
Bayesian Modeling, Inference,
Prediction and Decision-Making

5a: Simulation-Based Computation

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

Short Course (Days 1 and 2)
University of Reading (UK)

23–24 Nov 2015

c© 2015 David Draper (all rights reserved)

1 / 1

3.1 Continuous Outcomes

Part 2 examined the modeling of binary outcomes, where the judgment of

exchangeability and de Finetti’s Theorem for 1s and 0s leads to a

Bernoulli/binomial likelihood with a single parameter θ ∈ (0, 1); it was

convenient (but not necessary) to employ a conjugate Beta prior distribution

for θ.

For outcomes that live on the entire real line R there’s an analogue of de

Finetti’s Theorem that’s equally central to Bayesian model-building

(e.g., Draper 2007):

Representation of exchangeable predictive distributions for

continuous observables (de Finetti 1937): If I’m willing to regard (y1, . . . ,

yn) as the first n terms in an infinitely exchangeable sequence (y1, y2, . . .) of

continuous values on R, then

• F (t) = limn→∞ Fn(t) must exist for all t and must be a valid CDF, where

Fn is the empirical CDF based on (y1, . . . , yn) (i.e.,

Fn(t) = 1
n

∑n

i=1 I(yi ≤ t), in which I(A) is the indicator function (1 if A is

true, otherwise 0)), and the marginal distribution (given F) for each of the

yi must be (yi|F) ∼ F ;

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 2

de Finetti’s Theorem For Continuous Outcomes

• G(F) = limn→∞ P (Fn) must also exist, where P is my joint probability

distribution on (y1, y2, . . .); and p(y1, . . . , yn) can be expressed as

p(y1, . . . , yn) =

∫

F

n∏

i=1

F (yi) dG(F), (1)

where F is the space of all possible CDFs on R.

Equation (1) says informally that exchangeability of my uncertainty about an

observable process unfolding on the real line is functionally equivalent to

assuming the Bayesian hierarchical model

F ∼ p(F)

(yi|F)
IID∼ F,

(2)

where p(F) is a prior distribution on F.

This prior makes the continuous form of de Finetti’s Theorem considerably

harder to apply: to take the elicitation task seriously is to try to specify a

probability distribution on a function space (F is in effect an

infinite-dimensional parameter).

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 3

Data-Analytic Model-Building

(NB This task is not unique to Bayesians — it’s equivalent to asking “Where

does the likelihood come from?” in frequentist analyses of

observational data.)

What people often do in practice is to appeal to considerations that narrow

down the field, such as an a priori judgment that the Yi ought to be

symmetrically distributed about a measure of center µ, and then try to use a

fairly rich parametric family satisfying (e.g.) the symmetry restriction as a

substitute for all of F.

A standard approach to model-building, in fact, is to choose this

parametric family by looking at the data to make the most plausible

choice — let’s call this the data-analytic approach.

From the Bayesian point of view this is incoherent: it amounts to using the

data to specify the prior on F and then using the same data to update

that prior.

Failing to acknowledge the data-driven search through the space M of all

possible models will typically result in an under-assessment of

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 4

Model Uncertainty

model uncertainty (e.g., Draper 1995), and this will manifest itself in poor

calibration: inferential and predictive intervals that are narrower than

they should be.

This is a modeling dilemma for both frequentists and Bayesians; from the

Bayesian viewpoint, not looking at the data to specify the prior on F can

permit the data to surprise me in ways that would make me want to go back

and revise my prior (this is an example of Cromwell’s Rule in action: if A is

a proposition of unknown truth value to me and D is a data set I’ll collect in

the future that’s relevant to A, if I set P (A) = 0 (or 1) then P (A|D) = 0 (or 1)

no matter how the data set D comes out).

I’m aware of two potential ways out of this dilemma:

• a Bayesian form of cross-validation (3CV: Draper and Krnjajić 2007),

in which I look at the data to specify p(F) but I do so in a way that

pays the appropriate price for this “cheating”; and

• Bayesian non-parametric (BNP) modeling, which involves constructing

prior distributions on CDFs in a way that avoids the Cromwell’s

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 5

3CV

Rule dilemma by (in a particular technical sense) not placing prior

probability 0 on anything.

3CV in detail: Taking the usual cross-validation idea one step further,

(1) Partition data at random into three (non-overlapping and exhaustive)

subsets Si.

(2) Fit tentative {likelihood + prior} to S1; expand initial model in all feasible

ways suggested by data exploration using S1; iterate until you’re happy.

(3) Use final model (fit to S1) from (2) to create predictive distributions for all

data points in S2; compare actual outcomes with these distributions, checking

for predictive calibration; go back to (2), change likelihood as necessary,

retune prior as necessary, to get good calibration; iterate until you’re happy.

(4) Announce final model (fit to S1 ∪ S2) from (3), and report predictive

calibration of this model on data points in S3 as indication of how well it

would perform with new data.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 6

3CV (continued)

With large n probably only need to do this once; with small and moderate

n probably best to repeat (1–4) several times and combine results in some

appropriate way (e.g., model averaging (e.g., Draper 1995)).

How large should the Si be? Preliminary answer: With moderate sample

sizes a good choice for the proportion of data in the three subsets is roughly

(0.5, 0.25, 0.25).

