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An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper [KKD] 2008): In-home

geriatric assessment (IHGA). In an experiment conducted in the 1980s
(Hendriksen et al. 1984), 572 elderly people, representative of P =
{all non-institutionalized elderly people in Denmark}, were

randomized, 287 to a control (C ) group (who received standard
health care) and 285 to a treatment (T ) group (who received standard
care plus IHGA: a kind of preventive medicine in which each person’s
medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during
the two-year life of the study:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

Let µC and µT be the mean hospitalization rates (per two years) in P
under the C and T conditions, respectively.

Here are four statistical questions that arose from this study:
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The Four Principal Statistical Activities

Q1: Was the mean number of hospitalizations per two years in the

IHGA group different from that in control by an amount that was

large in practical terms?
[
description involving

(
ȳT−ȳC

ȳC

)]
Q2: Did IHGA (causally) change the mean number of

hospitalizations per two years by an amount that was large in

statistical terms?
[
inference about

(
µT−µC

µC

)]
Q3: On the basis of this study, how accurately can You predict the
total decrease in hospitalizations over a period of N years if IHGA

were implemented throughout Denmark? [prediction]

Q4: On the basis of this study, is the decision to implement IHGA
throughout Denmark optimal from a cost-benefit point of view?

[decision-making]

These questions encompass almost all of the discipline of statistics:
describing a data set D, generalizing outward inferentially from D,
predicting new data D∗, and helping people make decisions in the
presence of uncertainty (I include sampling/experimental design

under decision-making; omitted: data quality assurance (QA), ...).
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An Axiomatization of Statistics

1 (definition) Statistics is the study of uncertainty: how to measure
it well, and how to make good choices in the face of it.

2 (definition) Uncertainty is a state of incomplete information
about something of interest to You (Good, 1950: a generic person

wishing to reason sensibly in the presence of uncertainty).

3 (axiom) (Your uncertainty about) “Something of interest to
You” can always be expressed in terms of propositions: true/false

statements A,B, . . .

Examples: You may be uncertain about the truth status of

• A = (Hillary Clinton will be elected U.S. President in 2016), or

• B = (the in-hospital mortality rate for patients at hospital H
admitted in calendar 2010 with a principal diagnosis of heart attack

was between 5% and 25%).

4 (implication) It follows from 1 – 3 that statistics concerns Your
information (NOT Your beliefs) about A,B, . . .
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Axiomatization (continued)

5 (axiom) But Your information cannot be assessed in a vacuum:
all such assessments must be made relative to (conditional on) Your
background assumptions and judgments about how the world works

vis à vis A,B, . . . .

6 (axiom) These assumptions and judgments, which are themselves a
form of information, can always be expressed in a set B of

background propositions, all of which You believe to be true.

Examples of B:

• In the IHGA study, based on the experimental design, B would
include the propositions

(Subjects were representative of [like a random sample from] P),

(Subjects were randomized into one of two groups, treatment
(standard care + IHGA) or control (standard care)).

7 (definition) Call the “something of interest to You” θ; in
applications θ is often a vector (or matrix, or array) of real numbers,

but in principle it could be almost anything (a function,
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Axiomatization (continued)

an image of the surface of Mars, a phylogenetic tree, ...).

IHGA example: θ = mean relative decrease
(

µT−µC
µC

)
in hospitalization rate in P.

8 (axiom) There will typically be an information source (data set) D
that You judge to be relevant to decreasing Your uncertainty about θ;
in applications D is often again a vector (or matrix, or array) of real
numbers, but in principle it too could be almost anything (a movie,

the words in a book, ...).

9 (implication) The presence of D creates a dichotomy:

• Your information about θ {internal, external} to D.

(People often talk about a different dichotomy: Your information
about θ {before, after} D arrives (prior, posterior), but temporal

considerations are actually irrelevant.)

