Bayesian Modeling, Inference, Prediction and Decision-Making

4: Continuous Outcomes (Gaussian Modeling)

David Draper
Department of Applied Mathematics and Statistics University of California, Santa Cruz
> Short Course (Days 1 and 2)
> University of Reading (UK)
23-24 Nov 2015
(c) 2015 David Draper (all rights reserved)

2.8 Continuous Outcomes

For continuous outcomes there's an analogue of de Finetti's Theorem that's equally central to Bayesian model-building (e.g., Bernardo and Smith, 1994):
de Finetti's Theorem for Continuous Outcomes.
If Y_{1}, Y_{2}, \ldots is an infinitely exchangeable sequence of real-valued random quantities with probability measure p, there exists a probability measure Q over \mathcal{D}, the space of all distribution functions on R, such that the joint distribution function of Y_{1}, \ldots, Y_{n} has the form

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{n}\right)=\int_{\mathcal{D}} \prod_{i=1}^{n} F\left(y_{i}\right) d Q(F) \tag{70}
\end{equation*}
$$

where $Q(F) \stackrel{P}{=} \lim _{n \rightarrow \infty} p\left(F_{n}\right)$ and F_{n} is the empirical cumulative distribution function based on Y_{1}, \ldots, Y_{n}.

In other words, exchangeability of real-valued observables is equivalent to the hierarchical model

$$
\begin{align*}
F & \stackrel{p(F)}{\sim} \quad \text { (prior) } \\
\left(Y_{1}, \ldots, Y_{n} \mid F\right) & \stackrel{\text { IID }}{\sim} \tag{71}\\
F & \text { (likelihood) }
\end{align*}
$$

for some prior distribution p on the set \mathcal{D} of all possible distribution functions.

This prior makes the continuous form of de Finetti's Theorem considerably harder to apply: to take the elicitation task seriously is to try to specify a measure on a function space (F is in effect an infinite-dimensional parameter).
(NB This task is not unique to Bayesians-it's equivalent to asking "Where does the likelihood come from?" in frequentist analyses of observational data.)

Continuous Outcomes (continued)

What people often do in practice is to appeal to considerations that narrow down the field, such as an a priori judgment that the Y_{i} ought to be symmetrically distributed about a measure of center μ, and then try to use a fairly rich parametric family satisfying (e.g.) the symmetry restriction as a substitute for all of \mathcal{D}.

Strictly speaking you're not supposed to look at the Y_{i} while specifying your prior on \mathcal{D}-this can lead to a failure to fully assess and propagate model uncertainty-but not doing so can permit the data to surprise you in ways that would make you want to go back and revise your prior (an example of Cromwell's Rule in action).

As mentioned earlier, in this short course I'll suggest two potential ways out of this dilemma, based on out-of-sample predictive validation (the model-checking in the LOS data above was an example of this; see part 4) and Bayesian nonparametrics/semi-parametrics (part 7).

Case Study: Measurement of physical constants. What used to be called the National Bureau of Standards (NBS) in Washington, DC, conducts extremely high precision measurement of physical constants, such as the actual weight of so-called check-weights that are supposed to serve as reference standards (like the official kg).

In 1962-63, for example, $n=100$ weighings (listed below) of a block of metal called NB10, which was supposed to weigh exactly 10 g , were made under conditions as close to IID as possible (Freedman et al., 1998).

Value	375	392	393	397	398	399	400	401
Frequency	1	1	1	1	2	7	4	12
Value	402	403	404	405	406	407	408	409
Frequency	8	6	9	5	12	8	5	5
Value	410	411	412	413	415	418	423	437
Frequency	4	1	3	1	1	1	1	1

NB10 Modeling

Q: (a) How much does NB10 really weigh? (b) How certain are you given the data that the true weight of NB10 is less than (say) 405.25? And (c) How accurately can you predict the 101st measurement?

The graph below is a normal qqplot of the 100 measurements $y=\left(y_{1}, \ldots, y_{n}\right)$, which have a mean of $\bar{y}=404.6$ (the units are micrograms below $\mathbf{1 0 g}$) and an SD of $s=6.5$.

Evidently it's plausible in answering these questions to assume symmetry of the "underlying distribution" F in de Finetti's Theorem.

One standard choice, for instance, is the Gaussian:

$$
\begin{align*}
\left(\mu, \sigma^{2}\right) & \sim \\
\left(Y_{i} \mid \mu, \sigma^{2}\right) & \stackrel{\text { IID }}{\sim} \tag{72}\\
\sim & N\left(\mu, \sigma^{2}\right) .
\end{align*}
$$

Here $N\left(\mu, \sigma^{2}\right)$ is the familiar normal density

$$
\begin{equation*}
p\left(y_{i} \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-\mu}{\sigma}\right)^{2}\right] \tag{73}
\end{equation*}
$$

Gaussian Modeling

Even though you can see from the previous graph that (73) is not a good model for the NB10 data, I'm going to fit it to the data for practice in working with the normal distribution from a Bayesian point of view (later we'll improve upon the Gaussian).
(73) is more complicated than the models in the AMI and LOS case studies because the parameter θ here is a vector:

$$
\theta=\left(\mu, \sigma^{2}\right)
$$

To warm up for this new complexity let's first consider a cut-down version of the model in which we pretend that σ is known to be $\sigma_{0}=6.5$ (the sample SD).