In other words, with n = 1,000 I should be prepared to pay about 250

observations worth of information in quoting my final uncertainty

assessments (i.e., making these uncertainty bands about
√

n
0.75n

.
= 15%

wider than those based on the full data set), to account in a

well-calibrated manner for my search for a good model.

To focus on other points I’ll often use the data-analytic approach in this

short course.

Case Study: Measurement of physical constants. What used to be

called the National Bureau of Standards (NBS) in Washington, DC, conducts

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 7

Continuous Outcome Modeling

extremely high precision measurement of physical constants, such as the actual

weight of so-called check-weights that are supposed to serve as reference

standards (e.g., the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of a block of metal

called NB10, which was supposed to weigh exactly 10g, were made under

conditions as close to IID as possible (Freedman et al., 1998); the

measurements are expressed in micrograms below 10g.

Value 375 392 393 397 398 399 400 401

Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409

Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437

Frequency 4 1 3 1 1 1 1 1

Q: (a) How much does NB10 really weigh? (b) How certain am I given the

data that the true weight of NB10 is less than (say) 405.25? And (c) How

accurately can I predict the 101st measurement?

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 8

t Likelihood

The graph below is a normal qqplot of the 100 measurements

y = (y1, . . . , yn), which have a mean of ȳ = 404.6 and an SD of s = 6.5.

−2 −1 0 1 2

38
0

40
0

42
0

Quantiles of Standard Normal

S
am

pl
e

Q
ua

nt
ile

s

Evidently it’s plausible in answering Q1–Q3 to assume symmetry of the

underlying CDF F in de Finetti’s Theorem, but the tails are substantially

heavier than those of the Gaussian distribution.

A natural choice for the likelihood here would be a version of the

t distribution:

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 9

Multi-Parameter Inferential Problems

(µ, σ2
, ν) ∼ p(µ, σ2

, ν)

(yi|µ, σ2
, ν)

IID∼ tν(µ, σ2) , (3)

where tν(µ, σ2) denotes the scaled t distribution with mean µ, scale

parameter σ2, and shape parameter ν (W ∼ tν(µ, σ2) ⇐⇒ W−µ

σ
follows the

standard t distribution with ν degrees of freedom).

3.2 Bayesian inference with multivariate θ. This is more complicated

than the Bernoulli modeling in Part 2; here the parameter θ is a vector

(µ, σ2, ν) of length k = 3.

When k > 1 I can still use Bayes’ Theorem directly to obtain the joint

posterior distribution,

p(θ|y) = p(µ, σ2
, ν|y) = c p(θ) l(θ|y)

= c p(µ, σ2
, ν) l(µ, σ2

, ν|y), (4)

where y = (y1, . . . , yn), although making this calculation directly requires a

k-dimensional integration to evaluate the normalizing constant c; for example,

in this case

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 10

Integration Is the Challenge

c = [p(y)]−1 =

(∫∫∫
p(µ, σ2

, ν, y) dµ dσ2
dν

)−1

=

(∫∫∫
p(µ, σ2

, ν) l(µ, σ2
, ν|y) dµ dσ2

dν

)−1

. (5)

Usually, however, I’ll be more interested in the marginal posterior

distributions, in this case p(µ|y), p(σ2|y) and p(ν|y).
Obtaining these requires k integrations, each of dimension (k − 1), a process

that people refer to as marginalization or integrating out the nuisance

parameters — for example,

p(µ|y) =

∫ ∞

0

∫ ∞

0

p(µ, σ2
, ν|y) dσ2

dν . (6)

Predictive distributions also involve a k-dimensional integration: for example,

with y = (y1, . . . , yn),

p(yn+1|y) =

∫∫∫
p(yn+1, µ, σ

2
, ν|y) dµ dσ2

dν (7)

=

∫∫∫
p(yn+1|µ, σ2

, ν) p(µ, σ2
, ν|y) dµ dσ2

dν.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 11

Multivariate Unknown θ

And, finally, if I’m interested in a function of the parameters, I have some

more hard integrations ahead of me.

For instance, suppose I wanted the posterior distribution for the coefficient of

variation λ = g1(µ, σ
2, ν) =

√
σ2

µ
in model (3).

Then one fairly direct way to get this posterior

(e.g., Bernardo and Smith, 1994) is to

(a) introduce two additional functions of the parameters, say

η = g2(µ, σ
2, ν) and ψ = g3(µ, σ

2, ν), such that the mapping f = (g1, g2, g3)

from (µ, σ2, ν) to (λ, η, ψ) is invertible;

(b) compute the joint posterior for (λ, η, ψ) through the usual

change-of-variables formula

p(λ, η, ψ|y) = pµ,σ2,ν

[
f
−1(λ, η, ψ)|y

] ∣∣Jf−1(λ, η, ψ)
∣∣ , (8)

where pµ,σ2,ν(·, ·, ·|y) is the joint posterior for (µ, σ2, ν) and
∣∣Jf−1

∣∣ is the

determinant of the Jacobian of the inverse transformation; and

(c) marginalize in λ by integrating out η and ψ in p(λ, η, ψ|y), in a manner

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 12

Simulation-Based Computation

analogous to (6).