10 (implication) It follows from 1 – 9 that statistics concerns itself
principally with five things (omitted: description, data QA, ...):

(1) Quantifying Your information about θ internal to D (given B),
and doing so well (this term is not yet defined);
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Foundational Question

(2) Quantifying Your information about θ external to D (given B),
and doing so well;

(3) Combining these two information sources (and doing so well) to
create a summary of Your uncertainty about θ (given B) that includes
all available information You judge to be relevant (this is inference);

and using all Your information about θ (given B) to make

(4) Predictions about future data values D∗ and

(5) Decisions about how to act sensibly, even though Your
information about θ may be incomplete.

Foundational question: How should these tasks be accomplished?

This topic will be continued in Day 3 of this short course in much
greater depth; for now, let’s focus on task (2) above — optimal prior
distribution specification — first in general, and then with particular

application to hierarchical models.
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Optimal Prior Distribution Specification

Sometimes the prior distribution is uniquely specified by problem
context; this most often occurs when little or no information about θ

external to the data set D is available.

Example 1. The simplest situation is when the unknown θ takes on

a finite number of distinct values (v1, . . . , vk); these can live in any
space they want, but they can always be mapped onto k distinct

places on the real number line.

If the totality of Your information about θ external to D is captured
by the single proposition

B = {θ takes on a finite number of distinct values (v1, . . . , vk)} , (1)

from which it would follow that B = B, then intuition suggests that
the only possible prior specification is

p(θ = vj |B) =
1

k
for all j = 1, . . . , k and 0 otherwise . (2)

Laplace used this repeatedly in the late 1700s without thinking it
needed any justification; much later Keynes (1921) called it the

Principle of Indifference.
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The Principle of Indifference is Actually a Theorem

However, thinking of probability as an expression of Your
information about θ, it’s not just a Principle, it’s a Theorem, which

(in light of its history) should be given a new name;
I propose calling it the

Uniform Prior Distribution Theorem: If the totality of Your
information about θ external to D is captured by the

single proposition

B = {θ takes on a finite number of distinct values (v1, . . . , vk)} , (3)

then Your only possible logically-internally-consistent prior
specification is

p(θ = vj |B) =
1

k
for all j = 1, . . . , k and 0 otherwise . (4)

One-sentence Proof 1 (by contradiction): Suppose that p(θ = vj |B)
is not constant; then this violates the assumption about the totality

of Your information.

More elaborate Proof 2 (by group invariance, with a nod to
Einstein’s relativity proofs): [short course web page:

Jaynes (2003), pages 37–40]
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Optimal Diffuse Priors

Example 2. The next simplest situation is when the unknown θ

takes on values in an interval on the real line, of the form (a, b) or
[a, b) or (a, b] or [a, b] for some real numbers a and b with

−∞ < a < b <∞ (I’ll just talk about the interval (a, b) from now on).

If the totality of Your information about θ external to D is captured
by the single proposition

B = {{Possible values for θ} = {the interval (a, b)}, a < b} , (5)

from which it would again follow that B = B, then intuition again
suggests that the only possible prior specification is

p(θ|B) = Uniform(a, b) . (6)

This intuition is based on the following “proof” sketch:

• the interval (a, b) can be approximated with (k + 1) equidistant

discrete values
(
a, a + (b−a)

k , a + 2(b−a)
k , . . . , b

)
;

• use the Uniform Prior Distribution Theorem above to conclude
that all of these values must be equally likely (with the given

background information); and
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Optimal Diffuse Priors (continued)

• pass to the limit as k →∞.

However, You can readily see this isn’t completely satisfying,
through simple examples like the following:

Suppose that Your background knowledge base B about an
unknown θ says only that θ can take on all values from 1 to 10.

This is equivalent to the statement that η = 1
θ can take on all values

from 1
10 = 0.1 to 1.

But a Uniform prior on θ doesn’t imply a Uniform prior on η, and
vice versa, as You can see either from the Change-of-Variables

formula or by simulation:

An easy calculation shows that (θ|B) ∼ Uniform(1, 10) iff
p(η|B) = 1

9 η2 I(0.1, 1), and simulation arrives at the same answer.

