Bayesian Model Specification

3: Bayesian Qualitative/Quantitative Inference

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz draper@ucsc.edu

SHORT COURSE (DAY 4) UNIVERSITY OF READING (UK)

26 Nov 2015

users.soe.ucsc.edu/~draper/Reading-2015-Day-4.html

© 2015 David Draper (all rights reserved)

Recall from our earlier discussion that if I judge **binary** (y_1, \ldots, y_n) to be part of **infinitely exchangeable sequence**, to be **coherent** my joint predictive distribution $p(y_1, \ldots, y_n)$ must have simple **hierarchical** form

$$egin{array}{ll} heta & \sim & p(heta) \ (y_i| heta) & \overset{
m IID}{\sim} & {\sf Bernoulli}(heta), \end{array}$$

where $\theta = P(y_i = 1) =$ **limiting value of mean of** y_i in infinite sequence.

Writing $s = (s_1, s_2)$ where s_1 and s_2 are the **numbers of 0s** and **1s**, respectively in (y_1, \ldots, y_n) , this is **equivalent** to the model

$$\theta_2 \sim p(\theta_2)$$
 (1)
 $(s_2|\theta_2) \sim \text{Binomial}(n,\theta_2),$

where (in a slight change of notation) $\theta_2 = P(y_i = 1)$; i.e., in this simplest case the form of the **likelihood function** (Binomial (n, θ_2)) is determined by **coherence**.

The **likelihood function** for θ_2 in this model is

$$l(\theta_2|y) = c\,\theta_2^{s_2}(1-\theta_2)^{n-s_2} = c\,\theta_1^{s_1}\theta_2^{s_2},\tag{2}$$

from which it's evident that the **conjugate prior** for the **Bernoulli/Binomial likelihood** (the choice of prior having the property that the **posterior** for θ_2 has the same **mathematical form** as the **prior**) is the family of $\mathbf{Beta}(\alpha_1, \alpha_2)$ densities

$$p(\theta_2) = c \,\theta_2^{\alpha_2 - 1} (1 - \theta_2)^{\alpha_1 - 1} = c \,\theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1}. \tag{3}$$
for some $\alpha_1 > 0, \alpha_2 > 0$.

With this prior the conjugate updating rule is evidently

$$\left\{ \begin{array}{l} \theta_2 \sim \text{Beta}(\alpha_1, \alpha_2) \\ (s_2|\theta_2) \sim \text{Binomial}(n, \theta_2) \end{array} \right\} \rightarrow (\theta_2|y) \sim \text{Beta}(\alpha_1 + s_1, \alpha_2 + s_2),$$
(4)

where s_1 (s_2) is the **number of 0s (1s)** in the data set $y = (y_1, \dots, y_n)$.

Moreover, given that the **likelihood** represents a **(sample)** data set with s_1 0s and s_2 1s and a data sample size of $n = (s_1 + s_2)$, it's clear that

- (a) the **Beta**(α_1, α_2) prior acts like a **(prior) data set** with α_1 0s and α_2 1s and a **prior sample size** of $(\alpha_1 + \alpha_2)$, and
- (b) to achieve a relatively **diffuse** (low-information-content) prior for θ_2 (if that's what context suggests I should aim for) I should try to specify α_1 and α_2 not far from $\mathbf{0}$.

Easy **generalization** of all of this: suppose the y_i take on $l \ge 2$ **distinct values** $v = (v_1, \ldots, v_l)$, and let $s = (s_1, \ldots, s_l)$ be the **vector** of **counts** $(s_1 = \#(y_i = v_1))$ and so on).

If I judge the y_i to be part of an **infinitely exchangeable sequence**, then to be **coherent** my joint predictive distribution $p(y_1, ..., y_n)$ must have the **hierarchical** form

$$\theta \sim p(\theta)$$
 (5) $(s|\theta) \sim \text{Multinomial}(n,\theta),$

where $\theta = (\theta_1, \dots, \theta_l)$ and θ_j is the **limiting relative** frequency of v_i values in the infinite sequence.

