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Optimal Sampling-Distribution Specification

You’ll recall that optimal model specification consists of conditioning
only, and exhaustively, on propositions rendered true by the context

of the problem and the design of the data-gathering process.

In Day 2 (Lecture Notes, Part 2) we looked at optimal prior
distribution specification; what about sampling distributions?

Optimal sampling-distribution specification. Sometimes the

sampling distribution is uniquely specified by problem context.

These cases are of two kinds: based on theoretical
definition-matching or exchangeability.

Case 1: Theoretical Definition-Matching

Example 6. In random sampling from a finite population with

dichotomous outcomes, if You can actually achieve the theoretical
goal of sampling at random either with or without replacement, then
(by definition) You have no uncertainty about the resulting sampling

distribution: binomial with replacement, hypergeometric
without replacement.
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Theoretical Definition-Matching

Example 7. Consider estimating the number 0 < N <∞ of

individuals in a finite population (such as P = {the deer living on the
UCSC campus as of 1 July 2013}).

One popular method for performing this estimation is
capture-recapture sampling; the simplest version of this approach

proceeds as follows.

In stage I, a random sample of m0 individuals is taken, and all of
these individuals are tagged and released; then, a short time later, in

stage II a second independent random sample of n1 individuals is
taken, and the number m1 of these n1 individuals who were

previously tagged is noted.

If You can actually achieve the theoretical goals of simple random
sampling (SRS: at random without replacement) in stage I and IID

sampling (at random with replacement) in stage II, then (by
definition) the conditional sampling distribution for m1 given N is

(m1|N B) ∼ Binomial
(
n1,

m0

N

)
.
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Theoretical Definition-Matching (continued)

Example 8. You’re watching a counting process unfold in time,

looking for the occurrences of specific events; if this process
satisfies the following three basic assumptions, then the sampling
distribution for the number N(t) of events occurring in [0, t] is (by

definition) Poisson(λt):

• P[N(t) = 1|B] = λt + o(t);

• P[N(t) = 2|B] = o(t);

• The numbers of events in disjoint time intervals are independent.

Example 9. You’re watching a counting process unfold in time,

keeping track of the elapsed times T1,T2, . . . between events; if this
process satisfies the three basic assumptions above, then the

sampling distribution for the Ti is (by definition) IID exponential
with mean 1

λ .

Example 9, continued. If the scientific context of the problem

ensures that the Ti are memoryless — i.e., if
P(Ti > s + t|Ti > t B) = P(Ti > s|B) for all s, t ≥ 0 — then again
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Theoretical Definition-Matching (continued)

(by definition) the sampling distribution for the Ti is IID exponential.

Example 10. Paleobotanists estimate the moments in the remote

past when a given species first arose and then became extinct by
taking cylindrical, vertical core samples well below the earth’s

surface and looking for the first and last occurrences of the species
in the fossil record, measured in meters above the unknown point A

at which the species first emerged.

Let yij (j = 1, . . . , J) denote the distance above A at which fossil j is
found in core sample i ∈ (1, . . . , I ).

Under the scientifically reasonable assumption that these fossil
records are found at random points along the core sample (this

would be part of B), then You again have no sampling-distribution

uncertainty: by definition (yij |AB B)
IID∼ Uniform (A,B), where B is

the unknown point at which the species went extinct.

Example 11. The astronomer John Herschel (1850) was interested

in characterizing the two-dimensional probability distribution of
errors in measuring the position of a star.
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Theoretical Definition-Matching (continued)

Let x and y be the errors in the east-west and north-south directions,
respectively; Herschel wanted the joint sampling distribution

p(x y |B).

He took the following two statements as axioms, based on his
astronomical intuition:

(A1) Errors in orthogonal directions should be independent, i.e.,
p(x y |B) = p(x |B) p(y |B).

An equivalent expression for p(x y |B) is obtainable by transforming
to polar coordinates: p(x y |B) = f (r θ|B).

(A2) In this new coordinate system, the probability density of the
errors should be the same no matter at what angle the telescope is

pointed; i.e., f should not depend on θ, i.e., f (r θ|B) = f (r |B).

He then showed that under these two axioms the only possible
sampling distribution has x and y as independently Normal with

mean 0 and the same SD σ.

James Clerk Maxwell (1860) used the same argument 10 years later
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Sampling Distributions Via Exchangeability

to characterize the unique three-dimensional sampling distribution
of velocities of molecules in a gas.

Case 2: Exchangeability

Example 3 (Day 2, Lecture Notes Part 2, continued. We’ve

already seen an example in which exchangeability led to a unique
sampling distribution: the binary mortality indicators yi for the heart

attack patients in calendar 2014.

