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Quantification of Uncertainty

Quantification of uncertainty: Classical, frequentist and Bayesian
definitions of probability.

Case study : Diagnostic screening for HIV

Widespread screening for HIV has been proposed by some people in
some countries (e.g., the U.S. in 1985).

Two blood tests that screen for HIV are widely available: ELISA,
which is relatively inexpensive (roughly US$20) and fairly accurate;

and Western Blot (WB), which is considerably more accurate but
costs quite a bit more (about $100).

A new patient comes to You, a physician, with symptoms that
suggest he may be HIV positive (Good, 1950: You = a generic person

wishing to reason sensibly in the presence of uncertainty).

Questions

• Is it appropriate to use the language of probability to quantify Your
uncertainty about the true/false proposition

A ={this patient is HIV positive}?
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Definition of Statistics

Questions

• If so, what kinds of probability are appropriate, and how would You
assess P(A) in each case?

• What strategy (e.g., ELISA, WB, both?) should You employ to
decrease Your uncertainty about A?

If You decide to run a screening test, how should Your uncertainty be
updated in light of the test results?

Statistics might be defined as the study of uncertainty: how to

measure it well, and how to make good choices in the face of it,
and probability as the part of mathematics devoted to the

quantification of uncertainty.

The systematic study of probability is fairly recent in the history of
ideas, dating back to about 1650 (e.g., Hacking, 1975).
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Definitions of Probability

In the last 350 years three main ways to define probability have arisen
(e.g., Oakes, 1990):

• Classical (Pascale, Fermat): Enumerate the elemental outcomes
(EOs) in a way that makes them equipossible on, e.g., symmetry
grounds, and compute PC (A) = the ratio of nA =(number of EOs

favorable to A) to n =(total number of EOs).

• Frequentist (Venn, von Mises): Restrict attention to attributes A of
events: phenomena that are inherently repeatable under “identical”

conditions; define PF (A) = the limiting value of the relative frequency
with which A occurs as the number of repetitions →∞.

• Personal, or “Subjective,” or Bayesian: two equivalent definitions:

— (Bayes, de Finetti) Imagine betting with someone about the truth
of the proposition A, and ask Yourself what odds OYou (in favor of A)

You would need to give or receive in order that You judge the bet to be
fair; then (for You) PB:You(A) = OYou

(1+OYou)
.
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Pros and Cons

— (RT Cox, Shannon, Jaynes) PB:You(A) is a numerical measure of the
weight of evidence in favor of proposition A, based on Your current

information, and required to satisfy a set of reasonable axioms to
achieve internal logical consistency.

Other approaches not covered here include logical (Keynes, Jeffreys,
Carnap) and fiducial (Fisher) probability.

Each of these probability definitions has general advantages
and disadvantages:

• Classical: Plus: Simple, when applicable (e.g., idealized
coin-tossing, drawing colored balls from urns, ... ).

• Classical: Minus: The only way to define “equipossible” without a
circular appeal to probability is through the principle of insufficient

reason — You judge EOs equipossible if You have no grounds
(empirical, logical, or symmetrical) for favoring one over another —

but this leads to paradoxes (e.g., assertion of equal uncertainty on an
infinite set is not invariant to the choice of scale).
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Pros and Cons (continued)

• Frequentist: Plus: Mathematics relatively tractable.

• Frequentist: Minus: Only applies to inherently repeatable events,
e.g., (as of November 2015) PF (Hillary Clinton will be elected US

President in 2016) is (strictly speaking) undefined.

• Bayesian: Plus: All forms of uncertainty are in principle
quantifiable with this approach.

• Bayesian: Minus: There’s no guarantee that the answer You get by
querying Yourself about betting odds or weight of evidence will

retrospectively be seen by You or others as “good” (but how should
the quality of an uncertainty assessment itself be assessed?).

Application to HIV Screening

P(A) = P(this patient is HIV-positive) =?

