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Bayesian Qual/Quant Inference

Recall from our earlier discussion that if I judge binary
(y1, . . . , yn) to be part of infinitely exchangeable sequence,
to be coherent my joint predictive distribution p(y1, . . . , yn)

must have simple hierarchical form

θ ∼ p(θ)

(yi|θ)
IID
∼ Bernoulli(θ),

where θ = P (yi = 1) = limiting value of mean of yi in
infinite sequence.

Writing s = (s1, s2) where s1 and s2 are the numbers of 0s
and 1s, respectively in (y1, . . . , yn), this is equivalent

to the model

θ2 ∼ p(θ2) (1)

(s2|θ2) ∼ Binomial(n, θ2),

where (in a slight change of notation) θ2 = P (yi = 1); i.e., in
this simplest case the form of the likelihood function

(Binomial(n, θ2)) is determined by coherence.

The likelihood function for θ2 in this model is

l(θ2|y) = c θs2

2 (1− θ2)
n−s2 = c θs1

1 θ
s2

2 , (2)

from which it’s evident that the conjugate prior for the
Bernoulli/Binomial likelihood (the choice of prior having

the property that the posterior for θ2 has the same
mathematical form as the prior) is the family of

Beta(α1, α2) densities

p(θ2) = c θα2−1
2 (1− θ2)

α1−1 = c θα1−1
1 θα2−1

2 . (3)

for some α1 > 0, α2 > 0.

2



Bayesian Qual/Quant Inference

With this prior the conjugate updating rule is evidently
{

θ2 ∼ Beta(α1, α2)
(s2|θ2) ∼ Binomial(n, θ2)

}

→ (θ2|y) ∼ Beta(α1+s1, α2+s2),

(4)
where s1 (s2) is the number of 0s (1s) in the

data set y = (y1, . . . , yn).

Moreover, given that the likelihood represents a (sample)
data set with s1 0s and s2 1s and a data sample size of

n = (s1 + s2), it’s clear that

(a) the Beta(α1, α2) prior acts like a (prior) data set with
α1 0s and α2 1s and a prior sample size of (α1 + α2), and

(b) to achieve a relatively diffuse
(low-information-content) prior for θ2 (if that’s what

context suggests I should aim for) I should try to specify α1

and α2 not far from 0.

Easy generalization of all of this: suppose the yi take on
l ≥ 2 distinct values v = (v1, . . . , vl), and let s = (s1, . . . , sl)

be the vector of counts (s1 = #(yi = v1) and so on).

If I judge the yi to be part of an infinitely exchangeable
sequence, then to be coherent my joint predictive

distribution p(y1, . . . , yn) must have the hierarchical form

θ ∼ p(θ) (5)

(s|θ) ∼ Multinomial(n, θ),

where θ = (θ1, . . . , θl) and θj is the limiting relative
frequency of vj values in the infinite sequence.
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The likelihood for (vector) θ in this case has the form

l(θ|y) = c

l
∏

j=1

θ
sj

j , (6)

from which it’s evident that the conjugate prior for the
Multinomial likelihood is of the form

p(θ) = c

l
∏

j=1

θ
αj−1
j , (7)

for some α = (α1, . . . , αl) with αj > 0 for j = 1, . . . , l; this is
the Dirichlet(α) distribution, a multivariate generalization

of the Beta family.

Here the conjugate updating rule is
{

θ ∼ Dirichlet(α)
(s|θ) ∼ Multinomial(n, θ)

}

→ (θ|y) ∼ Dirichlet(α+ s), (8)

where s = (s1, . . . , sl) and sj is the number of vj values
(j = 1, . . . , l) in the data set y = (y1, . . . , yn).