This process involves two integrations, one (of dimension k) to get the

normalizing constant that defines (8) and one (of dimension (k − 1)) to get rid

of η and ψ.

It’s clear that when k is a lot bigger than 2 all these integrals may create

severe computational problems — this was the big stumbling block for

applied Bayesian work for a long time.

More than 200 years ago Laplace (1774) — the second Bayesian in history

(after Bayes himself) — developed, as one avenue of solution to this problem,

what people now call Laplace approximations to high-dimensional integrals

of the type arising in Bayesian calculations

(see, e.g., Tierney and Kadane, 1986).

Here I’ll describe another, more general, simulation-based approach:

Markov chain Monte Carlo (MCMC), which dates from the 1940s and

whose history is tied up in the development of the atom bomb and

digital computers.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 13

3.3 Markov Chain Monte Carlo (MCMC) Methods

Computation via conjugate analysis (Part 2) produces closed-form results

(good) but is limited in scope to a fairly small set of models for which

straightforward conjugate results are possible (bad); for example, there is no

conjugate prior for (µ, σ2, ν) in the t model above.

This was a severe limitation for Bayesians for almost 250 years (from the

1750s to the 1980s).

Over the past 25 years or so the Bayesian community has “discovered” and

developed an entirely new computing method, Markov chain Monte Carlo

(MCMC) (“discovered” because the physicists first figured it out about 60

years ago: Metropolis and Ulam, 1949; Metropolis et al., 1953).

It became clear above that the central Bayesian practical challenge is the

computation of high-dimensional integrals.

People working on the first atom bomb in World War II faced a similar

challenge, and noticed that digital computers (which were then passing

from theory (Turing 1943) to reality) offered an entirely new approach to

solving the problem.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 14

Simulation-Based Computation

The idea (Metropolis and Ulam, 1949) was based on the observation that

anything I want to know about a probability distribution can be

learned to arbitrary accuracy by sampling from it.

Suppose, for example, that I’m interested in a posterior distribution p(θ|y)
which cannot be worked with (easily) in closed form, and initially (to

keep things simple) think of θ as a scalar (real number) rather than a vector.

Three things of direct interest to me about p(θ|y) would be

• its low-order moments, including the mean µ = E(θ|y) and standard

deviation σ =
√
V (θ|y),

• its shape (basically I’d like to be able to trace out (an estimate of) the

entire density curve), and

• one or more of its quantiles (e.g., to construct a 95% central posterior

interval for θ I need to know the 2.5% and 97.5% quantiles, and

sometimes the posterior median (the 50th percentile) is of interest

too).

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 15

Simulation-Based Computation (continued)

Suppose I could take an arbitrarily large random sample from p(θ|y), say

θ∗1 , . . . , θ
∗
m.

Then each of the above three aspects of p(θ|y) can be estimated from the

θ∗ sample:

• Ê(θ|y) = θ̄∗ = 1
m

∑m

j=1 θ
∗
j , and

√
V̂ (θ|y) =

√
1

m−1

∑m

j=1

(
θ∗j − θ̄∗

)2
;

• the density curve can be estimated by a histogram or kernel density

estimate; and

• percentiles can be estimated by counting how many of the θ∗ values fall

below a series of specified points — e.g., to find an estimate of the 2.5%

quantile I solve the equation

F̂θ(t) =
1

m

m∑

j=1

I(θ∗j ≤ t) = 0.025 (9)

for t, where I(A) is the indicator function (1 if A is true, otherwise 0).

These are called Monte Carlo estimates of the true summaries of p(θ|y) (in

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 16

IID Sampling

honor of the casinos) because they’re based on the controlled use of chance.

Theory shows that with large enough m, each of the Monte Carlo (or

simulation-based) estimates can be made arbitrarily close to the truth with

arbitrarily high probability, under some reasonable assumptions about the

nature of the random sampling.

One way to achieve this, of course, is to make the sampling IID (interestingly,

this is sufficient but not necessary — see below).

If, for example, θ̄∗ = 1
m

∑m

j=1 θ
∗
j is based on an IID sample of size m from

p(θ|y), I can use the frequentist fact that in repeated sampling V
(
θ̄∗

)
= σ2

m
,

where (as above) σ2 is the variance of p(θ|y), to construct a Monte Carlo

standard error (MCSE) for θ̄∗:

ŜE
(
θ̄
∗) =

σ̂√
m
, (10)

where σ̂ is the sample SD of the θ∗ values.

This can be used, possibly after some preliminary experimentation, to

decide on m, the Monte Carlo sample size, which later will be called the

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 17

An IID Example

length of the monitoring run.

An IID example. Consider the posterior distribution

p(θ|y) = Beta(76.5, 353.5) in the AMI mortality example in Part 2.

Theory says that the posterior mean of θ in this example is
76.5

76.5+353.5

.
= 0.1779; let’s see how well the Monte Carlo method does in

estimating this known truth.

Here’s a function written in the statistical computing environment R to

construct Monte Carlo estimates of the posterior mean and MCSE

values for these estimates.

beta.sim <- function(m, alpha, beta, n.sim, seed) {

set.seed(seed)

theta.out <- matrix(0, n.sim, 2)

for (i in 1:n.sim) {

theta.sample <- rbeta(m, alpha, beta)

theta.out[i, 1] <- mean(theta.sample)

theta.out[i, 2] <- sqrt(var(theta.sample) / m)

}

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 18

IID Example (continued)

return(theta.out)

}

This function simulates, n.sim times, the process of taking an IID sample of

size m from the Beta(α, β) distribution and calculating θ̄∗ and ŜE
(
θ̄∗

)
.