This simpler model is then

$$
\left\{\begin{array}{ccc}
\mu & \sim & p(\mu) \tag{74}\\
\left(Y_{i} \mid \mu\right) & \stackrel{\text { IID }}{\sim} & N\left(\mu, \sigma_{0}^{2}\right)
\end{array}\right\} .
$$

The likelihood function in this model is

$$
\begin{align*}
l(\mu \mid y) & =\prod_{i=1}^{n} \frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma_{0}^{2}}\left(y_{i}-\mu\right)^{2}\right] \\
& =c \exp \left[-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right] \tag{75}\\
& =c \exp \left[-\frac{1}{2 \sigma_{0}^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-2 \mu \sum_{i=1}^{n} y_{i}+n \mu^{2}\right)\right] \\
& =c \exp \left[-\frac{1}{2\left(\frac{\sigma_{0}^{2}}{n}\right)}(\mu-\bar{y})^{2}\right] .
\end{align*}
$$

Thus the likelihood function, when thought of as a density for μ, is a normal distribution with mean \bar{y} and SD $\frac{\sigma_{0}}{\sqrt{n}}$.

Gaussian Modeling (continued)

Notice that this SD is the same as the frequentist standard error for \bar{Y} based on an IID sample of size n from the $N\left(\mu, \sigma_{0}^{2}\right)$ distribution.
(75) also shows that the sample mean \bar{y} is a sufficient statistic for μ in model (72).

In finding the conjugate prior for μ it would be nice if the product of two normal distributions is another normal distribution, because that would demonstrate that the conjugate prior is normal.

Suppose therefore, to see where it leads, that the prior for μ is (say) $p(\mu)=N\left(\mu_{0}, \sigma_{\mu}^{2}\right)$.

Then Bayes' Theorem would give

$$
\begin{equation*}
p(\mu \mid y)=c p(\mu) l(\mu \mid y) \tag{76}
\end{equation*}
$$

$$
\begin{aligned}
& =c \exp \left[-\frac{1}{2 \sigma_{\mu}^{2}}\left(\mu-\mu_{0}\right)^{2}\right] \exp \left[-\frac{n}{2 \sigma_{0}^{2}}(\mu-\bar{y})^{2}\right] \\
& =c \exp \left\{-\frac{1}{2}\left[\frac{\left(\mu-\mu_{0}\right)^{2}}{\sigma_{\mu}^{2}}+\frac{n(\mu-\bar{y})^{2}}{\sigma_{0}^{2}}\right]\right\}
\end{aligned}
$$

and we want this to be of the form

$$
\begin{align*}
p(\mu \mid y) & =c \exp \left\{-\frac{1}{2}\left[A(\mu-B)^{2}+C\right]\right\} \\
& =c \exp \left\{-\frac{1}{2}\left[A \mu^{2}-2 A B \mu+\left(A B^{2}+C\right)\right]\right\} \tag{77}
\end{align*}
$$

for some B, C, and $A>0$.
Maple can help see if this works:
> collect((mu - muo) ^2 / sigmamu^2 +
$\mathrm{n} *(\mathrm{mu}-\mathrm{ybar})^{\wedge} 2 / \operatorname{sigmaO}^{\wedge} 2$, mu $)$;

Gaussian Modeling

Matching coefficients for A and B (we don't really care about C) gives

$$
\begin{equation*}
A=\frac{1}{\sigma_{\mu}^{2}}+\frac{n}{\sigma_{0}^{2}} \quad \text { and } \quad B=\frac{\frac{\mu_{0}}{\sigma_{\mu}^{2}}+\frac{n \bar{y}}{\sigma_{0}^{2}}}{\frac{1}{\sigma_{\mu}^{2}}+\frac{n}{\sigma_{0}^{2}}} \tag{78}
\end{equation*}
$$

Since $A>0$ this demonstrates two things: (1) the conjugate prior for μ in model (72) is normal, and (2) the conjugate updating rule (when σ_{0} is assumed known) is

$$
\left\{\begin{array}{c}
\mu \sim N\left(\mu_{0}, \sigma_{\mu}^{2}\right) \tag{79}\\
\left(Y_{i} \mid \mu\right) \underset{\sim}{\operatorname{IID}} N\left(\mu, \sigma_{0}^{2}\right), \\
i=1, \ldots, n
\end{array}\right\} \rightarrow(\mu \mid y)=(\mu \mid \bar{y})=N\left(\mu_{*}, \sigma_{*}^{2}\right),
$$

where the posterior mean and variance are given by

$$
\begin{equation*}
\mu_{*}=B=\frac{\left(\frac{1}{\sigma_{\mu}^{2}}\right) \mu_{0}+\left(\frac{n}{\sigma_{0}^{2}}\right) \bar{y}}{\frac{1}{\sigma_{\mu}^{2}}+\frac{n}{\sigma_{0}^{2}}} \quad \text { and } \quad \sigma_{*}^{2}=A^{-1}=\frac{1}{\frac{1}{\sigma_{\mu}^{2}}+\frac{n}{\sigma_{0}^{2}}} . \tag{80}
\end{equation*}
$$

It becomes useful in understanding the meaning of these expressions to define the precision of a distribution, which is just the reciprocal of its variance-whereas the variance
and SD scales measure uncertainty, the precision scale quantifies information about an unknown.