The **likelihood** for (vector) θ in this case has the form

$$l(\theta|y) = c \prod_{j=1}^{l} \theta_j^{s_j}, \tag{6}$$

from which it's evident that the **conjugate prior** for the **Multinomial likelihood** is of the form

$$p(\theta) = c \prod_{j=1}^{l} \theta_j^{\alpha_j - 1}, \tag{7}$$

for some $\alpha = (\alpha_1, \dots, \alpha_l)$ with $\alpha_j > 0$ for $j = 1, \dots, l$; this is the **Dirichlet**(α) distribution, a **multivariate generalization** of the Beta family.

Here the conjugate updating rule is

$$\left\{ \begin{array}{c} \theta \sim \mathsf{Dirichlet}(\alpha) \\ (s|\theta) \sim \mathsf{Multinomial}(n,\theta) \end{array} \right\} \rightarrow (\theta|y) \sim \mathsf{Dirichlet}(\alpha+s), \ \ (8)$$

where $s = (s_1, ..., s_l)$ and s_j is the **number of** v_j **values** (j = 1, ..., l) in the data set $y = (y_1, ..., y_n)$.

Furthermore, by **direct analogy** with the l=2 case,

(a) the **Dirichlet**(α) prior acts like a **(prior) data set** with $\alpha_j \ v_j$ values $(j=1,\ldots,l)$ and a **prior sample size** of $\sum_{j=1}^{l} \alpha_j$, and

(b) to achieve a relatively **diffuse** (low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_i not far from $\mathbf{0}$.

To **summarize**:

(A) if the data vector $y=(y_1,\ldots,y_n)$ takes on l distinct values $v=(v_1,\ldots,v_l)$ (real numbers or not) and I judge (my uncertainty about) the infinite sequence (y_1,y_2,\ldots) to be exchangeable, then (by a representation theorem of de Finetti) coherence compels me (i) to think about the quantities $\theta=(\theta_1,\ldots,\theta_l)$, where θ_j is the limiting relative frequency of the v_j values in the infinite sequence, and (ii) to adopt the Multinomial model

$$\theta \sim p(\theta)$$

$$p(y_i|\theta) = c \prod_{j=1}^{l} \theta_j^{s_j},$$
(9)

where s_j is the **number** of y_i values equal to v_j ;

(B) if context suggests a **diffuse** prior for θ a convenient (**conjugate**) choice is **Dirichlet**(α) with $\alpha = (\alpha_1, ..., \alpha_l)$ and all of the α_i positive but close to α_i ; and

(C) with a **Dirichlet**(α) prior for θ the **posterior** is **Dirichlet**(α'), where $s = (s_1, ..., s_l)$ and $\alpha' = (\alpha + s)$.

Note, remarkably, that the v_j values themselves **make no** appearance in the model; this modeling approach is **natural** with **categorical** outcomes but can also be used when the v_j are **real numbers**.

For example, for **real-valued** y_i , if (as in the **IHGA case study** in Part 1) interest focuses on the **(underlying population) mean** in the infinite sequence $(y_1, y_2, ...)$, this is $\mu_y = \sum_{j=1}^l \theta_j \, v_j$, which is just a **linear function** of the θ_j with **known coefficients** v_j .

This fact makes it possible to draw an **analogy** with the **distribution-free** methods that are at the heart of **frequentist non-parametric** inference: when your **outcome variable** takes on a **finite number** of **real** values v_j , **exchangeability** compels a **Multinomial likelihood** on the **underlying frequencies** with which the v_j occur; you are not required to build a **parametric model** (e.g., normal, lognormal, ...) on the y_i values themselves.

In this sense, therefore, model (14)—particularly with the conjugate Dirichlet prior—can serve as a kind of low-technology Bayesian non-parametric modeling: this is the basis of the Bayesian bootstrap (Rubin 1981).