> m <- 100

> alpha <- 76.5

> beta <- 353.5

> n.sim <- 500

> seed <- c(6425451, 9626954)

> theta.out <- beta.sim(m, alpha, beta, n.sim, seed)

This took about 0.2 second at 1.6 Unix GHz.

> theta.out[1:5,]

[,1] [,2]

[1,] 0.1756400 0.001854220

[2,] 0.1764806 0.001703780

[3,] 0.1781742 0.001979863

[4,] 0.1793588 0.002038532

[5,] 0.1781556 0.001596011

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 19

IID Example (continued)

The θ̄∗ values fluctuate around the truth with a give-or-take of about 0.0018,

which agrees well with the theoretical SE σ√
m

= 0.0184√
100

.
= 0.00184 (the SD

value 0.0184 comes from page 47 in Part 2).

> theta.bar <- theta.out[, 1]

> qqnorm((theta.bar - mean(theta.bar)) / sd(theta.bar),

xlab = "Quantiles of Standard Normal", main = "", pch = 20)

> abline(0, 1)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Quantiles of Standard Normal

S
am

pl
e

Q
ua

nt
ile

s

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 20

IID Example (continued)

Each of the θ̄∗ values is the mean of m = 100 IID draws, so (by the CLT) the

distribution of the random variable θ̄∗ should be closely approximated by

a Gaussian, and you can see from the qqplot above that this is true.

> truth <- alpha / (alpha + beta)

> theta.bar.SE <- theta.out[, 2]

> qnorm(0.025)

> sum((theta.bar - 1.96 * theta.bar.SE < truth) *

> (truth < theta.bar + 1.96 * theta.bar.SE)) / n.sim

> [1] 0.94

With this set of pseudo-random numbers, 94% of the nominal 95% Monte

Carlo confidence intervals for the posterior mean included the truth.

Evidently frequentist ideas can be used to work out how big m needs to be to

have any desired Monte Carlo accuracy for θ̄∗ as an estimate of the

posterior mean E(θ|y).
In practice, with p(θ|y) unknown, I would probably take an initial sample (in

this case, of size m = 100) and look at the MCSE to decide how big m really

needs to be.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 21

IID Example (continued)

Let’s say I ran the program with n.sim = 1 and m = 100 and got the

following results:

> theta.bar <- beta.sim(m, alpha, beta, 1, seed)

> theta.bar

[,1] [,2]

[1,] 0.1756400 0.001854220

(1) Suppose I wanted the MCSE of θ̄∗ to be (say) ε = 0.00005; then I could

solve the equation

σ̂√
m

= ε ↔ m =
σ2

ε2
, (11)

which says (unhappily) that the required m goes up as the square of the

posterior SD and as the inverse square of ε.

The program results above show that σ̂√
100

.
= 0.001854220, from which

σ̂
.
= 0.01854220, meaning that to get ε = 0.00005 I need a sample of size

0.018542202

0.000052

.
= 137, 525

.
= 138k.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 22

IID Sample Size Determination

(2) Suppose instead that I wanted θ̄∗ to differ from the true posterior mean µ

by no more than ε1 with Monte Carlo probability at least (1− ε2):

P
(∣∣θ̄∗ − µ

∣∣ ≤ ε1
)
≥ 1− ε2, (12)

where P (·) here is based on the (frequentist) Monte Carlo randomness

inherent in θ̄∗.

I know from the CLT and the calculations above that in repeated sampling

θ̄∗ is approximately Gaussian with mean µ and variance σ2

m
; this leads to the

inequality

m ≥ σ2
[
Φ−1

(
1− ε2

2

)]2

ε21
, (13)

where Φ−1(q) is the place on the standard normal curve where 100q% of the

area is to the left of that place (the qth quantile of the standard

Gaussian distribution).

(13) is like (11) except that the value of m from (11) has to be multiplied by[
Φ−1

(
1− ε2

2

)]2
, which typically makes the required sample sizes even bigger.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 23

A Closer Look at IID Sampling

For example, with ε1 = 0.00005 and ε2 = 0.05 — i.e., to have at least 95%

Monte Carlo confidence that reporting the posterior mean as 0.1756 will be

correct to about four significant figures — (13) says that I would need a

monitoring run of at least 137, 525(1.959964)2
.
= 528, 296

.
= 528k.

This sounds like a long monitoring run but only takes about 2 seconds at 1.6

Unix GHz, yielding
[
θ̄∗, ŜE

(
θ̄∗

)]
= (0.1779052, 0.00002), which compares

favorably with the true value 0.1779070.

It’s evident from calculations like these that people often report

simulation-based answers with numbers of significant figures far in excess

of what’s justified by the actual accuracy of the Monte Carlo estimates.

A closer look at IID sampling. I was able to easily perform the above

simulation study because R has a large variety of built-in functions like rbeta

for pseudo-random-number generation.

How would I go about writing such functions myself?