With this convention (80) has a series of intuitive interpretations, as follows:

- The prior, considered as an information source, is Gaussian with mean μ_{0}, variance σ_{μ}^{2}, and precision $\frac{1}{\sigma_{\mu}^{2}}$, and when viewed as a data set consists of n_{0} (to be determined below) observations;
- The likelihood, considered as an information source, is Gaussian with mean \bar{y}, variance $\frac{\sigma_{0}^{2}}{n}$, and precision $\frac{n}{\sigma_{0}^{2}}$, and when viewed as a data set consists of n observations;

Gaussian Modeling (continued)

- The posterior, considered as an information source, is Gaussian, and the posterior mean is a weighted average of the prior mean and data mean, with weights given by the prior and data precisions;
- The posterior precision (the reciprocal of the posterior variance) is just the sum of the prior and data precisions (this is why Bayesians invented the idea of precision-on this scale knowledge about μ in model (74) is additive); and
- Rewriting μ_{*} as

$$
\begin{equation*}
\mu_{*}=\frac{\left(\frac{1}{\sigma_{\mu}^{2}}\right) \mu_{0}+\left(\frac{n}{\sigma_{0}^{2}}\right) \bar{y}}{\frac{1}{\sigma_{\mu}^{2}}+\frac{n}{\sigma_{0}^{2}}}=\frac{\left(\frac{\sigma_{0}^{2}}{\sigma_{\mu}^{2}}\right) \mu_{0}+n \bar{y}}{\frac{\sigma_{0}^{2}}{\sigma_{\mu}^{2}}+n} \tag{81}
\end{equation*}
$$

you can see that the prior sample size is

$$
\begin{equation*}
n_{0}=\frac{\sigma_{0}^{2}}{\sigma_{\mu}^{2}}=\frac{1}{\left(\frac{\sigma_{\mu}}{\sigma_{0}}\right)^{2}} \tag{82}
\end{equation*}
$$

which makes sense: the bigger σ_{μ} is in relation to σ_{0}, the less prior information is being incorporated in the conjugate updating (79).

Bayesian inference with multivariate θ. Returning now to (72) with σ^{2} unknown, (as mentioned above) this model has a ($p=2$)-dimensional parameter vector $\theta=\left(\mu, \sigma^{2}\right)$.

When $p>1$ you can still use Bayes' Theorem directly to obtain the joint posterior distribution,

$$
\begin{align*}
p(\theta \mid y) & =p\left(\mu, \sigma^{2} \mid y\right)=c p(\theta) l(\theta \mid y) \\
& =c p\left(\mu, \sigma^{2}\right) l\left(\mu, \sigma^{2} \mid y\right) \tag{83}
\end{align*}
$$

Multivariate Unknown θ

where $y=\left(y_{1}, \ldots, y_{n}\right)$, although making this calculation directly requires a p-dimensional integration to evaluate the normalizing constant c; for example, in this case

$$
\begin{align*}
c & =[p(y)]^{-1}=\left(\iint p\left(\mu, \sigma^{2}, y\right) d \mu d \sigma^{2}\right)^{-1} \\
& =\left(\iint p\left(\mu, \sigma^{2}\right) l\left(\mu, \sigma^{2} \mid y\right) d \mu d \sigma^{2}\right)^{-1} \tag{84}
\end{align*}
$$

Usually, however, you'll be more interested in the marginal posterior distributions, in this case $p(\mu \mid y)$ and $p\left(\sigma^{2} \mid y\right)$.

Obtaining these requires p integrations, each of dimension ($p-1$), a process that people refer to as marginalization or integrating out the nuisance parameters-for example,

$$
\begin{equation*}
p(\mu \mid y)=\int_{0}^{\infty} p\left(\mu, \sigma^{2} \mid y\right) d \sigma^{2} \tag{85}
\end{equation*}
$$

Predictive distributions also involve a p-dimensional integration: for example, with $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
\begin{align*}
p\left(y_{n+1} \mid y\right) & =\iint p\left(y_{n+1}, \mu, \sigma^{2} \mid y\right) d \mu d \sigma^{2} \tag{86}\\
& =\iint p\left(y_{n+1} \mid \mu, \sigma^{2}\right) p\left(\mu, \sigma^{2} \mid y\right) d \mu d \sigma^{2}
\end{align*}
$$

And, finally, if you're interested in a function of the parameters, you have some more hard integrations ahead of you.

For instance, suppose you wanted the posterior distribution for the coefficient of variation $\lambda=g_{1}\left(\mu, \sigma^{2}\right)=\frac{\sqrt{\sigma^{2}}}{\mu}$ in model (72).

Multivariate Unknown θ

Then one fairly direct way to get this posterior (e.g., Bernardo and Smith, 1994) is to (a) introduce a second function of the parameters, say $\eta=g_{2}\left(\mu, \sigma^{2}\right)$, such that the mapping $f=\left(g_{1}, g_{2}\right)$ from (μ, σ^{2}) to (λ, η) is invertible; (b)
compute the joint posterior for (λ, η) through the usual change-of-variables formula

$$
\begin{equation*}
p(\lambda, \eta \mid y)=p_{\mu, \sigma^{2}}\left[f^{-1}(\lambda, \eta) \mid y\right]\left|J_{f^{-1}}(\lambda, \eta)\right| \tag{87}
\end{equation*}
$$

where $p_{\mu, \sigma^{2}}(\cdot, \cdot \mid y)$ is the joint posterior for μ and σ^{2} and $\left|J_{f^{-1}}\right|$
is the determinant of the Jacobian of the inverse transformation; and (c) marginalize in λ by integrating out η in $p(\lambda, \eta \mid y)$, in a manner analogous to (85).