The R code on the next page stores 1,000,000 simulated draws from the
Uniform(1, 10) distribution in theta.star, computes eta.star as the
reciprocal of the theta.star values, plots density-scale histograms of

theta.star and eta.star on the same graph, and superimposes the density
1

9 η2 I(0.1, 1) on the histogram for eta.star.
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Optimal Diffuse Priors (continued)

n <- 1000000

theta.star <- runif( n, 1, 10 )

eta.star <- 1 / theta.star

theta.histogram <- hist( theta.star, plot = F )

eta.histogram <- hist( eta.star, plot = F )

xlim <- c( 0, 10 )

ylim <- range( 0, theta.histogram$intensities,

eta.histogram$intensities)

# pdf( ’uniform-non-uniform.pdf’ )

plot( theta.histogram, xlim = xlim, ylim = ylim,

col = ’blue’, xlab = ’theta (blue), eta (red)’, freq = F,

main = ’’)

par( new = F )

plot( eta.histogram, xlim = xlim, ylim = ylim,

xaxt = ’n’, yaxt = ’n’, col = ’red’, add = T,

freq = F )

eta.grid <- seq( 0.1, 1, length = 500 )

lines( eta.grid, 1 / ( 9 * eta.grid^2 ), lty = 2, lwd = 2 )

# dev.off( )
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Optimal Diffuse Priors (continued)

theta (blue), eta (red)
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Thus, in settings in which all You know about θ is that it lives
continuously in (a, b), there is no unique prior that both captures

this information (and no other information) and behaves reasonably
under arbitrary monotonic transformation (as we’ll see below, this

problem bothered Fisher greatly, and turned him against the
Bayesian paradigm).
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Ignorance Priors

Consider the AMI mortality case study from the Day 1 Lecture
Notes (Part 2), in which exchangeability (arising directly from

problem context) led to the model

(θ|B) ∼ p(θ|B)

(yi |θB)
IID∼ Bernoulli(θ) (7)

for i = 1, . . . , n; here yi is 1 if AMI patient i died within 30 days of
admission (0 otherwise) and θ is the underlying mortality rate in the
population of patients, similar to those in the study, to which You’re

interested in generalizing.

In this case study, exchangeability uniquely identifies the sampling
distribution (Bernoulli), but what about the prior p(θ|B)?

In the Day 1 Lecture Notes (Part 2), we looked for a suitable
member of the conjugate-prior Beta family; will some member of
this family be suitable as an ignorance prior, for settings in which
You have little information about θ external to the data set y?
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Ignorance Priors Via Group Invariance

One possibility — in fact, the one favored independently by both
Bayes and Laplace — is of course the Uniform = Beta(1, 1)
distribution, but we saw above that this is not invariant to

monotonic transformation of θ.

Three other possibilities have been developed, each based on its own
sensible-sounding principle.

• With the B of this problem, Jaynes (2003) [short course web page:
pages 372–386] uses a group-invariance argument to show that the

optimal ignorance prior is

p(θ|B) ∝ 1

θ(1− θ)
= Beta(0, 0) . (8)

This prior is improper, but leads to a proper posterior for any data
set in which at least one 0 and at least one 1 are observed.

However, to complicate things, a different ignorance prior was
developed by Jeffreys (1939) — with a different invariance

calculation — to rebut an argument put forward by Fisher (1922)
against the Bayes/Laplace prior:
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Fisher Weighs In

“(A) If You’re completely ignorant about a success probability
θ, aren’t You also completely ignorant about any monotone
function of θ, such as η = log θ

1−θ?

“(B) You can’t have a Uniform prior on θ and η simultaneously.

“(C) Therefore the entire Bayesian paradigm is rubbish.”

Lindley (1954) qualitative rebuttal: if, on Your information base, θ
could be anywhere in (0, 1), with no value favored over another, then

it’s absurd to say that You’re equally ignorant about a monotone
function such as λ = θ100 — You know for sure that λ is close to 0.

• Jeffreys (1939) quantitative rebuttal: OK, Fisher, You give me
Your sampling distribution p(y |θB) (in any problem with a

univariate θ), and I’ll give You an ignorance prior that’s invariant to
monotone increasing transformation, namely

p(θ|B) ∝
√
I (θ) , where I (θ) = −E(y |θB)

[
∂2

∂θ2
log p(y |θB)

]
. (9)
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Kullback-Leibler Divergence

In the Bernoulli heart attack mortality example above,
the Jeffreys idea gives the prior

p(θ|B) ∝ 1√
θ(1− θ)

= Beta( 1
2 ,

1
2 ) , (10)

which differs from both the Bayes/Laplace prior Beta(1, 1) and the
Jaynes prior Beta(0, 0).