There are a number of general-purpose methods for generating random

numbers (I won’t attempt a survey here); the one we need to look closely at, to

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 24

Rejection Sampling

understand the algorithms that arise later in this part of the short course, is

rejection sampling (von Neumann 1951), which is often one of the most

computationally efficient ways to make IID draws from a distribution.

Example. Continuing the AMI mortality case study from Part 2,

consider an alternative prior specification in which I’d like to put most

(90%, say) of the prior mass in the interval (0.05, 0.50); calculations like

those in Part 2 within the conjugate Beta family yield prior

hyperparameter values of (α0, β0) = (2.0, 6.4) (this Beta distribution has

prior mean and SD 0.24 and 0.14, respectively).

Suppose that the sample size n was smaller at 74, and s = 16 AMI deaths were

observed, so that the data mean was 0.216; the posterior is then

Beta(α0 + s, β0 + n− s) = Beta(18.0, 64.4).

I’ll pretend for the sake of illustration of rejection sampling that I don’t

know the formulas for the mean and SD of a Beta distribution, and suppose

that I wanted to use IID Monte Carlo sampling from the

Beta(α0 + s, β0 + n− s) posterior to estimate the posterior mean.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 25

Rejection Sampling (continued)

Here’s von Neumann’s basic idea, which (as it turns out) works equally well

for scalar or vector θ: suppose the target density p(θ|y) is difficult to sample

from, but you can find an integrable envelope function G(θ|y) such that

(a) G dominates p in the sense that G(θ|y) ≥ p(θ|y) ≥ 0 for all θ and

(b) the density g obtained by normalizing G — later to be called the proposal

distribution — is easy and fast to sample from.

Then to get a random draw from p, make a draw θ∗ from g instead and

accept or reject it according to an acceptance probability αR(θ∗|y); if you

reject the draw, repeat this process until you accept.

von Neumann showed that the choice

αR(θ∗|y) =
p(θ∗|y)
G(θ∗|y) (14)

correctly produces IID draws from p, and you can intuitively see that he’s

right by the following argument.

Making a draw from the posterior distribution of interest is like choosing a

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 26

Rejection Sampling (continued)

point at random (in two dimensions) under the density curve p(θ|y) in such a

way that all possible points are equally likely, and then writing down its

θ value.

If you instead draw from G so that all points under G are equally likely, to get

correct draws from p you’ll need to throw away any point that falls between p

and G, and this can be accomplished by accepting each sampled point θ∗ with

probability p(θ∗|y)
G(θ∗|y)

, as von Neumann said.

A summary of this method is on the next page.

The figure two pages below demonstrates this method on the Beta(18.0, 64.4)

density arising in the Beta-Bernoulli example above.

Rejection sampling permits considerable flexibility in the choice of envelope

function; here, borrowing an idea from Gilks and Wild (1992), I’ve noted that

the relevant Beta density is log concave (a real-valued function is log concave

if its second derivative on the log scale is everywhere non-positive),

meaning that it’s easy to construct an envelope on that scale in a piecewise

linear fashion, by choosing points on the log density and constructing

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 27

Rejection Sampling (continued)

Algorithm (rejection sampling). To make m draws at random from the

density p(θ|y) for scalar or vector θ, select an integrable envelope function

G — which when normalized to integrate to 1 is the proposal distribution

g — such that G(θ|y) ≥ p(θ|y) ≥ 0 for all θ; define the acceptance probability

αR(θ∗|y) = p(θ∗|y)
G(θ∗|y)

; and

Initialize t← 0

Repeat {
Sample θ∗ ∼ g(θ|y)
Sample u ∼ Uniform(0, 1)

If u ≤ αR(θ∗|y) then

{ θt+1 ← θ∗; t← (t+ 1) }
}
until t = m.

tangents to the curve at those points.

The simplest possible such envelope involves two line segments, one on

either side of the mode.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 28

Rejection Sampling (continued)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

−
1

0
1

2
3

theta

Lo
g

D
en

si
ty

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
5

10
15

theta

D
en

si
ty

The optimal choice of the tangent points would maximize the marginal

probability of acceptance of a draw in the rejection algorithm, which can be

shown to be

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 29

Rejection Sampling (continued)

[∫
G(θ) dθ

]−1

; (15)

in other words, you should minimize the area under the (un-normalized)

envelope function subject to the constraint that it dominates the target

density p(θ|y) (which makes eminently good sense).

Here this optimum turns out to be attained by locating the two tangent points

at about 0.17 and 0.26, as in the figure above; the resulting acceptance

probability of about 0.75 could clearly be improved by adding more tangents.

Piecewise linear envelope functions on the log scale are a good choice

because the resulting envelope density on the raw scale is a piecewise set of

scaled exponential distributions (see the bottom panel in the figure above),

from which random samples can be taken easily and quickly.

A preliminary sample of m0 = 500 IID draws from the Beta(18.0, 64.4)

distribution using the above rejection sampling method yields θ̄∗ = 0.2197 and

σ̂ = 0.04505, meaning that the posterior mean has already been estimated

with an MCSE of only σ̂√
m0

= 0.002 even with just 500 draws.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 30

Rejection Sampling (continued)

Suppose, however, that — as in equation (12) above — I want θ̄∗ to differ from

the true posterior mean µ by no more than some (perhaps even smaller)

tolerance ε1 with Monte Carlo probability at least (1− ε2); then equation (13)

tells me how long to monitor the simulation output.