Here, for instance, $\eta=g_{2}\left(\mu, \sigma^{2}\right)=\mu$ would create an invertible f, with inverse defined by ($\mu=\eta, \sigma^{2}=\lambda^{2} \eta^{2}$); the Jacobian determinant comes out $2 \lambda \eta^{2}$ and (87) becomes

$$
p(\lambda, \eta \mid y)=2 \lambda \eta^{2} p_{\mu, \sigma^{2}}\left(\eta, \lambda^{2} \eta^{2} \mid y\right)
$$

This process involves two integrations, one (of dimension p) to get the normalizing constant that defines (87) and one (of dimension $(p-1)$) to get rid of η.

You can see that when p is a lot bigger than 2 all these integrals may create severe computational problems-this has been the big stumbling block for applied Bayesian work for a long time.

More than 200 years ago Laplace (1774)—perhaps the second Bayesian in history (after Bayes himself)—developed, as one avenue of solution to this problem, what people now call Laplace approximations to high-dimensional integrals of the type arising in Bayesian calculations (see, e.g., Tierney and Kadane, 1986).

Starting in the next case study after this one, we'll use another, computationally intensive, simulation-based approach: Markov chain Monte Carlo (MCMC).

Gaussian Modeling

Back to model (72). The conjugate prior for $\theta=\left(\mu, \sigma^{2}\right)$ in this model (e.g., Gelman et al., 2003) turns out to be most simply described hierarchically:

$$
\begin{align*}
\sigma^{2} & \sim \operatorname{SI}-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \\
\left(\mu \mid \sigma^{2}\right) & \sim N\left(\mu_{0}, \frac{\sigma^{2}}{\kappa_{0}}\right) . \tag{88}
\end{align*}
$$

Here saying that $\sigma^{2} \sim \operatorname{SI}-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right)$, where SI stands for scaled inverse, amounts to saying that the precision $\tau=\frac{1}{\sigma^{2}}$ follows a scaled χ^{2} distribution with parameters ν_{0} and σ_{0}^{2}.

The scaling is chosen so that σ_{0}^{2} can be interpreted as a prior estimate of σ^{2}, with ν_{0} the prior sample size of this estimate (i.e., think of a prior data set with ν_{0} observations and sample SD σ_{0}).

Since χ^{2} is a special case of the Gamma distribution, SI- χ^{2} must be a special case of the inverse Gamma family-its density (see Gelman et al. (2003), Appendix A) is

$$
\begin{align*}
\sigma^{2} & \sim \operatorname{SI}-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \leftrightarrow \tag{89}\\
p\left(\sigma^{2}\right) & =\frac{\left(\frac{1}{2} \nu_{0}\right)^{\frac{1}{2} \nu_{0}}}{\Gamma\left(\frac{1}{2} \nu_{0}\right)}\left(\sigma_{0}^{2}\right)^{\frac{1}{2} \nu_{0}}\left(\sigma^{2}\right)^{-\left(1+\frac{1}{2} \nu_{0}\right)} \exp \left(\frac{-\nu_{0} \sigma_{0}^{2}}{2 \sigma^{2}}\right) .
\end{align*}
$$

As may be verified with Maple, this distribution has mean (provided that $\nu_{0}>2$) and variance (provided that $\nu_{0}>4$) given by

$$
\begin{equation*}
E\left(\sigma^{2}\right)=\frac{\nu_{0}}{\nu_{0}-2} \sigma_{0}^{2} \quad \text { and } \quad V\left(\sigma^{2}\right)=\frac{2 \nu_{0}^{2}}{\left(\nu_{0}-2\right)^{2}\left(\nu_{0}-4\right)} \sigma_{0}^{4} \tag{90}
\end{equation*}
$$

Gaussian Modeling (continued)

The parameters μ_{0} and κ_{0} in the second level of the prior model (88), $\left(\mu \mid \sigma^{2}\right) \sim N\left(\mu_{0}, \frac{\sigma^{2}}{\kappa_{0}}\right)$, have simple parallel interpretations to those of σ_{0}^{2} and $\nu_{0}: \mu_{0}$ is the prior estimate of μ, and κ_{0} is the prior effective sample size of this estimate.