• To make things even worse, Bernardo (1979) has also articulated a
reasonable-looking principle that can be used to derive ignorance

priors: any prior that’s far away from the posterior it leads to (once
the data have arrived) must have relatively low information content.

This requires a notion of distance between two distributions.

Definition. The Kullback-Leibler (KL) divergence of a continuous
density q(θ|B) on <k from another continuous density p(θ|B) on <k

— also known as the relative entropy of q to p — is

KL(q||p) =

∫
<k

p(θ|B) log
p(θ|B)

q(θ|B)
dθ . (11)
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Bayes/Laplace, Jaynes, Jeffreys, Bernardo

(This is not a distance metric, because it’s asymmetric in q and p,
but 1

2 [KL(q||p) + KL(p||q)] is a proper distance metric.)

Bernardo’s idea is to define the reference prior p(θ|B) as that
distribution which maximizes the expectation (over the sampling
distribution p(D|θB)) of the KL divergence of p(θ|B) from the

posterior distribution p(θ|D B).

Fact: when k = 1, reference priors and Jeffreys priors coincide, but
this is not necessarily true for k > 1.

So: in the AMI mortality example, principles put forth by
{Bayes/Laplace, Jaynes, Jeffreys, Bernardo} yield the ignorance

priors Beta(0, 0), Beta( 1
2 ,

1
2 ) and Beta(1, 1).

Remembering that the prior sample size in the Bernoulli sampling
model with the conjugate Beta(α, β) prior is (α + β), the prior sample

sizes of the three ignorance priors above are
0, 1 and 2 (respectively).
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When Principles Collide

Another qualitative rebuttal to Fisher, based on those prior sample
sizes (many people have made this point, including Draper (2009)):

Fisher’s point would have real force if nobody ever collected any
data, because in that case (posterior = prior) and uncertainty in how
to specify a diffuse prior can really matter; but with even a modest
amount of data, the posteriors with prior sample sizes of 0, 1 and 2

will essentially coincide.

When Principles Collide: We now have three different

reasonable-looking principles for creating diffuse (ignorance,
low-information) priors: Jeffreys’s Transformation-Invariance,

Jaynes’s Group-Invariance and Bernardo’s Reference-Prior.

Q: What should You do when reasonable diffuse-prior principles
lead to priors that are different enough to matter?

A: Here’s yet another Principle that (greatly) helps.
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The Calibration Principle

Calibration Principle: In model specification, it helps to know

something about how often {the methods You’re using to choose one
model over another} get the right answer, and this can be

ascertained by (a) creating simulation environments (structurally
similar to the setup of the scientific problem You’re currently solving)

in which You know what the right answer is and (b) seeing how
often Your methods recover known truth.

The reasoning behind the Calibration Principle is as follows:

(axiom) You want to help positively advance the course of science,
and repeatedly getting the wrong answer runs counter to this desire.

(remark) There’s nothing in the Bayesian paradigm to prevent You
from making one or both of the following mistakes — (a) choosing

p(D|θB) badly; (b) inserting {strong information about θ external to
D} into the modeling process that turns out after the fact to have
been (badly) out of step with reality — and repeatedly doing this

violates the axiom above.
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Reasoning Behind the Calibration Principle

(remark) Paying attention to calibration is a natural activity from
the frequentist point of view, but a desire to be well-calibrated can

be given an entirely Bayesian justification via decision theory:

Taking a broader perspective over Your career, not just within any
single attempt to solve an inferential/predictive problem in

collaboration with other investigators, Your desire to take part
positively in the progress of science can be quantified in a utility

function that incorporates a bonus for being well-calibrated, and in
this context (Draper, 2013) calibration-monitoring emerges as a

natural and inevitable Bayesian activity.