Moreover, if you're **in a hurry** and you're already familiar with WinBUGS you can readily carry out **inference** about quantities like μ_y above in that environment, but there's **no need to do MCMC** here: **ordinary Monte Carlo** (MC) sampling from the **Dirichlet**(α') posterior distribution is perfectly **straightforward**, e.g., in R, based on the following **fact**:

To generate a random draw $\theta = (\theta_1, \dots, \theta_l)$ from the **Dirichlet**(α') distribution, with $\alpha' = (\alpha'_1, \dots, \alpha'_l)$, independently draw

$$g_j \stackrel{\text{indep}}{\sim} \Gamma(\alpha'_j, \beta), \quad j = 1, \dots, l$$
 (10)

(where $\Gamma(a,b)$ is the **Gamma distribution** with parameters a and b) and compute

$$\theta_j = \frac{g_j}{\sum_{m=1}^l g_j}.\tag{11}$$

Any $\beta > 0$ will do in this calculation; $\beta = 1$ is a **good choice** that leads to **fast random number generation**.

The downloadable version of R doesn't have a built-in function for making Dirichlet draws, but it's easy to write one:

```
rdirichlet = function( n.sim, alpha ) {
    l = length( alpha )
    theta = matrix( 0, n.sim, l )
    for ( j in 1:l ) {
        theta[ , j ] = rgamma( n.sim, alpha[ j ], 1 )
    }
    theta = theta / apply( theta, 1, sum )
    return( theta )
}
```

The **Dirichlet**(α) distribution has the following **moments**: if $\theta \sim \text{Dirichlet}(\alpha)$ then

$$E(\theta_j) = \frac{\alpha_j}{\alpha_0}, \ V(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}, \ C(\theta_j, \theta_{j'}) = -\frac{\alpha_j \alpha_{j'}}{\alpha_0^2(\alpha_0 + 1)},$$

where $\alpha_0 = \sum_{j=1}^{l} \alpha_j$ (note the **negative correlation** between components of θ).

This can be used to **test** the function above:

```
> alpha = c(5.0, 1.0, 2.0)
> alpha.0 = sum( alpha )
> test = rdirichlet( 100000, alpha ) # 15 seconds at 550 Unix MHz
> apply( test, 2, mean )
[1] 0.6258544 0.1247550 0.2493905
> alpha / alpha.0
[1] 0.625 0.125 0.250
> apply( test, 2, var )
[1] 0.02603293 0.01216358 0.02071587
> alpha * ( alpha.0 - alpha ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
[1] 0.02604167 0.01215278 0.02083333
> cov( test )
             [,1]
                          [,2]
[1,] 0.026032929 -0.008740319 -0.017292610
[2,] -0.008740319  0.012163577 -0.003423259
[3,] -0.017292610 -0.003423259 0.020715869
> - outer( alpha, alpha, "*" ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
             [,1]
                          [,2]
                                       [,3]
[1,] -0.043402778 -0.008680556 -0.017361111
[2,] -0.008680556 -0.001736111 -0.003472222
                                                # ignore diagonals
[3,] -0.017361111 -0.003472222 -0.006944444
```

Example: re-analysis of **IHGA data** from Part 1; recall **policy** and **clinical interest** focused on $\eta = \frac{\mu_E}{\mu_C}$.

	Number of Hospitalizations										
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	287	0.944	1.24
Experimental	147	83	37	12	3	1	1	Λ	285	0.768	1 ∩1

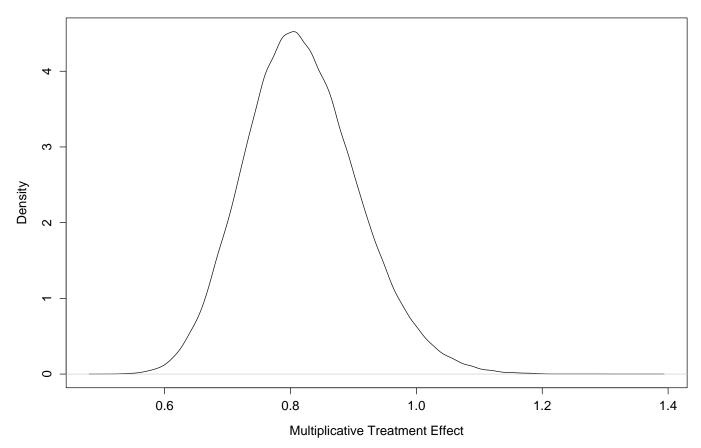
In this **two-independent-samples** setting I can apply de Finetti's representation theorem **twice**, in **parallel**, on the C and E data.