The likelihood function in model (72), with both μ and σ^{2} unknown, is

$$
\begin{aligned}
l\left(\mu, \sigma^{2} \mid y\right) & =c \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}\right] \\
& =c\left(\sigma^{2}\right)^{-\frac{1}{2} n} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right] \\
& =c\left(\sigma^{2}\right)^{-\frac{1}{2} n} \exp \left[-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-2 \mu \sum_{i=1}^{n} y_{i}+n \mu^{2}\right)\right] .
\end{aligned}
$$

The expression in brackets in the last line of (91) is

$$
\begin{align*}
{[\cdot] } & =-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n} y_{i}^{2}+n(\mu-\bar{y})^{2}-n \bar{y}^{2}\right] \tag{92}\\
& =-\frac{1}{2 \sigma^{2}}\left[n(\mu-\bar{y})^{2}+(n-1) s^{2}\right]
\end{align*}
$$

where $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the sample variance. Thus

$$
l\left(\mu, \sigma^{2} \mid y\right)=c\left(\sigma^{2}\right)^{-\frac{1}{2} n} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[n(\mu-\bar{y})^{2}+(n-1) s^{2}\right]\right\}
$$

and it's clear that the vector $\left(\bar{y}, s^{2}\right)$ is sufficient for $\theta=\left(\mu, \sigma^{2}\right)$ in this model, i.e., $l\left(\mu, \sigma^{2} \mid y\right)=l\left(\mu, \sigma^{2} \mid \bar{y}, s^{2}\right)$.

Gaussian Analysis

Maple can be used to make 3D and contour plots of this likelihood function with the NB10 data:

```
> l := ( mu, sigma2, ybar, s2, n ) -> sigma2^( - n / 2 ) *
    exp( - ( n * ( mu - ybar )^2 + ( n - 1 ) * s2 ) / ( 2 * sigma2 ) );
l := (mu, sigma2, ybar, s2, n) ->
                                    2
    sigma2 (- 1/2 n) exp(- 1/2 n (mu - ybar) + (n - 1) s2
```

> plotsetup (x11) ;
> plot3d (l (mu, sigma2, 404.6, 42.25, 100) , mu = 402.6.. 406.6,
sigma2 = 25 .. 70);

You can use the mouse to rotate 3D plots and get other useful views of them:

Gaussian Analysis

The projection or shadow plot of μ looks a lot like a normal (or maybe a t) distribution.

And the shadow plot of σ^{2} looks a lot like a Gamma (or maybe an inverse Gamma) distribution.

Gaussian Analysis

> plots[contourplot] ($10^{\wedge} 100$ * l(mu, sigma2, 404.6, 42.25, 100), $\mathrm{mu}=402.6 \ldots 406.6$, sigma2 = $25 . .70$, color = black);

The contour plot shows that μ and σ^{2} are uncorrelated in the likelihood distribution, and the skewness of the marginal distribution of σ^{2} is also evident.

Posterior analysis. Having adopted the conjugate prior (88), what I'd like next is simple expressions for the marginal posterior distributions $p(\mu \mid y)$ and $p\left(\sigma^{2} \mid y\right)$ and for predictive distributions like $p\left(y_{n+1} \mid y\right)$.

Fortunately, in model (72) all of the integrations (such as (85) and (86)) may be done analytically (see, e.g., Bernardo and Smith 1994), yielding the following results:

$$
\begin{align*}
\left(\sigma^{2} \mid y, \mathcal{G}\right) & \sim \operatorname{SI}-\chi^{2}\left(\nu_{n}, \sigma_{n}^{2}\right), \\
(\mu \mid y, \mathcal{G}) & \sim t_{\nu_{n}}\left(\mu_{n}, \frac{\sigma_{n}^{2}}{\kappa_{n}}\right), \quad \text { and } \tag{93}\\
\left(y_{n+1} \mid y, \mathcal{G}\right) & \sim t_{\nu_{n}}\left(\mu_{n}, \frac{\kappa_{n}+1}{\kappa_{n}} \sigma_{n}^{2}\right) .
\end{align*}
$$

NB10 Gaussian Analysis

In the above expressions

$$
\begin{aligned}
\nu_{n} & =\nu_{0}+n \\
\sigma_{n}^{2} & =\frac{1}{\nu_{n}}\left[\nu_{0} \sigma_{0}^{2}+(n-1) s^{2}+\frac{\kappa_{0} n}{\kappa_{0}+n}\left(\bar{y}-\mu_{0}\right)^{2}\right] \\
\mu_{n} & =\frac{\kappa_{0}}{\kappa_{0}+n} \mu_{0}+\frac{n}{\kappa_{0}+n} \bar{y}, \quad \text { and } \\
\kappa_{n} & =\kappa_{0}+n
\end{aligned}
$$

\bar{y} and s^{2} are the usual sample mean and variance of y, and \mathcal{G} denotes the assumption of the Gaussian model.

Here $t_{\nu}\left(\mu, \sigma^{2}\right)$ is a scaled version of the usual t_{ν} distribution, i.e., $W \sim t_{\nu}\left(\mu, \sigma^{2}\right) \Longleftrightarrow \frac{W-\mu}{\sigma} \sim t_{\nu}$.

The scaled t distribution (see, e.g., Gelman et al. (2003) Appendix A) has density
$\eta \sim t_{\nu}\left(\mu, \sigma^{2}\right) \leftrightarrow p(\eta)=\frac{\Gamma\left[\frac{1}{2}(\nu+1)\right]}{\Gamma\left(\frac{1}{2} \nu\right) \sqrt{\nu \pi \sigma^{2}}}\left[1+\frac{1}{\nu \sigma^{2}}(\eta-\mu)^{2}\right]^{-\frac{1}{2}(\nu+1)}$.

This distribution has mean μ (as long as $\nu>1$) and variance $\frac{\nu}{\nu-2} \sigma^{2}$ (as long as $\nu>2$).