This seems to be a new idea: logical consistency justifies Bayesian
uncertainty assessment but does not provide guidance on model
specification; if You accept the Calibration Principle, some of this

guidance is provided, via Bayesian decision theory, through a desire
on Your part to pay attention to how often You get the right

answer, which is a central scientific activity.

21 / 36



A Calibration-Checking Case Study

I bring up the Calibration Principle here (and it will come up again
several times later) because it provides an answer to the question

above about how to resolve conflicts among competing diffuse priors:
You can create a simulation study, just like the problem of interest
to You but in which You know the parameter values, and see which

prior does the best job of correctly recovering known truth.

Here’s an example — Case Study 1 (continued): In-home geriatric

assessment (IHGA).

This was the actual distribution of number of hospitalizations over a
two-year period:

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24

Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

(We’ll examine this data set in a number of other ways later.)

Since the outcome in each group is a count of the number of
occurrences of a fairly rare phenomenon, Your initial impulse
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Extra-Poisson Variability/Unexplained Heterogeneity

would be to fit a model in which the control observations are IID
Poisson(λC ) and the treatment values are independently IID

Poisson(λT ) (this is called a fixed-effects Poisson (FEP) model).

However, the Poisson(λ) distribution has mean and variance both
equal to λ; in other words, for this distribution the

variance-to-mean-ratio (VTMR) is 1.

Here the control- and treatment-group VTMR values are 1.242

0.944

.
= 1.63

and 1.012

0.768

.
= 1.33, respectively, so the fixed-effects Poisson model

is inadequate.

Count data sets with VTMR > 1 are said to exhibit
extra-Poisson variability or unexplained heterogeneity.

Consider just the treatment values for now,
and drop the T subscript.

A useful way to rewrite the IID Poisson(λT ) model for the
observations (y1, . . . , yn), when (as is the case here) little is known
about hospitalization rates under IHGA external to the data set, is
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Making the Model More Realistic

(yi |λi B)
indep∼ Poisson(λi ) (12)

log(λi ) = β0

(β0|B) ∼ diffuse

This moves toward scientific realism, in the first line of (12), by
allowing each elderly person to have her/his own λ, but this would

create an unworkable model with n observations and n parameters;
the second line of the model (unrealistically) reduces the number of

parameters from n to 1, by pretending that everybody in the
treatment group has the same underlying rate λ of hospitalization.

In reality it’s far more reasonable to think that each person has
his/her own underlying rate of hospitalization that depends on

baseline health status, age, and various other things.

If we had k such covariates, the second and third lines would be

log(λi ) = β0 +
k∑

j=1

βj xij

(β|B) ∼ diffuse (β = (β0, . . . , βk)) .
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Random-Effects Poisson Model

Now Hendriksen (the study’s author) forgot to measure (or at least
to report on) any covariates, so the best we can do is to lump all of
these other latent (unobserved) predictor variables together into a

kind of “error” term ei , as follows:

(yi |λi B)
indep∼ Poisson(λi ) (13)

log(λi ) = β0 + ei

(ei |σ B)
IID∼ N(0, σ2)

(β0 σ|B) ∼ diffuse .

This is referred to as a random-effects Poisson (REP) model; the
latent variables ei are also called random effects.

The Gaussian choice for the random-effects distribution is
conventional, not dictated by the science of the problem (although if
there were a lot of unobserved predictors hidden inside the ei , their

weighted sum would be close to Gaussian by the
Central Limit Theorem).

Model (13) is an expansion of the earlier FEP model (12), because
You can obtain model (12) from (13) by setting σ = 0,
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Unexplained Heterogeneity → Latent Variables

whereas with (13) we’re letting σ vary and learning about it
from the data.

The addition of the random effects ei to the model is one way to
address the extra-Poisson variability: this model could also be called
a lognormal mixture of Poisson distributions, because it’s as if each
person’s λ is drawn from a lognormal distribution and then her/his
number of hospitalizations y is drawn from a Poisson distribution
with his/her λ, and this hierarchical mixing process will make the

variance of y bigger than its mean.

This is an example of a valuable contemporary modeling approach
— when unexplained heterogeneity is present, You can use latent

variables to at least properly quantify it (of course, this is also an old
idea: that’s what the “error” term in linear regression is doing).

