Bayesian Modeling, Inference, Prediction and Decision-Making

1: Background and Basics

David Draper
Department of Applied Mathematics and Statistics University of California, Santa Cruz
> Short Course (Days 1 and 2)
> University of Reading (UK)

23-24 Nov 2015
(c) 2015 David Draper (all rights reserved)

Quantification of Uncertainty

Quantification of uncertainty: Classical, frequentist and Bayesian definitions of probability.

Case study: Diagnostic screening for HIV

Widespread screening for HIV has been proposed by some people in some countries (e.g., the U.S. in 1985).

Two blood tests that screen for HIV are widely available: ELISA, which is relatively inexpensive (roughly US\$20) and fairly accurate; and Western Blot (WB), which is considerably more accurate but costs quite a bit more (about \$100).

A new patient comes to You, a physician, with symptoms that suggest he may be HIV positive (Good, 1950: You = a generic person wishing to reason sensibly in the presence of uncertainty).

Questions

- Is it appropriate to use the language of probability to quantify Your uncertainty about the true/false proposition
$A=\{$ this patient is HIV positive $\} ?$

Definition of Statistics

Questions

- If so, what kinds of probability are appropriate, and how would You assess $P(A)$ in each case?
- What strategy (e.g., ELISA, WB, both?) should You employ to decrease Your uncertainty about A ?

If You decide to run a screening test, how should Your uncertainty be updated in light of the test results?

Statistics might be defined as the study of uncertainty: how to measure it well, and how to make good choices in the face of it, and probability as the part of mathematics devoted to the quantification of uncertainty.

The systematic study of probability is fairly recent in the history of ideas, dating back to about 1650 (e.g., Hacking, 1975).

Definitions of Probability

In the last $\mathbf{3 5 0}$ years three main ways to define probability have arisen (e.g., Oakes, 1990):

- Classical (Pascale, Fermat): Enumerate the elemental outcomes (EOs) in a way that makes them equipossible on, e.g., symmetry grounds, and compute $P_{C}(A)=$ the ratio of $n_{A}=$ (number of EOs favorable to A) to $n=($ total number of EOs).
- Frequentist (Venn, von Mises): Restrict attention to attributes A of events: phenomena that are inherently repeatable under "identical" conditions; define $P_{F}(A)=$ the limiting value of the relative frequency with which A occurs as the number of repetitions $\rightarrow \infty$.
- Personal, or "Subjective," or Bayesian: two equivalent definitions:
- (Bayes, de Finetti) Imagine betting with someone about the truth of the proposition A, and ask Yourself what odds $O_{\text {You (}}$ (in favor of A) You would need to give or receive in order that You judge the bet to be fair; then (for You) $P_{B: \text { You }}(A)=\frac{O_{\text {You }}}{\left(1+O_{\text {out }}\right.}$.
- (RT Cox, Shannon, Jaynes) $P_{B: Y o u}(A)$ is a numerical measure of the weight of evidence in favor of proposition A, based on Your current information, and required to satisfy a set of reasonable axioms to achieve internal logical consistency.

Other approaches not covered here include logical (Keynes, Jeffreys, Carnap) and fiducial (Fisher) probability.

Each of these probability definitions has general advantages and disadvantages:

- Classical: Plus: Simple, when applicable (e.g., idealized coin-tossing, drawing colored balls from urns, ...).
- Classical: Minus: The only way to define "equipossible" without a circular appeal to probability is through the principle of insufficient reason - You judge EOs equipossible if You have no grounds (empirical, logical, or symmetrical) for favoring one over another but this leads to paradoxes (e.g., assertion of equal uncertainty on an infinite set is not invariant to the choice of scale).
- Frequentist: Plus: Mathematics relatively tractable.
- Frequentist: Minus: Only applies to inherently repeatable events, e.g., (as of November 2015) P_{F} (Hillary Clinton will be elected US President in 2016) is (strictly speaking) undefined.
- Bayesian: Plus: All forms of uncertainty are in principle quantifiable with this approach.
- Bayesian: Minus: There's no guarantee that the answer You get by querying Yourself about betting odds or weight of evidence will retrospectively be seen by You or others as "good" (but how should
the quality of an uncertainty assessment itself be assessed?).