Data are available from medical journals on prevalence of
HIV-positivity in various subsets of P = {all humans} (e.g., it’s higher

in gay people, and lower in older people).
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Probability Modeling is Judgmental

All three probabilistic approaches require You to use Your judgment
to identify the recognizable subpopulation Pthis patient (Fisher, 1956;

Draper et al., 1993): this is

the largest subset to which this patient belongs for which the
HIV prevalence differs from that in the rest of P by an amount
You judge as large enough to matter in a practical sense.

Within Pthis patient You regard HIV prevalence as close enough to
constant that the differences are not worth bothering over, but the
differences between HIV prevalence in Pthis patient and its complement

matter to You.

Here Pthis patient might consist of everybody who matches this patient on
(e.g.) gender, age (category, e.g., 25–29), and sexual orientation.

NB This is a modeling choice based on judgment; different
reasonable people might make different choices; thus probability
modeling in the real world is inherently subjective (see page 10

below for more details).
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The Three Probability Definitions in Practice

As a classicist You would then (a) use this definition to establish
equipossibility within Pthis patient, (b) count nA = (the number of

HIV-positive people in Pthis patient) and n = (the total number of people in
Pthis patient), and (c) compute PC (A) = nA

n .

As a frequentist You would (a) equate P(A) to P(a person chosen at
random with replacement (i.e., independent identically distributed
(IID) sampling) from Pthis patient is HIV-positive), (b) imagine repeating
this random sampling indefinitely, and (c) conclude that the limiting
value of the relative frequency of HIV-positivity in these repetitions

would also be PF (A) = nA
n .

NB Strictly speaking You’re not allowed in the frequentist approach
to talk about P(this patient is HIV-positive): either he is or he isn’t;
in the frequentist paradigm, You can only talk about the process of

sampling people like him from Pthis patient.

As a Bayesian, with the information given here You would regard this
patient as exchangeable (de Finetti, e.g., 1964, 1974/5) with all other
patients in Pthis patient — meaning informally that You judge Yourself
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Exchangeability and Coherence

equally uncertain about HIV-positivity for all the patients in this set
— and this judgment, together with the axioms of coherence, would

also yield PB:You(A) = nA
n (although I’ve not yet said why this is so).

Exchangeability and coherence will be defined and explored in more
detail in what follows.

Note that with the same information base the three approaches in
this case have led to the same answer, although the meaning of that

answer depends on the approach, e.g., frequentist probability
describes the process of observing a repeatable event, whereas

Bayesian probability is an attempt to quantify Your uncertainty
about something, repeatable or not.

The classical and frequentist approaches have sometimes been called
“objective”, whereas the Bayesian approach is clearly subjective, and

— since objectivity sounds like a good goal in science — this has
sometimes been used as a claim that the classical and frequentist

approaches are superior.
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“Objectivity” and Subjectivity

I’d argue, however, that in interesting applied problems of realistic
complexity, the judgment of equivalence or similarity

(equipossibility, IID, exchangeability) that’s central to all three
theories makes them all subjective in practice.

Imagine, for example, that You were given data on HIV prevalence in
a large group of people, along with many variables (possible

predictors) that might or might not be relevant to identifying the
recognizable subpopulations.

You and other reasonable people working independently might well
differ in your judgments on which of these predictors are relevant

(and how they should be used in making the prediction), and the result
could easily be noticeable variation in the estimates of P(HIV positive)
obtained by You and the other analysts, even if everyone attempts to
use “objective” methods to arrive at these judgments (there are many
such methods, and they don’t always lead to the same conclusions).

Thus the assessment of complicated probabilities is inherently
subjective — there are “judgment calls” built into probabilistic and

statistical analysis.
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“Objectivity” and Subjectivity (continued)

With this in mind attention in all three approaches should evidently
shift away from trying to achieve “objectivity” toward two things:

(1) the explicit statement of the assumptions and judgments made
on the way to Your probability assessments, so that other people may

consider their plausibility, and

(2) sensitivity analyses exploring the mapping
from assumptions to conclusions.