For instance, to pin down three significant figures (sigfigs) in the posterior

mean in this example with high Monte Carlo accuracy I might take ε1 = 0.0005

and ε2 = 0.05, which yields a recommended IID sample size of
(0.045052)(1.96)2

0.00052

.
= 31, 200.

So I take another sample of 30,700 (which is virtually instantaneous at 1.6

Unix GHz) and merge it with the 500 draws I already have; this yields

θ̄∗ = 0.21827 and σ̂ = 0.04528, meaning that the MCSE of this estimate of µ is
0.04528√

31200

.
= 0.00026.

I might announce that I think E(θ|y) is about 0.2183, give or take about

0.0003, which accords well with the true value 0.2184.

Of course, other aspects of p(θ|y) are equally easy to monitor; for example, if

I want a Monte Carlo estimate of p(θ ≤ q|y) for some q, as noted above I just

work out the proportion of the sampled θ∗ values that are no larger than q.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 31

Beyond Rejection Sampling

Or, even better, I recall that P (A) = E[I(A)] for any event or proposition A, so

to the Monte Carlo dataset (see page 47 below) consisting of 31,200 rows

and one column (the θ∗t) I add a column monitoring the values of the derived

variable which is 1 whenever θ∗t ≤ q and 0 otherwise; the mean of this derived

variable is the Monte Carlo estimate of p(θ ≤ q|y), and I can attach an MCSE

to it in the same way I did with θ̄∗.

By this approach, for instance, the Monte Carlo estimate of p(θ ≤ 0.15|y)
based on the 31,200 draws examined above comes out p̂ = 0.0556 with an

MCSE of 0.0013.

Percentiles are typically harder to pin down with equal Monte Carlo accuracy

(in terms of sigfigs) than means or SDs, because the 0/1 scale on which they’re

based is less information-rich than the θ∗ scale itself; if I wanted an MCSE

for p̂ of 0.0001 I would need an IID sample of more than 5 million draws

(which would still only take a few seconds at contemporary

workstation speeds).

IID sampling is not necessary. Nothing in the Metropolis-Ulam idea of

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 32

MCMC

Monte Carlo estimates of posterior summaries requires that these estimates be

based on IID samples from the posterior.

This is lucky, because in practice it’s often difficult, particularly when θ is a

vector of high dimension (say k), to figure out how to make such an IID

sample, via rejection sampling or other methods (e.g., imagine trying to find an

envelope function for p(θ|y) when k is 10 or 100 or 1,000).

Thus it’s necessary to relax the assumption that θ∗j
IID∼ p(θ|y), and to consider

samples θ∗1 , . . . , θ
∗
m that form a time series: a series of draws from p(θ|y) in

which θ∗j may depend on θ∗j′ for j′ < j.

In their pioneering paper Metropolis et al. (1953) allowed for serial

dependence of the θ∗j by combining von Neumann’s idea of rejection sampling

(which had itself only been published a few years earlier in 1951) with concepts

from Markov chains, a subject in the theory of stochastic processes.

Combining Monte Carlo sampling with Markov chains gives rise to the

name now used for this technique for solving the Bayesian high-dimensional

integration problem: Markov chain Monte Carlo (MCMC).

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 33

3.3 Brief Review of Markov Chains

Markov chains. A stochastic process is just a collection of random

variables {θ∗t , t ∈ T} for some index set T , usually meant to stand for time.

In practice T can be either discrete, e.g., {0, 1, . . . },
or continuous, e.g., [0,∞).

Markov chains are a special kind of stochastic process that can either unfold

in discrete or continuous time — I’ll talk here about discrete-time Markov

chains, which is all you need for MCMC.

The possible values that a stochastic process can take on are collectively

called the state space S of the process — in the simplest case S is

real-valued and can also either be discrete or continuous.

Intuitively speaking, a Markov chain (e.g., Feller, 1968; Roberts, 1996;

Gamerman, 1997) is a stochastic process evolving in time in such a way that

the past and future states of the process are independent given the

present state—in other words, to figure out where the chain is likely to go

next you don’t need to pay attention to where it’s been, you just need to

consider where it is now.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 34

Markov Chains (continued)

More formally, a stochastic process {θ∗t , t ∈ T}, T = {0, 1, . . . }, with state space

S is a Markov chain if, for any set A ∈ S,

P (θ∗t+1 ∈ A|θ∗0 , . . . , θ∗t) = P (θ∗t+1 ∈ A|θ∗t). (16)

The theory of Markov chains is harder mathematically if S is continuous

(e.g., Tierney, 1996), which is what we need for MCMC with real-valued

parameters, but most of the main ideas emerge with discrete state

spaces, and I’ll assume discrete S in the intuitive discussion here.

Example. For a simple example of a discrete-time Markov chain with a

discrete state space, imagine a particle that moves around on the integers

{. . . ,−2,−1, 0, 1, 2, . . . }, starting at 0 (say).