Application to HIV Screening

$P(A)=P($ this patient is HIV-positive $)=$?
Data are available from medical journals on prevalence of HIV-positivity in various subsets of $\mathcal{P}=\{$ all humans $\}$ (e.g., it's higher in gay people, and lower in older people).

All three probabilistic approaches require You to use Your judgment to identify the recognizable subpopulation $\mathcal{P}_{\text {this patient }}$ (Fisher, 1956; Draper et al., 1993): this is
the largest subset to which this patient belongs for which the HIV prevalence differs from that in the rest of \mathcal{P} by an amount You judge as large enough to matter in a practical sense.

Within $\mathcal{P}_{\text {this patient }}$ You regard HIV prevalence as close enough to constant that the differences are not worth bothering over, but the differences between HIV prevalence in $\mathcal{P}_{\text {this patient }}$ and its complement matter to You.

Here $\mathcal{P}_{\text {this patient }}$ might consist of everybody who matches this patient on (e.g.) gender, age (category, e.g., 25-29), and sexual orientation.

NB This is a modeling choice based on judgment; different reasonable people might make different choices; thus probability modeling in the real world is inherently subjective (see page 10 below for more details).

The Three Probability Definitions in Practice

As a classicist You would then (a) use this definition to establish equipossibility within $\mathcal{P}_{\text {this patient }}$, (b) count $n_{A}=$ (the number of HIV-positive people in $\mathcal{P}_{\text {this patient }}$) and $n=$ (the total number of people in

$$
\mathcal{P}_{\text {this patient }} \text {), and (c) compute } P_{C}(A)=\frac{n_{A}}{n} \text {. }
$$

As a frequentist You would (a) equate $P(A)$ to $P($ a person chosen at random with replacement (i.e., independent identically distributed (IID) sampling) from $\mathcal{P}_{\text {this patient }}$ is HIV-positive), (b) imagine repeating this random sampling indefinitely, and (c) conclude that the limiting value of the relative frequency of HIV-positivity in these repetitions would also be $P_{F}(A)=\frac{n_{A}}{n}$.

NB Strictly speaking You're not allowed in the frequentist approach to talk about P (this patient is HIV-positive): either he is or he isn't; in the frequentist paradigm, You can only talk about the process of sampling people like him from $\mathcal{P}_{\text {this patient }}$.

As a Bayesian, with the information given here You would regard this patient as exchangeable (de Finetti, e.g., 1964, 1974/5) with all other patients in $\mathcal{P}_{\text {this patient }}$ - meaning informally that You judge Yourself

Exchangeability and Coherence

equally uncertain about HIV-positivity for all the patients in this set - and this judgment, together with the axioms of coherence, would also yield $P_{B: Y o u}(A)=\frac{n_{A}}{n}$ (although I've not yet said why this is so).

Exchangeability and coherence will be defined and explored in more detail in what follows.

Note that with the same information base the three approaches in this case have led to the same answer, although the meaning of that answer depends on the approach, e.g., frequentist probability describes the process of observing a repeatable event, whereas Bayesian probability is an attempt to quantify Your uncertainty about something, repeatable or not.

The classical and frequentist approaches have sometimes been called "objective", whereas the Bayesian approach is clearly subjective, and - since objectivity sounds like a good goal in science - this has sometimes been used as a claim that the classical and frequentist approaches are superior.

"Objectivity" and Subjectivity

I'd argue, however, that in interesting applied problems of realistic complexity, the judgment of equivalence or similarity (equipossibility, IID, exchangeability) that's central to all three theories makes them all subjective in practice.

Imagine, for example, that You were given data on HIV prevalence in a large group of people, along with many variables (possible predictors) that might or might not be relevant to identifying the recognizable subpopulations.

You and other reasonable people working independently might well differ in your judgments on which of these predictors are relevant (and how they should be used in making the prediction), and the result could easily be noticeable variation in the estimates of P (HIV positive) obtained by You and the other analysts, even if everyone attempts to use "objective" methods to arrive at these judgments (there are many such methods, and they don't always lead to the same conclusions).