(To a Bayesian, saying that PB(A) is objective just means that lots of
people more or less agree on its value.)

Suppose that, with this patient’s values of relevant demographic
variables, the prevalence of HIV estimated from the medical

literature, P(A) = P(he’s HIV-positive), in his recognizable
subpopulation is about 1

100 = 0.01.

To improve this estimate by gathering data specific to this patient,
You decide to draw some blood and get a result from ELISA.
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Sequential Learning; Bayes’s Theorem

Suppose the test comes back positive — what’s Your updated P(A)?

Bayesian probability has that name because of the simple updating
rule attributed to Thomas Bayes (1763), who was the first person to

define conditional probability and make calculations with it:

Bayes’s Theorem for propositions: P(A|D) =
P(A)P(D|A)

P(D) .
(1)

In the usual application of this, A is an unknown quantity (such as the
truth value of some proposition) and D stands for some data relevant

to Your uncertainty about A:

P(unknown|data) =
P(unknown)P(data|unknown)

normalizing constant

posterior = c · prior · likelihood (2)

The terms prior and posterior emphasize the sequential nature of the
learning process — P(unknown) was Your uncertainty assessment

before the data arrived; this is updated multiplicatively on the
probability scale by the likelihood P(data|unknown), and renormalized
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Bayes’s Theorem in Odds Form

so that total probability remains 1 — but in general the prior is a
quantification of all information about the unknown external to the

present data set.

Writing the Theorem both for A and (not A) and combining gives a
(perhaps even more) useful version: Bayes’s Theorem in Odds Form:

P(A|data)

P(not A|data)
=

[
P(A)

P(not A)

]
·
[

P(data|A)

P(data|not A)

]
posterior

odds
=

(
prior
odds

)
·

(
Bayes
factor

)
(3)

Another name for the Bayes factor is the likelihood ratio, since this
factor measures the relative plausibility of the data given A

and (not A).

Applying this to the HIV example requires additional information
about ELISA obtained by screening the blood of people with known

HIV status:

sensitivity = P(ELISA positive|HIV positive) and (4)

specificity = P(ELISA negative|HIV negative) .
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Sensitivity and Specificity

In practice, in 1985 ELISA’s operating characteristics were (or at least
seemed) rather good — sensitivity about 0.95, specificity about 0.98

— so You might well expect that
P(this patient HIV positive|ELISA positive) would be close to 1.

Here the updating produces a surprising result (if you’ve never seen
this sort of thing before): the Bayes factor comes out

B =
sensitivity

1− specificity
=

0.95

0.02
= 47.5, (5)

which sounds like strong evidence that this patient is HIV positive,

but the prior odds are quite a bit stronger the other way ( P(A)
1−P(A) = 99

to 1 against HIV), leading to posterior odds of 99
47.5

.
= 2.08 against

HIV, i.e., P(HIV positive|data) = 1
1+odds

= 95
293

.
= 0.32 (!).

The reason for this is that ELISA was designed to have a vastly better
false negative rate — P(HIV positive| ELISA negative) =
5

9707

.
= 0.00052

.
= 1 in 1941 — than false positive rate —

P(HIV negative| ELISA positive) = 198
293

.
= 0.68

.
= 2 in 3.
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Inference and Decision-Making

This in turn is because ELISA’s developers judged that it’s far worse
to tell somebody who’s HIV positive that they’re not than the

other way around (reasonable for using ELISA for, e.g.,
blood bank screening).

This false positive rate would make widespread screening for HIV based
only on ELISA a truly bad idea.

Formalizing the consequences of the two types of error in diagnostic
screening would require quantifying misclassification costs, which

shifts the focus from (scientific) inference (the acquisition of
knowledge for its own sake: Is this patient really HIV-positive?) to
decision-making (putting that knowledge to work to make a choice,

e.g.: What use of ELISA and Western Blot would yield the optimal
screening strategy?).