Furthermore, by direct analogy with the l = 2 case,

(a) the Dirichlet(α) prior acts like a (prior) data set with
αj vj values (j = 1, . . . , l) and a prior sample size of

∑l
j=1αj, and

(b) to achieve a relatively diffuse
(low-information-content) prior for θ (if that’s what

context suggests I should aim for) I should try to choose all
of the αj not far from 0.
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To summarize:

(A) if the data vector y = (y1, . . . , yn) takes on l distinct
values v = (v1, . . . , vl) (real numbers or not) and I judge
(my uncertainty about) the infinite sequence (y1, y2, . . .) to
be exchangeable, then (by a representation theorem of
de Finetti) coherence compels me (i) to think about the
quantities θ = (θ1, . . . , θl), where θj is the limiting relative
frequency of the vj values in the infinite sequence, and (ii)

to adopt the Multinomial model

θ ∼ p(θ) (9)

p(yi|θ) = c

l
∏

j=1

θ
sj

j ,

where sj is the number of yi values equal to vj;

(B) if context suggests a diffuse prior for θ a convenient
(conjugate) choice is Dirichlet(α) with α = (α1, . . . , αl) and

all of the αj positive but close to 0; and

(C) with a Dirichlet(α) prior for θ the posterior is
Dirichlet(α′), where s = (s1, . . . , sl) and α′ = (α+ s).

Note, remarkably, that the vj values themselves make no
appearance in the model; this modeling approach is natural
with categorical outcomes but can also be used when the vj

are real numbers.

For example, for real-valued yi, if (as in the IHGA case
study in Part 1) interest focuses on the (underlying

population) mean in the infinite sequence (y1, y2, . . .), this is

µy =
∑l

j=1 θj vj, which is just a linear function of the θj with

known coefficients vj.
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This fact makes it possible to draw an analogy with the
distribution-free methods that are at the heart of

frequentist non-parametric inference: when your outcome
variable takes on a finite number of real values vj,

exchangeability compels a Multinomial likelihood on the
underlying frequencies with which the vj occur; you are not

required to build a parametric model (e.g., normal,
lognormal, ...) on the yi values themselves.

In this sense, therefore, model (14)—particularly with the
conjugate Dirichlet prior—can serve as a kind of

low-technology Bayesian non-parametric modeling: this
is the basis of the Bayesian bootstrap (Rubin 1981).

Moreover, if you’re in a hurry and you’re already familiar
with WinBUGS you can readily carry out inference about

quantities like µy above in that environment, but there’s no
need to do MCMC here: ordinary Monte Carlo (MC)
sampling from the Dirichlet(α′) posterior distribution is

perfectly straightforward, e.g., in R, based on the
following fact:

To generate a random draw θ = (θ1, . . . , θl) from the
Dirichlet(α′) distribution, with α′ = (α′

1, . . . , α
′
l),

independently draw

gj
indep
∼ Γ(α′

j, β), j = 1, . . . , l (10)

(where Γ(a, b) is the Gamma distribution with parameters
a and b) and compute

θj =
gj

∑l
m=1 gj

. (11)

Any β > 0 will do in this calculation; β = 1 is a good choice
that leads to fast random number generation.

6



Bayesian Qual/Quant Inference

The downloadable version of R doesn’t have a built-in
function for making Dirichlet draws, but it’s easy to

write one:

rdirichlet = function( n.sim, alpha ) {

l = length( alpha )

theta = matrix( 0, n.sim, l )

for ( j in 1:l ) {

theta[ , j ] = rgamma( n.sim, alpha[ j ], 1 )

}

theta = theta / apply( theta, 1, sum )

return( theta )

}

The Dirichlet(α) distribution has the following moments: if
θ ∼ Dirichlet(α) then

E(θj) =
αj

α0

, V (θj) =
αj(α0 − αj)

α2
0(α0 + 1)

, C(θj, θj ′) = −
αjαj ′

α2
0(α0 +1)

,

where α0 =
∑l

j=1 αj (note the negative correlation between

components of θ).

This can be used to test the function above:
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> alpha = c( 5.0, 1.0, 2.0 )

> alpha.0 = sum( alpha )

> test = rdirichlet( 100000, alpha ) # 15 seconds at 550 Unix MHz

> apply( test, 2, mean )

[1] 0.6258544 0.1247550 0.2493905

> alpha / alpha.0

[1] 0.625 0.125 0.250

> apply( test, 2, var )

[1] 0.02603293 0.01216358 0.02071587

> alpha * ( alpha.0 - alpha ) / ( alpha.0^2 * ( alpha.0 + 1 ) )

[1] 0.02604167 0.01215278 0.02083333

> cov( test )

[,1] [,2] [,3]