Thus the assessment of complicated probabilities is inherently subjective - there are "judgment calls" built into probabilistic and statistical analysis.

"Objectivity" and Subjectivity (continued)

With this in mind attention in all three approaches should evidently shift away from trying to achieve "objectivity" toward two things:
(1) the explicit statement of the assumptions and judgments made on the way to Your probability assessments, so that other people may consider their plausibility, and
(2) sensitivity analyses exploring the mapping from assumptions to conclusions.
(To a Bayesian, saying that $P_{B}(A)$ is objective just means that lots of people more or less agree on its value.)

Suppose that, with this patient's values of relevant demographic variables, the prevalence of HIV estimated from the medical
literature, $P(A)=P$ (he's HIV-positive), in his recognizable subpopulation is about $\frac{1}{100}=\mathbf{0 . 0 1}$.

To improve this estimate by gathering data specific to this patient, You decide to draw some blood and get a result from ELISA.

Sequential Learning; Bayes's Theorem

Suppose the test comes back positive - what's Your updated $P(A)$?
Bayesian probability has that name because of the simple updating rule attributed to Thomas Bayes (1763), who was the first person to define conditional probability and make calculations with it:

Bayes's Theorem for propositions: $\quad P(A \mid D)=\frac{P(A) P(D \mid A)}{P(D) .}$
In the usual application of this, A is an unknown quantity (such as the truth value of some proposition) and D stands for some data relevant to Your uncertainty about A :

$$
\begin{align*}
P(\text { unknown } \mid \text { data }) & =\frac{P(\text { unknown }) P(\text { data } \mid \text { unknown })}{\text { normalizing constant }} \\
\text { posterior } & =c \cdot \text { prior } \cdot \text { likelihood } \tag{2}
\end{align*}
$$

The terms prior and posterior emphasize the sequential nature of the learning process - P (unknown) was Your uncertainty assessment before the data arrived; this is updated multiplicatively on the probability scale by the likelihood P (data|unknown), and renormalized
so that total probability remains $\mathbf{1}$ - but in general the prior is a quantification of all information about the unknown external to the present data set.
Writing the Theorem both for A and (not A) and combining gives a (perhaps even more) useful version: Bayes's Theorem in Odds Form:

$$
\begin{align*}
\frac{P(A \mid \text { data })}{P(\text { not } A \mid \text { data })} & =\left[\frac{P(A)}{P(\text { not } A)}\right] \cdot\left[\frac{P(\text { data } \mid A)}{P(\text { data } \mid \text { not } A)}\right] \\
\begin{array}{c}
\text { posterior } \\
\text { odds }
\end{array} & =\binom{\text { prior }}{\text { odds }} \cdot\binom{\text { Bayes }}{\text { factor }} \tag{3}
\end{align*}
$$

Another name for the Bayes factor is the likelihood ratio, since this factor measures the relative plausibility of the data given A and $(\operatorname{not} A)$.

Applying this to the HIV example requires additional information about ELISA obtained by screening the blood of people with known HIV status:

$$
\begin{align*}
\text { sensitivity } & =P(E L I S A \text { positive } \mid \text { HIV positive }) \quad \text { and } \tag{4}\\
\text { specificity } & =P(E L I S A \text { negative } \mid \text { HIV negative })
\end{align*}
$$

Sensitivity and Specificity

In practice, in 1985 ELISA's operating characteristics were (or at least seemed) rather good - sensitivity about 0.95 , specificity about 0.98 - so You might well expect that P (this patient HIV positive|ELISA positive) would be close to $\mathbf{1}$.

Here the updating produces a surprising result (if you've never seen this sort of thing before): the Bayes factor comes out

$$
\begin{equation*}
B=\frac{\text { sensitivity }}{1-\text { specificity }}=\frac{0.95}{0.02}=47.5, \tag{5}
\end{equation*}
$$

which sounds like strong evidence that this patient is HIV positive, but the prior odds are quite a bit stronger the other way $\left(\frac{P(A)}{1-P(A)}=99\right.$ to 1 against HIV), leading to posterior odds of $\frac{99}{47.5} \doteq 2.08$ against HIV, i.e., $P($ HIV positive \mid data $)=\frac{1}{1 \text { +odds }}=\frac{95}{293} \doteq 0.32$ (!).