However, a new challenge now arises: how to make operational the
statement “(β0 σ|B) ∼ diffuse”.

In this model β0 and σ are clearly independent given B —
p(β0 σ|B) = p(β0|B) p(σ|B) — so the new questions become:
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Diffuse Priors on (−∞,∞) and (0,∞)

how to specify a diffuse prior in a principled way on (a) (−∞,∞)
(e.g., a location parameter such as β0) and (b) (0,∞) (e.g., a scale

parameter such as σ)?

Example 4. If the totality of Your information about an unknown θ

is that it can take on any value continuously in (−∞,∞), then an
arbitrary shift (left or right) in the location of θ would leave the

problem invariant.

Jaynes (2003) [short course web page: pages 372–386] shows that the
only prior satisfying this invariance property is Uniform(−∞,∞).

This is improper, but can be approximated to arbitrary accuracy
with a proper N(0, σ2

θ) prior with huge variance σ2
θ, or equivalently

tiny precision τθ = 1
σ2
θ

.

(This is also the Jeffreys/reference prior for this problem.)

Example 5. If the totality of Your information about an unknown θ

is that it can take on any value continuously in (0,∞), then several
cases arise, and many of them lead to different diffuse priors
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Poisson and Location-Scale Problems

based on different principles, e.g.:

(1) Jaynes (2003) shows that if You’re observing a counting process
over time that You’re willing to model as Poisson, then the only prior
on the Poisson rate λ ∈ (0,∞) that’s invariant to arbitrary rescaling

of time by a constant positive multiple is p(λ|B) ∝ 1
λ , but the

Jeffreys and reference priors for the IID Poisson model are both
p(λ|B) ∝ 1√

λ
.

(2) As Jaynes (2003) points out, if the problem context (with
real-valued observations yi ) leads You to a sampling model of the

form (yi |µσ B)
IID∼ p(yi |µσ B) for some p in which µ and σ are location

and scale parameters, respectively, and in which (therefore) the
problem should be invariant to arbitrary left-right shifts and arbitrary
positive rescaling, the only prior that expresses this information (and

no other external information) is of the form p(µσ|B) ∝ 1
σ (this is

also the Jeffreys prior if p(µσ|B) is thought of as p(σ|B) p(µ|σ B) and
Jeffreys’s basic idea is applied separately to each term in the

product, and it’s also the reference prior in this setting).
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Hierarchical Models With Random Effects

However, if instead (but still with real-valued observations yi ) a
unique origin 0 has special meaning, but the problem is invariant to
arbitrary positive rescaling (e.g., temperature measured in degrees
Kelvin), then the only prior that expresses this information (and no

other external information) is of the form p(µσ|B) ∝ 1
σ2 .

(3) A class of problems in which there’s clear uncertainty about how
to arrive at a good diffuse prior is hierarchical models with

random effects, such as the REP model above.

(yi |λi B)
indep∼ Poisson(λi ) (14)

log(λi ) = β0 + ei

(ei |σ B)
IID∼ N(0, σ2)

(β0 σ|B) ∼ diffuse .

You can factor the prior as p(β0 σ|B) = p(σ|B) p(β0|σ B) and take
p(β0|σ B) = p(β0|B), since the intent is to achieve diffuseness with

both β0 and σ.

But what should You take for p(β0|B) and p(σ|B), if scientific
context (as it does here) implies diffuseness?
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Diffuse Priors for Hierarchical Models

Simulation studies (Draper, 2013) with this model have
shown two things:

• The Normal(0, σ2
β0

) prior for β0 with small τβ0 = 1
σ2
β0

produces good

calibration across a wide range of τβ0 values, as long as τβ0 is
small enough.

For example, (β0|B) ∼ N(0, τβ0 = 10−6) yields a Gaussian prior with a
mean of 0 and an SD of 1,000; this will be a flat prior if the

likelihood for β0 is concentrated (say) between –1 and +1, but not if
it’s concentrated (say) between –5,000 and +5,000.

In the IHGA data set, all of the λ values, which are approximately
eβ0 , are not far from 1, which makes β0 close to 0, so the

N(0, τβ0 = 10−6) prior will be diffuse.