Notice that, as with all previous conjugate examples, the posterior mean is again a weighted average of the prior mean and data mean, with weights determined by the prior sample size and the data sample size:

$$
\begin{equation*}
\mu_{n}=\frac{\kappa_{0}}{\kappa_{0}+n} \mu_{0}+\frac{n}{\kappa_{0}+n} \bar{y} . \tag{96}
\end{equation*}
$$

NB10 Gaussian Analysis (continued)

NB10 Gaussian Analysis. Question (a): I don't know anything about what NB10 is supposed to weigh (down to the nearest microgram) or about the accuracy of the NBS's measurement process, so I want to use a diffuse prior for μ and σ^{2}.

Considering the meaning of the hyperparameters, to provide little prior information I want to choose both ν_{0} and κ_{0} close to 0.

Making them exactly 0 would produce an improper prior distribution (which doesn't integrate to 1), but choosing positive values as close to 0 as you like yields a proper and highly diffuse prior.

You can see from $(93,94)$ that the result is then

$$
\begin{equation*}
(\mu \mid y, \mathcal{G}) \sim t_{n}\left[\bar{y}, \frac{(n-1) s^{2}}{n^{2}}\right] \doteq N\left(\bar{y}, \frac{s^{2}}{n}\right) \tag{97}
\end{equation*}
$$

i.e., with diffuse prior information (as with the Bernoulli model in the AMI case study) the 95% central Bayesian interval virtually coincides with the usual frequentist 95\% confidence interval

$$
\bar{y} \pm t_{n-1}^{.975} \frac{s}{\sqrt{n}}=404.6 \pm(1.98)(0.647)=(403.3,405.9)
$$

Thus both \{frequentists who assume $\mathcal{G}\}$ and \{Bayesians who assume \mathcal{G} with a diffuse prior\} conclude that NB10 weighs about $404.6 \mu \mathrm{~g}$ below $\mathbf{1 0 g}$, give or take about $0.65 \mu \mathrm{~g}$.

Question (b). If interest focuses on whether NB10 weighs less than some value like 405.25, when reasoning in a Bayesian way you can answer this question directly: the posterior distribution for μ is shown below, and $P_{B}(\mu<405.25 \mid y, \mathcal{G}$, diffuse prior $) \doteq .85$, i.e., your betting odds in favor of the proposition that $\mu<405.25$ are about 5.5 to 1 .

NB10 Gaussian Analysis (continued)

When reasoning in a frequentist way $P_{F}(\mu<405.25)$ is undefined; about the best you can do is to test $H_{0}: \mu<405.25$, for which the p-value would (approximately) be $p=P_{F, \mu=405.25}(\bar{y}>405.59)=1-.85=.15$, i.e., insufficient evidence to reject H_{0} at the usual significance levels (note the connection between the p-value and the posterior probability, which arises in this example because the null hypothesis is one-sided).

NB The significance test tries to answer a different question: in Bayesian language it looks at $P(\bar{y} \mid \mu)$ instead of $P(\mu \mid \bar{y})$.

Many people find the latter quantity more interpretable.
Question (c). We saw earlier that in this model

$$
\begin{equation*}
\left(y_{n+1} \mid y, \mathcal{G}\right) \sim t_{\nu_{n}}\left[\mu_{n}, \frac{\kappa_{n}+1}{\kappa_{n}} \sigma_{n}^{2}\right], \tag{98}
\end{equation*}
$$

and for n large and ν_{0} and κ_{0} close to 0 this is $\left(y_{n+1} \mid y, \mathcal{G}\right) \dot{\sim} N\left(\bar{y}, s^{2}\right)$, i.e., a 95% posterior predictive interval for y_{n+1} is $(392,418)$.

Model Expansion

A standardized version of this predictive distribution is plotted below, with the standardized NB10 data values superimposed.

It's evident from this plot (and also from the normal qqplot given earlier) that the Gaussian model provides a poor fit for these data-the three most extreme points in the data set in standard units are $-4.6,2.8$, and 5.0.

With the symmetric heavy tails indicated in these plots, in fact, the empirical CDF looks quite a bit like that of a t distribution with a rather small number of degrees of freedom.

This suggests revising the previous model by expanding it: embedding the Gaussian in the t family and adding a parameter k for tail-weight.

Unfortunately there's no standard closed-form conjugate choice for the prior on k.

A more flexible approach to computing is evidently needed-this is where Markov chain Monte Carlo methods (our next main topic) come in.

2.9 The Exponential Family

It was noticed a long time ago that many of the standard sampling distributions that you're likely to want to use in constructing likelihood functions have the same general form, which is referred to as the exponential family

Definition (e.g., Bernardo and Smith, 1994): Given data y_{1} (a sample of size 1) and a parameter vector $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$, the (marginal) sampling distribution $p\left(y_{1} \mid \theta\right)$ belongs to the k-dimensional exponential family if it can be expressed in the form

$$
\begin{equation*}
p\left(y_{1} \mid \theta\right)=c f_{1}\left(y_{1}\right) g_{1}(\theta) \exp \left[\sum_{j=1}^{k} \phi_{j}(\theta) h_{j}\left(y_{1}\right)\right] \tag{99}
\end{equation*}
$$

for $y_{1} \in \mathcal{Y}$ and 0 otherwise; if \mathcal{Y} does not depend on θ the family is called regular.
($\left.\phi_{1}(\theta), \ldots, \phi_{k}(\theta)\right)$ in (99) is referred to as the natural parameterization of the exponential family.