Wherever it finds itself at time t—say at i—it tosses a (3-sided) coin and

moves to (i− 1) with probability p1, stays at i with probability p2, and moves

to (i+ 1) with probability p3, for some 0 < p1, p2, p3 < 1 with

p1 + p2 + p3 = 1—these are the transition probabilities for the process.

This is a random walk (on the integers), and it’s clearly a Markov chain.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 35

Markov Chains (continued)

Nice behavior. The most nicely-behaved Markov chains satisfy

three properties:

• They’re irreducible, which basically means that no matter where it starts

the chain has to be able to reach any other state in a finite number of

iterations with positive probability;

• They’re aperiodic, meaning that for all states i the set of possible

sojourn times, to get back to i having just left it, can have no divisor

bigger than 1 (this is a technical condition; periodic chains still have some

nice properties, but the nicest chains are aperiodic).

• They’re positive recurrent, meaning that (a) for all states i, if the

process starts at i it will return to i with probability 1, and (b) the

expected length of waiting time til the first return to i is finite.

Notice that this is a bit delicate: wherever the chain is now, we insist that it

must certainly come back here, but we don’t expect to have to wait

forever for this to happen.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 36

Markov Chains (continued)

The random walk defined above is clearly irreducible and aperiodic, but it

may not be positive recurrent (depending on the pi): it’s true that it has

positive probability of returning to wherever it started, but (because S is

unbounded) this probability may not be 1, and on average you may have to

wait forever for it to return.

We can fix this by bounding S: suppose instead that

S = {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k}, keeping the same transition

probabilities except rejecting any moves outside the boundaries of S.

This bounded random walk now satisfies all three of the nice properties.

The value of nice behavior. Imagine running the bounded random walk

for a long time, and look at the distribution of the states it visits—over time

this distribution should settle down (converge) to a kind of limiting,

steady-state behavior.

This can be demonstrated by simulation, for instance in R, and using the

bounded random walk as an example:

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 37

Markov Chains (continued)

rw.sim <- function(k, p, theta.start, n.sim, seed) {

set.seed(seed)

theta <- rep(0, n.sim + 1)

theta[1] <- theta.start

for (i in 1:n.sim) {

theta[i + 1] <- move(k, p, theta[i])

}

return(table(theta))

}

move <- function(k, p, theta) {

repeat {

increment <- sample(x = c(-1, 0, 1), size = 1, prob = p)

theta.next <- theta + increment

if (abs(theta.next) <= k) {

return(theta.next)

break

}

}

}

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 38

Markov Chains (continued)

greco 171> R

R version 2.5.1 (2007-06-27)

Copyright (C) 2007 The R Foundation for Statistical Computing

> p <- c(1, 1, 1) / 3

> k <- 5

> theta.start <- 0

> seed <- c(6425451, 9626954)

> rw.sim(k, p, theta.start, 10, seed)

theta

0 1 2

5 5 1

> rw.sim(k, p, theta.start, 100, seed)

-2 -1 0 1 2 3 4 5

7 9 16 17 23 14 8 7

> rw.sim(k, p, theta.start, 1000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

65 115 123 157 148 123 106 82 46 21 15

> rw.sim(k, p, theta.start, 10000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

581 877 941 976 959 1034 1009 982 1002 959 681

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 39

Markov Chains (continued)

> rw.sim(k, p, theta.start, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9631 9376 9712 9965 9749 9672 9352 6274

> rw.sim(k, p, theta.start, 1000000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

65273 98535 97715 96708 95777 96607 96719 96361 96836 95703 63767

You can see that the distribution of where the chain has visited is converging

to something close to uniform on {−5,−4, . . . , 4, 5}, except for the effects of

the boundaries.

Letting q1 denote the limiting probability of being in one of the 9

non-boundary states (−4,−3, . . . , 3, 4) and q2 be the long-run probability of

being in one of the 2 boundary states (−5, 5), on grounds of symmetry you

can guess that q1 and q2 should satisfy

9q1 + 2q2 = 1 and q1 =
3

2
q2, (17)

from which (q1, q2) =
(

3
31
, 2

31

) .
= (0.096774, 0.064516).

Based on the run of 1,000,001 iterations above you would estimate these

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 40

Markov Chains (continued)

probabilities empirically as[
98535+...+95703

(9)(1000001)
, 65273+63767

(2)(1000001)

]
.
= (0.096773, 0.064520).

It should also be clear that the limiting distribution does not depend on the

initial value of the chain:

> rw.sim(k, p, 5, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9624 9374 9705 9959 9738 9678 9365 6288

Of course, you get a different limiting distribution with a different choice

of (p1, p2, p3):

> p <- c(0.2, 0.3, 0.5)

> rw.sim(k, p, 0, 10, seed)

0 1 2 3

1 3 4 3

> rw.sim(k, p, 0, 100, seed)

0 1 2 3 4 5

1 3 6 13 30 48

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 41

Markov Chains (continued)

> rw.sim(k, p, 0, 1000, seed)

0 1 2 3 4 5

1 18 71 157 336 418

> rw.sim(k, p, 0, 10000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 16 19 30 28 74 215 583 1344 3470 4217

> rw.sim(k, p, 0, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 22 53 132 302 834 2204 5502 13489 34460 42998

> rw.sim(k, p, 0, 1000000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

61 198 511 1380 3398 8591 22117 54872 137209 343228 428436

Stationary distributions. A positive recurrent and aperiodic chain is called

ergodic, and it turns out that such chains possess a unique stationary (or

equilibrium, or invariant) distribution π, characterized by the relation

π(j) =
∑

i

π(i)Pij(t) (18)

for all states j and times t ≥ 0, where Pij(t) = P (θ∗t = j|θ∗t−1 = i) is the

transition matrix of the chain.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 42

The MCMC Payoff

Informally, the stationary distribution characterizes the behavior that the

chain will settle into after it’s been run for a long time, regardless of its

initial state.