I don't know much about the **underlying frequencies** of $0,1,\ldots,7$ hospitalizations under C and E **external** to the data, so I'll use a **Dirichlet** $(\epsilon,\ldots,\epsilon)$ **prior** for both θ_C and θ_E with $\epsilon=0.001$, leading to a **Dirichlet** $(138.001,\ldots,2.001)$ **posterior** for θ_C and a **Dirichlet** $(147.001,\ldots,0.001)$ **posterior** for θ_E (other small positive choices of ϵ yield similar results).

```
> alpha.C = c( 138.001, 77.001, 46.001, 12.001, 8.001, 4.001, 0.001, 2.001 )
> alpha.E = c( 147.001, 83.001, 37.001, 13.001, 3.001, 1.001, 1.001, 0.001 )
> theta.C = rdirichlet( 100000, alpha.C )  # 17 sec at 550 Unix MHz
> theta.E = rdirichlet( 100000, alpha.E )  # also 17 sec
> print( post.mean.theta.C = apply( theta.C, 2, mean ) )
[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02 [6] 1.395287e-02 3.180905e-06 6.959859e-03
> print( post.SD.theta.C <- apply( theta.C, 2, sd ) )
[1] 0.0294142963 0.0261001259 0.0216552661 0.0117925465 0.0096747630 [6] 0.0069121507 0.0001017203 0.0048757485</pre>
```

```
> print( post.mean.theta.E <- apply( theta.E, 2, mean ) )</pre>
[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02 1.054681e-02
[6] 3.518699e-03 3.506762e-03 3.356346e-06
> print( post.SD.theta.E <- apply( theta.E, 2, sd ) )</pre>
[1] 0.029593047 0.026915644 0.019859213 0.012302252 0.006027157
[6] 0.003501568 0.003487824 0.000111565
> mean.effect.C <- theta.C %*% ( 0:7 )</pre>
> mean.effect.E <- theta.E %*% ( 0:7 )</pre>
> mult.effect <- mean.effect.E / effect.C</pre>
> print( post.mean.mult.effect <- mean( mult.effect ) )</pre>
[1] 0.8189195
> print( post.SD.mult.effect <- sd( mult.effect ) )</pre>
[1] 0.08998323
> quantile( mult.effect, probs = c( 0.0, 0.025, 0.5, 0.975, 1.0 ) )
       0%
               2.5%
                           50%
                                    97.5%
0.5037150 0.6571343 0.8138080 1.0093222 1.3868332
> postscript( "mult.effect.ps" )
> plot( density( mult.effect, n = 2048 ), type = '1', cex.lab = 1.25,
    xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25,
    main = 'Posterior Distribution for Multiplicative Treatment Effect',
    cex.main = 1.25)
> dev.off()
```

Posterior Distribution for Multiplicative Treatment Effect



	Posterior	Posterior	Central 95%
Model	Mean	SD	Interval
REPR	0.830	0.0921	(0.665, 1.02)
Dir-Mult	0.819	0.0900	(0.657, 1.01)

In this example the low-tech BNP, Dirichlet-Multinomial, exchangeability-plus-diffuse-prior-information model has reproduced the parametric REPR results almost exactly and without a complicated search through model space for a "good" model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_i values form a complete set of {all possible values the outcome y could take on}.

This is clearly not true in the IHGA case study, and yet in that case the Bayesian qualitative/quantitative inferential approach did a terrific job of reproducing what we will later see is an excellent parametric model for the IHGA data, without any parametric modeling assumptions.