Axiomatic approaches to rational decision-making date back to
Ramsay (1926), with von Neumann and Morgenstern (1944) and

Savage (1954) also making major contributions.
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Bayesian Decision Theory

The ingredients of a general decision problem (e.g., Bernardo and
Smith, 1994) include

• A set {ai , i ∈ I} of available actions, one of which You will choose;

• For each action ai , a set {Ej , j ∈ J} of uncertain outcomes
describing what will happen if You choose action ai ;

• A set {cj , j ∈ J} of consequences corresponding to the outcomes
{Ej , j ∈ J}; and

• A preference relation ≤, expressing Your preferences between pairs
of available actions (a1 ≤ a2 means “a1 is not preferred by You

to a2”).

Define a1 ∼ a2 (“a1 and a2 are equivalent” to You) iff
a1 ≤ a2 and a2 ≤ a1.

This preference relation induces a qualitative ordering of the
uncertain outcomes (E ≤ F means “E is not more likely than F”), but
within this framework further assumptions — the coherence axioms
— are needed to ensure that Your actions are internally consistent.
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Decision-Theory Axioms

Informally (see Bernardo and Smith, 1994, for the formalism) these are:

• An axiom insisting that You be willing to express preferences
between simple dichotomized possible actions ({a, not a});

• A transitivity axiom in which (for all actions a, a1, a2, a3) a ≤ a, and
if a1 ≤ a2 and a2 ≤ a3 then a1 ≤ a3; and

• An axiom based on the sure-thing principle: if, in two situations, no
matter how the first comes out the corresponding outcome in the

second is preferable, then You should prefer the
second situation overall.

This puts ≤ on a sound footing for qualitative uncertainty
assessment, but does not yet imply how to quantify — it’s like being
able to say that one thing weighs less than another but not to say by

how much.

To go further requires a fourth assumption, analogous to the
existence of a set of reference standards (e.g., an official kg weight,

half-kg, and so on) and the ability to make arbitrarily precise
comparisons with these standards:
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Utility; Implications

• An axiom guaranteeing that for each outcome E there exists a
standard outcome S (e.g., “idealized coin lands heads”)

such that E ∼ S .

This framework implies the existence and uniqueness of a (personal)
probability PB:You (abbreviated P), mapping from outcomes E to [0, 1]
and corresponding to the judgments in Your definition of ≤, and a

utility function UYou (abbreviated U; large values preferred, without
loss of generality), mapping from consequences c to < and

quantifying Your preferences.

This has all been rather abstract; three concrete results arising from
this framework may make its implications clearer:

• Bayes’s original definition of personal probability is helpful in
thinking about how to quantify uncertainty.

Supposing that consequences are monetary (e.g., US$), to say that
PB:You(E ) = p for some uncertain outcome E whose truth value will

be known in the future is to say that You’re indifferent between
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Dutch Book

(a) receiving $(p ·m) for sure (for some hypothetical (and reasonably
small) amount of money $m) and (b) betting with someone in such a
way that You’ll get $m if E turns out to be true and nothing if not

(You can use this to estimate PB:You(E )).

• Any coherent set of probability judgments must satisfy the standard
axioms and theorems of a finitely additive probability:

— 0 ≤ P(E ) ≤ 1 and P(E c) = 1− P(E );

— P(E1 or . . . or EJ) =
∑

j∈J P(Ej) for any finite collection
{Ej , j ∈ J} of disjoint outcomes;

— P(E and F ) = P(E ) · P(F ) for any two independent outcomes
(informally, E and F are independent if Your uncertainty judgments

involving one of them are unaffected by information
about the other); and

— Conditional probability has a natural definition in this setup,
corresponding to the updating of Your uncertainty about E in light of

F , and with this definition P(E |F ) = P(E and F )
P(F ) .
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Maximization of Expected Utility

Otherwise (de Finetti, 1964) someone betting with You on the basis
of Your probability judgments can make Dutch book against you,
i.e., get You to agree to a series of bets that are guaranteed to lose

You money.