In this case the joint distribution $p(y \mid \theta)$ of a sample $y=\left(y_{1}, \ldots, y_{n}\right)$ of size n which is conditionally IID from (99) (which also defines, as usual, the likelihood function $l(\theta \mid y)$) will be

$$
\begin{aligned}
p(y \mid \theta) & =l(\theta \mid y)=\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right) \\
& =c\left[\prod_{i=1}^{n} f_{1}\left(y_{i}\right)\right]\left[g_{1}(\theta)\right]^{n} \exp \left[\sum_{j=1}^{k} \phi_{j}(\theta) \sum_{i=1}^{n} h_{j}\left(y_{j}\right)\right]
\end{aligned}
$$

The Exponential Family (continued)

This leads to another way to define the exponential family: in (99) take $f(y)=\prod_{i=1}^{n} f_{1}\left(y_{i}\right)$ and $g(\theta)=\left[g_{1}(\theta)\right]^{n}$ to yield

Definition: Given data $y=\left(y_{1}, \ldots, y_{n}\right)$ (a conditionally IID sample of size n) and a parameter vector $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$, the (joint) sampling distribution $p(y \mid \theta)$ belongs to the k-dimensional exponential family if it can be expressed in the form

$$
\begin{equation*}
p(y \mid \theta)=c f(y) g(\theta) \exp \left[\sum_{j=1}^{k} \phi_{j}(\theta) \sum_{i=1}^{n} h_{j}\left(y_{i}\right)\right] . \tag{101}
\end{equation*}
$$

Either way you can see that $\left\{\sum_{i=1}^{n} h_{1}\left(y_{i}\right), \ldots, \sum_{i=1}^{n} h_{k}\left(y_{i}\right)\right\}$ is a set of sufficient statistics for θ under this sampling model, because the likelihood $l(\theta \mid y)$ depends on y only through the values of $\left\{h_{1}, \ldots, h_{k}\right\}$.

I bring up the exponential family in part because, if the likelihood $l(\theta \mid y)$ is of the form (101), then in searching for a conjugate prior $p(\theta)$-that is, a prior of the same functional form as the likelihood-you can see directly what will work:

$$
\begin{gather*}
p(\theta)=c g(\theta)^{\tau_{0}} \exp \left[\sum_{j=1}^{k} \phi_{j}(\theta) \tau_{j}\right], \tag{102}\\
\text { for some } \tau=\left(\tau_{0}, \ldots, \tau_{k}\right) .
\end{gather*}
$$

The Exponential Family (continued)

With this choice the posterior for θ will be
$p(\theta \mid y)=c g(\theta)^{1+\tau_{0}} \exp \left\{\sum_{j=1}^{k} \phi_{j}(\theta)\left[\tau_{j}+\sum_{i=1}^{n} h_{j}(y)\right]\right\}$,
(103)
which is indeed of the same form (in θ) as (102).
As a first example, with $s=\sum_{i=1}^{n} y_{i}$, the Bernoulli/binomial likelihood in (41) can be written

$$
\begin{align*}
l(\theta \mid y) & =\theta^{s}(1-\theta)^{n-s} \\
& =(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{s} \tag{104}\\
& =(1-\theta)^{n} \exp \left[s \log \left(\frac{\theta}{1-\theta}\right)\right]
\end{align*}
$$

which shows (a) that this sampling distribution is a member of the exponential family with $k=1, g(\theta)=(1-\theta)^{n}$, the natural parameterization $\phi_{1}(\theta)=\log \left(\frac{\theta}{1-\theta}\right)$ (NB the basis of logistic regression), and $h_{1}\left(y_{i}\right)=y_{i}$, and (b) that $\sum_{i=1}^{n} h_{1}\left(y_{i}\right)=s$ is sufficient for θ.
Then (102) says that the conjugate prior for the Bernoulli/binomial likelihood is

$$
\begin{align*}
p(\theta) & =c(1-\theta)^{n \tau_{0}} \exp \left[\tau_{1} \log \left(\frac{\theta}{1-\theta}\right)\right] \\
& =c \theta^{\alpha-1}(1-\theta)^{\beta-1}=\operatorname{Beta}(\alpha, \beta) \tag{105}
\end{align*}
$$

for some α and β, as we've already seen is true.

The Exponential Family (continued)

As an example of a non-regular exponential family, suppose that a reasonable model for the data is to take the observed values $\left(y_{i} \mid \theta\right)$ to be conditionally IID from the uniform distribution $U(0, \theta)$ on the interval $(0, \theta)$ for unknown θ :
$p\left(y_{1} \mid \theta\right)=\left\{\begin{array}{cc}\frac{1}{\theta} & \text { for } 0<y_{1}<\theta \\ 0 & \text { otherwise }\end{array}\right\}=\frac{1}{\theta} I(0, \theta), \quad$ (106)
where $I(A)=1$ if A is true and 0 otherwise.
θ in this model is called a range-restriction parameter; such parameters are fundamentally different from location and scale parameters (like the mean μ and variance σ^{2} in the $N\left(\mu, \sigma^{2}\right)$ model, respectively) or shape parameters (like the degrees of freedom ν in the t_{ν} model).

$$
\begin{aligned}
& \text { (106) is an example of (99) with } \\
& c=1, f_{1}(y) \stackrel{1}{=} 1, g_{1}(\theta)=\frac{1}{\theta}, h_{1}(y)=0 \text {, and } \phi_{1}(\theta)=\text { anything }
\end{aligned}
$$ you want (e.g., 1), but only when the set $\mathcal{Y}=(0, \theta)$ is taken to depend on θ.

