theta
group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03704

C1 12231500 9.203 147.8 9.203 0.03263
C2 12232367 9.204 140.1 9.204 0.03196

C 24463867 --- --- 9.204 0.03458 0.008973 0.005538 0.9487

Now two C groups, chosen to be quite homogeneous (group
means 9.203 and 9.204, simulated from σ = 0.01) — with
truncation point A = 0.05 in the Uniform prior for σ, the
posterior mean for θ is about the same as before (+0.9%) but
the posterior SD has dropped from 0.61% to 0.55% (strength is
being borrowed), and the posterior probability of a positive
effect has risen to 95%.

However, has A = 0.05 inadvertently truncated the likelihood for
σ?
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A = 0.1: Borrowing Strength Seems to Disappear

y mu theta
group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03704

C1 12231500 9.203 147.8 9.203 0.03535
C2 12232367 9.204 140.1 9.204 0.03426

C 24463867 --- --- 9.203 0.04563 0.009011 0.006434 0.9231

With A = 0.1, the posterior SD for θ rises to 0.64%, and the
posterior probability of a positive lift (92%) is now smaller than
when only one C group was used — the borrowing of strength
seems to have disappeared.

Moreover, A = 0.1 still leads to truncation; exploration reveals
that truncation doesn’t start to become negligible until A ≥ 2.0
(and remember that the actual value of σ in this simulated data
set was 0.01).
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You Can Get Anything You Want ...
A = 0.1
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y mu theta
group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03704

C1 12231500 9.203 147.8 9.203 0.03981 (this is with A = 2.0)
C2 12232367 9.204 140.1 9.204 0.03794

C 24463867 --- --- 9.204 0.4691 0.01164 0.05475 0.7341
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Between-C -Groups Heterogeneity

The right way to set A (I haven’t done this yet) is via inferential
calibration on the target quantity of interest θ: create a
simulation environment identical to the real-world setting (nT =
12,234,293; nC1 = 12,231,500; nC2 = 12,232,367; sT = 0.03704;
sC1 = 0.03981; sC2 = 0.03794) except that (µT , µC , θ, σ) are
known to be (9.286; 9.203; 0.90%; 0.01) — now simulate many
data sets from the hierarchical model in equation (10) on page
19 and vary A until the 100(1− η)% posterior intervals for θ
include the right answer about 100(1− η)% of the time for a
broad range of η values.

Even when A has been correctly calibrated, when the number N
of C groups being combined is small it doesn’t take much
between-group heterogeneity for the model to tell You that You
have more uncertainty about θ with 2 control groups than with 1.
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Between-C -Groups Heterogeneity (continued)

y mu theta
group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03704

C1 12231500 9.203 147.8 9.203 0.03263 (here sigma = 0.01)
C2 12232367 9.204 140.1 9.204 0.03196

C 24463867 --- --- 9.204 0.03458 0.008973 0.005538 0.9487
----------------------------------------------------------------------

C1 12231500 9.203 147.8 9.209 0.03542
C2 12232367 9.222 140.1 9.217 0.03426 (here sigma = 0.015)

C 24463867 --- --- 9.213 0.04543 0.007976 0.006391 0.8983

In the top part of the table above with σ = 0.01, borrowing
strength decreased the posterior SD from its value with only 1
C group, but in the bottom part of the table — with σ only
slightly larger at 0.015 — there was enough heterogeneity to drop
the tail area from 92.8% (1 C group) to 89.8%.
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N = 10 C Groups, Small Heterogeneity
y mu theta

group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03708
C 12231500 9.203 147.8 9.203 0.04217 0.008904 0.006165 0.9276

----------------------------------------------------------------------
C1 12232834 9.193 144.6 9.202 0.01823
C2 12233905 9.204 141.4 9.204 0.01807
C3 12232724 9.191 143.9 9.202 0.01817
C4 12232184 9.222 139.7 9.205 0.01821
C5 12231697 9.206 139.3 9.204 0.01803
C6 12231778 9.191 144.0 9.202 0.01825
C7 12232383 9.208 130.1 9.204 0.01769 (here sigma = 0.01)
C8 12232949 9.211 138.3 9.204 0.01805
C9 12233349 9.209 143.0 9.204 0.01808

C10 12232636 9.197 142.2 9.203 0.01811

C 122326439 --- --- 9.203 0.01391 0.008974 0.004299 0.9817

Here with N = 10 C groups and a small amount of between–
C–groups heterogeneity (σ = 0.01), borrowing strength leads to a
substantial sharpening of the T versus C comparison (the
problem of setting A disappears, because the posterior for σ is now
quite concentrated) (NB total sample size is now 135 million).
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N = 10 C Groups, Large Heterogeneity
y mu theta

group n mean sd mean sd mean sd positive

T 12234293 9.286 129.7 9.286 0.03708
C 12231500 9.203 147.8 9.203 0.04217 0.008904 0.006165 0.9276

----------------------------------------------------------------------
C1 12232834 9.082 144.6 9.094 0.03996
C2 12233905 9.211 141.4 9.210 0.03867
C3 12232724 9.048 143.9 9.063 0.03984
C4 12232184 9.437* 139.7 9.416 0.03981
C5 12231697 9.235 139.3 9.232 0.03818
C6 12231778 9.050 144.0 9.065 0.03996
C7 12232383 9.260 130.1 9.255 0.03592 (here sigma = 0.125)
C8 12232949 9.300* 138.3 9.291 0.03818
C9 12233349 9.274 143.0 9.267 0.03911

C10 12232636 9.133 142.2 9.140 0.03888

C 122326439 --- --- 9.203 0.04762 0.009052 0.006589 0.9195

With N = 10 it’s possible to “go backwards” in apparent
information about θ because of large heterogeneity (σ = 0.125
above), but only by making the heterogeneity so large that the
exchangeability judgment is questionable (the 2 C groups marked
∗ actually had means that were larger than the T mean).
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Conclusions in Part II

With large sample sizes it’s straightforward to use hierarchical
random-effects Gaussian models — as good approximations to
a full BNP analysis — in combining C groups to improve
accuracy in estimating T effects, but

When the number N of C groups to be combined is small, the
results are extremely sensitive to Your prior on the
between–C–groups SD σ, and it doesn’t take much
heterogeneity among the C means for the model to tell You
that You know less about θ than when there was only 1 C
group, and

With a larger N there’s less sensitivity to the prior for σ, and
borrowing strength will generally succeed in sharpening the
comparison unless the heterogeneity is so large as to make
the exchangeability judgment that led to the C–group
combining questionable.
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