Thus coherent Bayesian probability obeys the same laws as with the
classical and frequentist approaches (apart from a technical issue

about finite versus countable additivity).

Nothing so far has said clearly what choice to make in a decision
problem if You wish to avoid incoherence.

If the outcomes were certain You’d evidently choose the action that
maximizes Your utility function, but since they’re not the best

action must involve weighing both Your probabilities for the
uncertain outcomes and the utilities You place on their consequences.

It’s a direct implication of the framework here that the form this
weighing should take is simple and clear:
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HIV Case Study

Maximization of Expected Utility (MEU)

Given Your probability and utility judgments, Your decision-making is
coherent iff for each action ai , with associated uncertain outcomes
{Ej , j ∈ J} and consequences {cj , j ∈ J}, You compute the expected

utility EUi =
∑

j∈J U(cj)P(Ej) and choose the action that
maximizes {EUi , i ∈ I}.

Example: HIV screening. As a simplified version of this problem
consider choosing between two actions:

• a1: Obtain ELISA results at a cost of c1 = $20; if positive, conclude
this patient is HIV+, if negative, conclude HIV–.

• a2: Same as a1 except if ELISA comes out positive, obtain Western
Blot (WB) results at an additional cost of c2 = $100; if WB is positive

conclude HIV+, if negative conclude HIV–.

With action a1 the probabilities, uncertain outcomes, and utilities are
as follows:
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HIV Case Study (continued)

True HIV ELISA
Probability Status Status Utility

.0095 + + −c1

.0005 + − −c1 − LI

.0198 − + −c1 − LII

.9702 − − −c1

Here LI and LII are the false negative (false positive) monetary losses
suffered by this patient if he really is HIV+ (HIV–) but ELISA says he is

HIV– (HIV+).

The expected utility with action a1 is thus

EU1 = .0095(−c1) + .0005(−c1 − LI) + . . . + .9702(−c1)

= −(c1 + .0005LI + .0198LII) . (6)

The corresponding table for action a2 is:
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HIV Case Study (continued)

True HIV ELISA WB
Probability Status Status Status Utility

.00945 + + + −c1 − c2

.00005 + + − −c1 − c2 − LI

.00004 + − + −c1 − LI

.00046 + − − −c1 − LI

.00010 − + + −c1 − c2 − LII

.01970 − + − −c1 − c2

.00095 − − + −c1

.96925 − − − −c1

These probabilities arise from WB’s design (the goal was to have
about the same false negative rate as ELISA and a much lower false

positive rate (about 0.1), leading to a slightly worse sensitivity
(0.949) but much improved specificity (0.999)).

The expected utility with action a2 comes out

EU2 = .00945(−c1 − c2) + . . . + .9604(−c1)

= −(c1 + .0293c2 + .00055LI + .0001LII) . (7)

By MEU You should prefer a2 to a1 iff EU2 > EU1, i.e., iff
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HIV Case Study

.0197LII − .00005LI − .0293c2 > 0 .

Thus a2 becomes more desirable as the loss suffered with a false
positive (negative) increases (decreases), and less desirable as WB’s

cost increases, all of which makes good sense.

It’s interesting to note that with a modest value for LII (e.g., $1,000),
the monetary advantage from taking action a2 is quite small, even

with a realistically huge value for LI (e.g., $100,000, which leads to an
edge for a2 of only about $12).

This is due to the extremely low false negative rate for both tests —
LI would have to be over $335,000 for a1 to dominate!

Overall conclusion: for realistic values of LI and LII the adaptive
strategy a2 is better.

We’ll see more examples of maximizing expected utility in Day 2 of
this short course.
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