The reason for this is that ELISA was designed to have a vastly better false negative rate $-P$ (HIV positive| ELISA negative) $=$ $\frac{5}{9707} \doteq 0.00052 \doteq 1$ in 1941 - than false positive rate $P($ HIV negative $\mid E L I S A$ positive $)=\frac{198}{293} \doteq 0.68 \doteq 2$ in 3.

Inference and Decision-Making

This in turn is because ELISA's developers judged that it's far worse to tell somebody who's HIV positive that they're not than the other way around (reasonable for using ELISA for, e.g., blood bank screening).
This false positive rate would make widespread screening for HIV based only on ELISA a truly bad idea.
Formalizing the consequences of the two types of error in diagnostic screening would require quantifying misclassification costs, which shifts the focus from (scientific) inference (the acquisition of knowledge for its own sake: Is this patient really HIV-positive?) to decision-making (putting that knowledge to work to make a choice, e.g.: What use of ELISA and Western Blot would yield the optimal screening strategy?).

Axiomatic approaches to rational decision-making date back to Ramsay (1926), with von Neumann and Morgenstern (1944) and Savage (1954) also making major contributions.

The ingredients of a general decision problem (e.g., Bernardo and Smith, 1994) include

- A set $\left\{a_{i}, i \in I\right\}$ of available actions, one of which You will choose;
- For each action a_{i}, a set $\left\{E_{j}, j \in J\right\}$ of uncertain outcomes describing what will happen if You choose action a_{i};
- A set $\left\{c_{j}, j \in J\right\}$ of consequences corresponding to the outcomes

$$
\left\{E_{j}, j \in J\right\} ; \text { and }
$$

- A preference relation \leq, expressing Your preferences between pairs of available actions ($a_{1} \leq a_{2}$ means " a_{1} is not preferred by You to $a_{2}{ }^{\prime \prime}$).

Define $a_{1} \sim a_{2}$ (" a_{1} and a_{2} are equivalent" to You) iff

$$
a_{1} \leq a_{2} \text { and } a_{2} \leq a_{1} .
$$

This preference relation induces a qualitative ordering of the uncertain outcomes ($E \leq F$ means " E is not more likely than F "), but within this framework further assumptions - the coherence axioms - are needed to ensure that Your actions are internally consistent.

Decision-Theory Axioms

Informally (see Bernardo and Smith, 1994, for the formalism) these are:

- An axiom insisting that You be willing to express preferences between simple dichotomized possible actions ($\{a$, not $a\}$);
- A transitivity axiom in which (for all actions a, a_{1}, a_{2}, a_{3}) $a \leq a$, and if $a_{1} \leq a_{2}$ and $a_{2} \leq a_{3}$ then $a_{1} \leq a_{3}$; and
- An axiom based on the sure-thing principle: if, in two situations, no matter how the first comes out the corresponding outcome in the second is preferable, then You should prefer the second situation overall.

This puts \leq on a sound footing for qualitative uncertainty assessment, but does not yet imply how to quantify - it's like being able to say that one thing weighs less than another but not to say by how much.

To go further requires a fourth assumption, analogous to the existence of a set of reference standards (e.g., an official kg weight, half-kg, and so on) and the ability to make arbitrarily precise comparisons with these standards:

Utility; Implications

- An axiom guaranteeing that for each outcome E there exists a standard outcome S (e.g., "idealized coin lands heads") such that $E \sim S$.

This framework implies the existence and uniqueness of a (personal) probability $P_{B: \text { You }}($ abbreviated P), mapping from outcomes E to $[0,1]$ and corresponding to the judgments in Your definition of \leq, and a
utility function $U_{\text {You }}$ (abbreviated U; large values preferred, without loss of generality), mapping from consequences c to \Re and quantifying Your preferences.