• Much more care is required in specifying a diffuse prior for σ, or
equivalently for τ = 1

σ2 , to achieve good calibration.

The choice (τ |B) ∼ Γ(ε, ε), for a small value of ε such as 10−3, has
been heavily popularized by the WinBUGS people (for instance, it’s still
frequently used in the examples volumes distributed with WinBUGS).
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Γ(ε, ε) Prior on τ

This prior has a mean for τ of 1 and an SD of
√

103 .
= 32, and does

look flat over a broad range of <, but (to stay proper) it goes to ∞
as τ → 0:
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Now the question is: what prior does this induce on σ = 1√
τ

?
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The Induced Prior on σ

The change-of-variables formula yields the following ugly-looking
density expression for σ:

p(σ|B) =
2 εε

Γ(ε)
σ−(2ε+1) exp

(
− ε

σ2

)
. (15)
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Uniform Prior on σ

Surprisingly, the tail of the Γ(ε, ε) prior on τ is so heavy that the
induced prior on σ = 1√

τ
also has a spike near 0.

From the plot on the previous page, You can see what can go wrong
with this prior:

if the likelihood for σ is concentrated on small positive values, then
the Γ(ε, ε) prior on τ will be unintentionally highly informative,

making the posterior on σ even more concentrated on small positive
values than the likelihood.

• It turns out that a diffuse prior that has good calibration properties
is (σ|B) ∼ Uniform(0,C ), where C > 0 is a constant chosen large
enough to avoid artificially truncating the posterior distribution.

Ironically, given the bad results noted above from the Γ(ε, ε) prior on
τ , it’s still useful to employ it in a two-step procedure: You can

determine a good value for C by

(a) examining the preliminary posterior on σ produced by the Γ(ε, ε)
prior on τ , and
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Hierarchical Models With Random Effects

(b) choosing C — based on the preliminary posterior in (a) — for a
second (and definitive) posterior calculation with the Uniform(0,C )

prior on σ.

[R code on short course web page, illustrating a calibration study
comparing these two priors]

Another instance of calibration sensitivity to the form of the diffuse
prior occurs with hierarchical random-effects models

in meta-analysis.

Case Study: Meta-analysis of effects of low-dose aspirin on heart

attacks (Lecture Notes, Day 2 Part 1).

Recall that the usual Gaussian random-effects meta-analysis model
in this study is

(µσ|B) ∼ p(µσ|B) (prior)

(θi |µσ B)
IID∼ N

(
µ, σ2

)
(underlying effects)

(yi |θi B)
indep∼ N(θi ,Vi ) (data) .
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Well-Calibrated Diffuse Priors in Meta-Analysis

(µσ|B) ∼ p(µσ|B) (prior)

(θi |µσ B)
IID∼ N

(
µ, σ2

)
(underlying effects)

(yi |θi B)
indep∼ N(θi ,Vi ) (data) . (16)

Prior specification. The top level of (16) is where the prior

distribution on the regression parameters from the middle level is
specified; what should You choose for p(µσ|B)?

If — as was true in this meta-analysis — scientific context indicates
little information about (µ, σ) external to the data set, You need a

good diffuse prior, where (by the Calibration Principle) “good”
means well-calibrated.

[Browne and Draper (2006) on course web page,
including Gelman (2006)]

Simulation studies (Gelman 2006, Draper 2013) have yielded results
similar to those with the REP model above:
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Diffuse Priors in Meta-Analysis (continued)

• The Normal(0, σ2
µ) prior for µ with small τµ = 1

σ2
µ

produces

good calibration across a wide range of τµ values, as long as τµ is
small enough; here (µ|B) ∼ N(0, τµ = 10−6) again works well.

• Once again, much more care is required in specifying a diffuse
prior for σ, or equivalently for τ = 1

σ2 , to achieve good calibration.

The same Uniform(0,C ) prior on σ (with C chosen well in the same
way) works here again, and Gelman (2006) has shown that a half-t

prior (see his comment for details) also gives good results.

[R code on short course web page, illustrating a calibration study
comparing a variety of priors]
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