The point of all of this. Given a parameter vector θ and a data vector y,

the Metropolis et al. (1953) idea is to simulate random draws from the

posterior distribution p(θ|y), by constructing a Markov chain with the

following four properties:

• It should have the same state space as θ,

• It should be easy to simulate from,

• It should work equally well with an un-normalized p(θ|y), so that it’s

not necessary to evaluate the normalizing constant, and

• Its equilibrium distribution should be p(θ|y).
If you can do this, you can run the Markov chain for a long time, generating a

huge sample from the posterior, and then use simple descriptive summaries

(means, SDs, correlations, histograms or kernel density estimates) to extract

any features of the posterior you want.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 43

The Ergodic Theorem

The mathematical fact that underpins this strategy is the ergodic theorem: if

the Markov chain {θ∗t } is ergodic and f is any real-valued function for which

Eπ|f(θ)| is finite, then with probability 1 as m→∞

1

m

m∑

t=1

f(θ∗t)→ Eπ[f(θ)] =
∑

i

f(i)π(i), (19)

in which the right side is just the expectation of f(θ) under the stationary

distribution π.

In plain English this means that — as long as the stationary distribution is

p(θ|y) — you can learn (to arbitrary accuracy) about things like posterior

means, SDs, and so on just by waiting for stationarity to kick in and

monitoring thereafter for a long enough period.

Of course, as Roberts (1996) notes, the theorem is silent on the two key

practical questions it raises: how long you have to wait for stationarity, and

how long to monitor after that.

A third practical issue is what to use for the initial value θ∗0 : intuitively the

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 44

The Monte Carlo and MCMC Datasets

closer θ∗0 is to the center of p(θ|y) the less time you should have to wait

for stationarity.

The standard way to deal with waiting for stationarity is to (a) run the

chain from a good starting value θ∗0 for b iterations, until equilibrium has

been reached, and (b) discard this initial burn-in period.

All of this motivates the topic of MCMC diagnostics, which are intended to

answer the following questions:

• What should I use for the initial value θ∗0?

• How do I know when I’ve reached equilibrium? (This is equivalent to

asking how big b should be.)

• Once I’ve reached equilibrium, how big should m be, i.e., how long should I

monitor the chain to get posterior summaries with decent accuracy?

The Monte Carlo and MCMC datasets. The basis of the Monte Carlo

approach to obtaining numerical approximations to posterior summaries

like means and SDs is the (weak) Law of Large Numbers: with IID sampling

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 45

The Monte Carlo and MCMC Datasets (continued)

the Monte Carlo estimates of the true summaries of p(θ|y) are consistent,

meaning that they can be made arbitrarily close to the truth with arbitrarily

high probability as the number of monitoring iterations m→∞.

Before we look at how Metropolis et al. attempted to achieve the same goal

with a non-IID Monte Carlo approach, let’s look at the practical

consequences of switching from IID to Markovian sampling.

Running the IID rejection sampler on the AMI mortality example above for

a total of m monitoring iterations would produce something that might be

called the Monte Carlo (MC) dataset, with one row for each iteration and

one column for each monitored quantity; in that example it might look like

the table on the next page (MCSEs in parenthesis).

Running the Metropolis sampler on the same example would produce

something that might be called the MCMC dataset.

It would have a similar structure as far as the columns are concerned, but

the rows would be divided into three phases:

• Iteration 0 would be the value(s) used to initialize the Markov chain;

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 46

The MC and MCMC Data Sets

The MC Data Set:

Iteration θ I(θ ≤ 0.15)

1 θ∗1 = 0.244 I∗1 = 0

2 θ∗2 = 0.137 I∗2 = 1

.

.

.
.
.
.

.

.

.

m = 31, 200 θ∗m = 0.320 I∗m = 0

Mean 0.2183 (0.003) 0.0556 (0.0013)

SD 0.04528 —

Density (like the bottom

Trace plot on page 29) —

• Iterations 1 through b would be the burn-in period, during which the

chain reaches its equilibrium or stationary distribution (as mentioned

above, iterations 0 through b are generally discarded); and

• Iterations (b+ 1) through (b+m) would be the monitoring run, on which

summaries of the posterior (means, SDs, density traces, ...) will be based.

Bayesian Modeling, Inference and Prediction 3a: Simulation-Based Computation 47

	part-5a-title-page
	Reading-2014-day-1-notes-part-3-a
	Reading-2014-day-1-notes-part-3
	Reading-2013-day-1-notes-part-3-a
	Reading-2013-day-1-notes-part-3-a
	Reading-2012-day-1-notes-part-3-a
	part-3-page-1
	San-Francisco-2010-notes-part3a