This has all been rather abstract; three concrete results arising from this framework may make its implications clearer:

- Bayes's original definition of personal probability is helpful in thinking about how to quantify uncertainty.

Supposing that consequences are monetary (e.g., US\$), to say that $P_{B: \text { You }}(E)=p$ for some uncertain outcome E whose truth value will be known in the future is to say that You're indifferent between

Dutch Book

(a) receiving $\$(p \cdot m)$ for sure (for some hypothetical (and reasonably small) amount of money $\$ m$) and (b) betting with someone in such a way that You'll get $\$ m$ if E turns out to be true and nothing if not (You can use this to estimate $P_{B: \text { You }}(E)$).

- Any coherent set of probability judgments must satisfy the standard axioms and theorems of a finitely additive probability:

$$
-0 \leq P(E) \leq 1 \text { and } P\left(E^{c}\right)=1-P(E)
$$

- $P\left(E_{1}\right.$ or \ldots or $\left.E_{J}\right)=\sum_{j \in J} P\left(E_{j}\right)$ for any finite collection $\left\{E_{j}, j \in J\right\}$ of disjoint outcomes;
- $P(E$ and $F)=P(E) \cdot P(F)$ for any two independent outcomes (informally, E and F are independent if Your uncertainty judgments involving one of them are unaffected by information about the other); and
- Conditional probability has a natural definition in this setup, corresponding to the updating of Your uncertainty about E in light of F, and with this definition $P(E \mid F)=\frac{P(E \text { and } F)}{P(F)}$.

Maximization of Expected Utility

Otherwise (de Finetti, 1964) someone betting with You on the basis of Your probability judgments can make Dutch book against you, i.e., get You to agree to a series of bets that are guaranteed to lose You money.

Thus coherent Bayesian probability obeys the same laws as with the classical and frequentist approaches (apart from a technical issue about finite versus countable additivity).

Nothing so far has said clearly what choice to make in a decision problem if You wish to avoid incoherence.

If the outcomes were certain You'd evidently choose the action that maximizes Your utility function, but since they're not the best action must involve weighing both Your probabilities for the uncertain outcomes and the utilities You place on their consequences.

It's a direct implication of the framework here that the form this weighing should take is simple and clear:

HIV Case Study

Maximization of Expected Utility (MEU)

Given Your probability and utility judgments, Your decision-making is coherent iff for each action a_{i}, with associated uncertain outcomes $\left\{E_{j}, j \in J\right\}$ and consequences $\left\{c_{j}, j \in J\right\}$, You compute the expected utility $\mathrm{EU}_{i}=\sum_{j \in J} U\left(c_{j}\right) P\left(E_{j}\right)$ and choose the action that maximizes $\left\{\mathrm{EU}_{i}, i \in I\right\}$.

Example: HIV screening. As a simplified version of this problem consider choosing between two actions:

- a_{1} : Obtain ELISA results at a cost of $c_{1}=\$ 20$; if positive, conclude this patient is HIV+, if negative, conclude HIV-.
- a_{2} : Same as a_{1} except if ELISA comes out positive, obtain Western Blot (WB) results at an additional cost of $c_{2}=\$ 100$; if $W B$ is positive conclude HIV+, if negative conclude HIV-.

With action a_{1} the probabilities, uncertain outcomes, and utilities are as follows:

HIV Case Study (continued)

Probability	True HIV Status	ELISA Status	Utility
.0095	+	+	$-c_{1}$
.0005	+	-	$-c_{1}-L_{1}$
.0198	-	+	$-c_{1}-L_{\text {II }}$
.9702	-	-	$-c_{1}$

Here L_{1} and L_{11} are the false negative (false positive) monetary losses suffered by this patient if he really is HIV+ (HIV-) but ELISA says he is HIV- (HIV+).