Recall that de Finetti’s Representation Theorem for binary
outcomes said informally that if Your uncertainty about binary

(y1, y2, . . . ) is exchangeable, then the only
logically-internally-consistent inferential model (prior + sampling

distribution) is

(θ|B) ∼ p(θ|B)

(yi |θB)
IID∼ Bernoulli(θ) , (1)

where θ is both the marginal death probability P(yi = 1|θB) for
patient i and the limiting (population) mean of (y1, y2, . . . ).
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Sampling Distributions Via Exchangeability (continued)

This result can be summarized as follows:

For binary observables yi , exchangeability + → unique
Bernoulli sampling distribution, where in this case no additional

assumptions are needed to fill in the blank.

This gives rise immediately to questions like the following: what’s
needed in the blank to make this statement true?

For non-negative integer observables yi ,

exchangeability + →
{

(λ|B) ∼ p(λ|B)

(yi |λB)
IID∼ Poisson(λ)

}
. (2)

Many people have worked on de-Finetti-style Representation
Theorems of this type; here’s an example.

Example 12. To get the Poisson result above, the following

assumption has to fill in the blank:

the conditional distribution (y1, . . . , yn|sn B), where sn =
∑n

i=1 yi is a
minimal sufficient statistic in the Poisson(λ) sampling model, is

Multinomial on {n-tuples of non-negative integers with sum sn} with
Uniform probabilities ( 1

n , . . . ,
1
n ).
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Sampling Distributions Via Exchangeability (continued)

Here are two more examples of this basic idea.

Example 13. For continuous observables yi on (0,∞),

exchangeability + →
{

(η|B) ∼ p(η|B)

(yi |η B)
IID∼ Exponential(η)

}
,

(3)
where is the following:

the conditional distribution (y1, . . . , yn|sn B), where sn =
∑n

i=1 yi is a
minimal sufficient statistic in the Exponential(η) sampling model, is

Uniform on the simplex {(y1, . . . , yn) : yi ≥ 0 with
∑n

i=1 yi = sn}.

Example 14. For continuous observables yi on (−∞,∞),

exchangeability + →
{

(σ|B) ∼ p(σ|B)

(yi |σ B)
IID∼ N(0, σ2)

}
, (4)

where is the following:

the conditional distribution (y1, . . . , yn|tn B), where tn =
√∑n

i=1 y
2
i is

a minimal sufficient statistic in the N(0, σ2) sampling model,
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Sampling Distributions Via Exchangeability (continued)

is uniform on the (n − 1)–dimensional sphere of radius tn in <n (this
condition is equivalent to the joint distribution (y1, . . . , yn|B) being

rotationally symmetric).

[short course web page: Singpurwallah (2006), pages 45–57, gives a
comprehensive catalog of all known

sampling-distribution-via-exchangeability results]

You can see that all of these findings have a common pattern:

(1) You have to be prepared to assume the condition, which
is of the form {the conditional distribution of the data vector, given

a minimal sufficient statistic in the desired sampling model, is
uniform on some space}, and

(2) You will rarely work on a problem in which that condition is
automatically rendered true by the problem context.

This makes the Bernoulli result look like the only useful one arising
from exchangeability considerations, but de Finetti (1937) himself

proved one more Representation Theorem that’s even more
important and potentially useful than the Bernoulli case:
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Bayesian Nonparametric Methods

de Finetti’s Representation Theorem for Continuous Outcomes.

You observe (y1, . . . , yn), with the yi conceptually continuous in <;
Your uncertainty about the yi is exchangeable.

If You’re prepared to extend Your judgment of exchangeability from
(y1, . . . , yn) to (y1, y2, . . . ), then — letting F denote the empirical

cumulative distribution function (CDF) of the (y1, y2, . . . ) values —
the only logically-internally-consistent inferential model based on the

observables is

(F |B) ∼ p(F |B) (5)

(yi |F B)
IID∼ F .

(Note that de Finetti’s Representation Theorem for binary
outcomes is a special case of this result.)

This new theorem requires You to place a scientifically-meaningful
prior distribution on the space F of all CDFs on <, which de Finetti

didn’t have the slightest idea how to do in 1937.
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Bayesian Qualitative-Quantitative Inference

Putting priors on functions (rather than scalars, vectors or matrices)
is the subject addressed by Bayesian nonparametric methods; this is

an issue we’ll talk more about in Part 3 of the Lecture Notes.

One more example in which both the prior and the sampling
distribution arise directly from problem context, i.e., in which

optimal Bayesian model specification is possible:

[short course web page: Lecture Notes Part 2A (Bayesian
Qualitative-Quantitative Inference)]
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