[1,] 0.026032929 -0.008740319 -0.017292610

[2,] -0.008740319 0.012163577 -0.003423259

[3,] -0.017292610 -0.003423259 0.020715869

> - outer( alpha, alpha, "*" ) / ( alpha.0^2 * ( alpha.0 + 1 ) )

[,1] [,2] [,3]

[1,] -0.043402778 -0.008680556 -0.017361111

[2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals

[3,] -0.017361111 -0.003472222 -0.006944444
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Example: re-analysis of IHGA data from Part 1; recall
policy and clinical interest focused on η = µE

µC
.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Experimental 147 83 37 13 3 1 1 0 285 0.768 1.01

In this two-independent-samples setting I can apply de
Finetti’s representation theorem twice, in parallel, on the C

and E data.

I don’t know much about the underlying frequencies of
0,1, . . . ,7 hospitalizations under C and E external to the

data, so I’ll use a Dirichlet(ǫ, . . . , ǫ) prior for both θC and θE
with ǫ = 0.001, leading to a Dirichlet(138.001, . . . ,2.001)

posterior for θC and a Dirichlet(147.001, . . . ,0.001)
posterior for θE (other small positive choices of ǫ yield

similar results).

> alpha.C = c( 138.001, 77.001, 46.001, 12.001, 8.001, 4.001, 0.001,

2.001 )

> alpha.E = c( 147.001, 83.001, 37.001, 13.001, 3.001, 1.001, 1.001,

0.001 )

> theta.C = rdirichlet( 100000, alpha.C ) # 17 sec at 550 Unix MHz

> theta.E = rdirichlet( 100000, alpha.E ) # also 17 sec

> print( post.mean.theta.C = apply( theta.C, 2, mean ) )

[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02

[6] 1.395287e-02 3.180905e-06 6.959859e-03

> print( post.SD.theta.C <- apply( theta.C, 2, sd ) )

[1] 0.0294142963 0.0261001259 0.0216552661 0.0117925465 0.0096747630
[6] 0.0069121507 0.0001017203 0.0048757485
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> print( post.mean.theta.E <- apply( theta.E, 2, mean ) )

[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02 1.054681e-02

[6] 3.518699e-03 3.506762e-03 3.356346e-06

> print( post.SD.theta.E <- apply( theta.E, 2, sd ) )

[1] 0.029593047 0.026915644 0.019859213 0.012302252 0.006027157
[6] 0.003501568 0.003487824 0.000111565

> mean.effect.C <- theta.C %*% ( 0:7 )

> mean.effect.E <- theta.E %*% ( 0:7 )

> mult.effect <- mean.effect.E / effect.C

> print( post.mean.mult.effect <- mean( mult.effect ) )

[1] 0.8189195

> print( post.SD.mult.effect <- sd( mult.effect ) )

[1] 0.08998323

> quantile( mult.effect, probs = c( 0.0, 0.025, 0.5, 0.975, 1.0 ) )

0% 2.5% 50% 97.5% 100%

0.5037150 0.6571343 0.8138080 1.0093222 1.3868332

> postscript( "mult.effect.ps" )

> plot( density( mult.effect, n = 2048 ), type = ’l’, cex.lab = 1.25,
xlab = ’Multiplicative Treatment Effect’, cex.axis = 1.25,

main = ’Posterior Distribution for Multiplicative Treatment Effect’,

cex.main = 1.25 )

> dev.off( )
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Posterior Posterior Central 95%
Model Mean SD Interval
REPR 0.830 0.0921 (0.665,1.02)

Dir-Mult 0.819 0.0900 (0.657,1.01)

In this example the low-tech BNP, Dirichlet-Multinomial,
exchangeability-plus-diffuse-prior-information model has
reproduced the parametric REPR results almost exactly
and without a complicated search through model space

for a “good” model.

NB This approach is an application of the Bayesian
bootstrap (Rubin 1981), which (for complete validity)

includes the assumption that the observed yi values form
a complete set of {all possible values the outcome y

could take on}.
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This is clearly not true in the IHGA case study, and yet
in that case the Bayesian qualitative/quantitative

inferential approach did a terrific job of reproducing
what we will later see is an excellent parametric model

for the IHGA data, without any
parametric modeling assumptions.
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