The expected utility with action a_{1} is thus

$$
\begin{align*}
\mathrm{EU}_{1} & =.0095\left(-c_{1}\right)+.0005\left(-c_{1}-L_{1}\right)+\ldots+.9702\left(-c_{1}\right) \\
& =-\left(c_{1}+.0005 L_{1}+.0198 L_{11}\right) . \tag{6}
\end{align*}
$$

The corresponding table for action a_{2} is:

HIV Case Study (continued)

Probability	True HIV Status	ELISA Status	Status	Utility
.00945	+	+	+	$-c_{1}-c_{2}$
.00005	+	+	-	$-c_{1}-c_{2}-L_{1}$
.00004	+	-	+	$-c_{1}-L_{1}$
.00046	+	-	-	$-c_{1}-L_{1}$
.00010	-	+	+	$-c_{1}-c_{2}-L_{\text {II }}$
.01970	-	+	-	$-c_{1}-c_{2}$
.00095	-	-	+	$-c_{1}$
.96925	-	-	-	$-c_{1}$

These probabilities arise from WB's design (the goal was to have about the same false negative rate as ELISA and a much lower false positive rate (about 0.1), leading to a slightly worse sensitivity
(0.949) but much improved specificity (0.999)).

The expected utility with action a_{2} comes out

$$
\begin{align*}
\mathrm{EU}_{2} & =.00945\left(-c_{1}-c_{2}\right)+\ldots+.9604\left(-c_{1}\right) \\
& =-\left(c_{1}+.0293 c_{2}+.00055 L_{1}+.0001 L_{11}\right) . \tag{7}
\end{align*}
$$

By MEU You should prefer a_{2} to a_{1} iff $E U_{2}>E U_{1}$, i.e., iff

HIV Case Study

$$
.0197 L_{\text {II }}-.00005 L_{1}-.0293 c_{2}>0
$$

Thus a_{2} becomes more desirable as the loss suffered with a false positive (negative) increases (decreases), and less desirable as WB's cost increases, all of which makes good sense.

It's interesting to note that with a modest value for $L_{\| \prime}$ (e.g., \$1,000), the monetary advantage from taking action a_{2} is quite small, even with a realistically huge value for L_{1} (e.g., $\mathbf{\$ 1 0 0}, \mathbf{0 0 0}$, which leads to an edge for a_{2} of only about \$12).

This is due to the extremely low false negative rate for both tests L_{1} would have to be over $\$ 335,000$ for a_{1} to dominate!

Overall conclusion: for realistic values of L_{1} and L_{11} the adaptive strategy a_{2} is better.

We'll see more examples of maximizing expected utility in Day 2 of this short course.

References

- Bayes T (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370-418.
- Bernardo JM, Smith AFM (1994). Bayesian Theory. New York: Wiley.
- Draper D, Hodges JS, Mallows CL, Pregibon D (1993). Exchangeability and data analysis (with discussion). Journal of the Royal Statistical Society, Series A, 156, 9-37.
- de Finetti B (1964). Foresight: its logical laws, its subjective sources. In Studies in Subjective Probability, HE Kyburg, Jr., HE Smokler, eds., New York: Wiley (1980), 93-158.
- de Finetti B (1974/5). Theory of Probability, 1-2. New York: Wiley.
- Fisher RA (1935). The Design of Experiments. London: Oliver and Boyd.
- Fisher RA (1956). Statistical Methods and Scientific Inference. London: Oliver and Boyd.
- Good IJ (1950). Probability and the Weighing of Evidence. London: Griffin.
- Hacking I (1975). The Emergence of Probability. Cambridge: Cambridge University Press.

References (continued)

- Jeffreys H (1961). Theory of Probability (Third Edition). Oxford: Clarendon Press.
- Laplace PS (1774). Mémoire sur la probabilité des causes par les évenements. Mémoires de l'Academie de Science de Paris, 6, 621-656.
- von Neumann J, Morgenstern O (1944). Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.
- Oakes M (1990). Statistical Inference. Chestnut Hill, MA: Epidemiology Resources.
- Ramsay FP (1926). Truth and probability. In The Foundations of Mathematics and Other Logical Essays, RB Braithwaite, ed., London: Kegan Paul, 156-198.
- Savage LJ (1954). The Foundations of Statistics. New York: Wiley.
- Stigler SM (1986). Laplace's 1774 memoir on inverse probability. Statistical Science, 1, 359-378 (contains an English translation of Laplace, 1774).