(Truncated distributions with unknown truncation point also lead to non-regular exponential families.)

It turns out that inference in non-regular exponential families is similar in some respects to the story when the exponential family is regular, but there are some important differences too (e.g., with a conditionally IID sample of size n from (106), $V(\theta \mid y)=O\left(n^{-2}\right)(!)$ instead of the more familiar $O\left(n^{-1}\right)$).

The Exponential Family (continued)

For an example with $p>1$, take $\theta=\left(\mu, \sigma^{2}\right)$ with the Gaussian likelihood:

$$
\begin{aligned}
l(\theta \mid y)= & \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}\right] \\
= & \sigma^{-n}(2 \pi)^{-\frac{n}{2}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}\right.\right. \\
& \left.\left.-2 \mu \sum_{i=1}^{n} y_{i}+n \mu^{2}\right)\right]
\end{aligned}
$$

This is of the form (101) with $k=2, c=$

$$
\begin{aligned}
(2 \pi)^{-\frac{n}{2}}, f(y)= & 1, g(\theta)=\sigma^{-n} \exp \left(-\frac{n \mu^{2}}{2 \sigma^{2}}\right), \phi_{1}(\theta)= \\
-\frac{1}{2 \sigma^{2}}, \phi_{2}(\theta)= & \frac{\mu}{\sigma^{2}}, h_{1}\left(y_{i}\right)=y_{i}^{2}, \text { and } h_{2}\left(y_{i}\right)=y_{i}, \\
& \text { which shows that }
\end{aligned}
$$

$$
\left[h_{1}(y)=\sum_{i=1}^{n} y_{i}^{2}, h_{2}(y)=\sum_{i=1}^{n} y_{i}\right] \text { or equivalently }
$$ (\bar{y}, s^{2}) is sufficient for θ.

Some unpleasant algebra then demonstrates that an application of (102) leads to (88) as the conjugate prior for the Gaussian likelihood when both μ and σ^{2} are unknown.

2.10 References

Bernardo JM, Smith AFM (1994). Bayesian Theory. New York: Wiley.
Craig PS, Goldstein M, Seheult AH, Smith JA (1997). Constructing partial prior specifications for models of complex physical systems. The Statistician, 46, forthcoming.

Draper D (1995). Inference and hierarchical modeling in the social sciences (with discussion). Journal of Educational and Behavioral Statistics, 20, 115-147, 233-239.

Draper D, Hodges JS, Mallows CL, Pregibon D (1993). Exchangeability and data analysis (with discussion). Journal of the Royal Statistical Society, Series A, 156, 9-37.
de Finetti B (1930). Funzione caratteristica di un fenomeno aleatorio. Mem. Acad. Naz. Lincei, 4, 86-133.
de Finetti B (1964). Foresight: its logical laws, its subjective sources. In Studies in Subjective Probability, HE Kyburg, Jr., and HE Smokler, eds., New York: Wiley (1980), 93-158.
de Finetti B (1974/5). Theory of Probability, 1-2. New York: Wiley.
Fisher RA (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London A, 222, 309368.

Fisher RA (1956). Statistical Methods and Scientific Inference. London: Oliver and Boyd.

Freedman D, Pisani R, Purves R, Adhikari A (1998). Statistics, third edition. New York: Norton.

Gelman A, Carlin JB, Stern HS, Rubin DB (2003). Bayesian Data Analysis, second edition. London: Chapman \& Hall.

Hacking I (1975). The Emergence of Probability. Cambridge: Cambridge University Press.

Johnson NL, Kotz S (1970). Distributions in statistics: Continuous univariate distributions, 1. New York: Wiley.

Kadane JB, Dickey JM, Winkler RL, Smith WS, Peters SC (1980). Interactive elicitation of opinion for a normal linear model. Journal of the American Statistical Association, 75, 845-854.

References (continued)

Kadane JB, Wolfson LJ (1997). Experiences in elicitation. The Statistician, 46, forthcoming.

Kahn K, Rubenstein L, Draper D, Kosecoff J, Rogers W, Keeler E, Brook R (1990). The effects of the DRG-based Prospective Payment System on quality of care for hospitalized Medicare patients: An introduction to the series. Journal of the American Medical Association, 264, 1953-1955 (with editorial comment, 1995-1997).

Laplace PS (1774). Mémoire sur la probabilité des causes par les évenements. Mémoires de l'Academie des Sciences de Paris, 6, 621-656. English translation in 1986 as "Memoir on the probability of the causes of events," with an introduction by SM Stigler, Statistical Science, 1, 359-378.

O'Hagan A (1997). Eliciting expert beliefs in substantial practical applications. The Statistician, 46, forthcoming.

Samaniego FJ, Reneau DM (1994). Toward a reconciliation of the Bayesian and frequentist approaches to point estimation. Journal of the American Statistical Association, 89, 947-957.

Tierney L, Kadane JB (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81, 82-86.

