Bayesian Model Specification

3: Bayesian Qualitative/Quantitative Inference

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz

and (1 Jul 2014-30 Sep 2015) eBay Research Labs

{draper@ams.ucsc.edu, davdraper@ebay.com} www.ams.ucsc.edu/~draper

SHORT COURSE (DAY 3) UNIVERSITY OF READING (UK)

27 Nov 2014

© 2014 David Draper (all rights reserved)

Recall from our earlier discussion that if I judge **binary** (y_1, \ldots, y_n) to be part of **infinitely exchangeable sequence**, to be **coherent** my joint predictive distribution $p(y_1, \ldots, y_n)$ must have simple **hierarchical** form

 $\begin{array}{rcl} \theta & \sim & p(\theta) \\ (y_i|\theta) & \stackrel{\mathrm{IID}}{\sim} & \mathrm{Bernoulli}(\theta), \end{array}$

where $\theta = P(y_i = 1) =$ **limiting value of mean of** y_i in infinite sequence.

Writing $s = (s_1, s_2)$ where s_1 and s_2 are the **numbers of 0s** and 1s, respectively in (y_1, \ldots, y_n) , this is equivalent to the model

$$\begin{array}{rcl} \theta_2 & \sim & p(\theta_2) & (1) \\ (s_2|\theta_2) & \sim & {\sf Binomial}(n,\theta_2), \end{array}$$

where (in a slight change of notation) $\theta_2 = P(y_i = 1)$; i.e., in this simplest case the form of the **likelihood function** (Binomial (n, θ_2)) is determined by **coherence**.

The **likelihood function** for θ_2 in this model is

$$l(\theta_2|y) = c \,\theta_2^{s_2} (1 - \theta_2)^{n - s_2} = c \,\theta_1^{s_1} \theta_2^{s_2},\tag{2}$$

from which it's evident that the **conjugate prior** for the **Bernoulli/Binomial likelihood** (the choice of prior having the property that the **posterior** for θ_2 has the same **mathematical form** as the **prior**) is the family of **Beta**(α_1, α_2) densities

$$p(\theta_2) = c \,\theta_2^{\alpha_2 - 1} (1 - \theta_2)^{\alpha_1 - 1} = c \,\theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1}.$$
(3)
for some $\alpha_1 > 0, \alpha_2 > 0.$

With this prior the conjugate updating rule is evidently

 $\left\{ \begin{array}{c} \theta_2 \sim \text{Beta}(\alpha_1, \alpha_2) \\ (s_2|\theta_2) \sim \text{Binomial}(n, \theta_2) \end{array} \right\} \rightarrow (\theta_2|y) \sim \text{Beta}(\alpha_1 + s_1, \alpha_2 + s_2),$ (4)

where s_1 (s_2) is the **number of 0s (1s)** in the data set $y = (y_1, \ldots, y_n)$.

Moreover, given that the **likelihood** represents a (sample) data set with s_1 0s and s_2 1s and a data sample size of $n = (s_1 + s_2)$, it's clear that

(a) the **Beta**(α_1, α_2) prior acts like a (prior) data set with α_1 0s and α_2 1s and a prior sample size of ($\alpha_1 + \alpha_2$), and

(b) to achieve a relatively **diffuse** (low-information-content) prior for θ_2 (if that's what context suggests I should aim for) I should try to specify α_1 and α_2 not far from 0.

Easy generalization of all of this: suppose the y_i take on $l \ge 2$ distinct values $v = (v_1, \ldots, v_l)$, and let $s = (s_1, \ldots, s_l)$ be the vector of counts $(s_1 = #(y_i = v_1) \text{ and so on})$.

If I judge the y_i to be part of an **infinitely exchangeable** sequence, then to be **coherent** my joint predictive distribution $p(y_1, \ldots, y_n)$ must have the **hierarchical** form

$$\begin{array}{ll} \theta & \sim & p(\theta) \\ (s|\theta) & \sim & \text{Multinomial}(n,\theta), \end{array}$$
(5)

where $\theta = (\theta_1, \dots, \theta_l)$ and θ_j is the **limiting relative** frequency of v_j values in the infinite sequence.

The likelihood for (vector) θ in this case has the form

$$l(\theta|y) = c \prod_{j=1}^{l} \theta_j^{s_j}, \tag{6}$$

from which it's evident that the **conjugate prior** for the **Multinomial likelihood** is of the form

$$p(\theta) = c \prod_{j=1}^{l} \theta_j^{\alpha_j - 1}, \tag{7}$$

for some $\alpha = (\alpha_1, ..., \alpha_l)$ with $\alpha_j > 0$ for j = 1, ..., l; this is the **Dirichlet**(α) distribution, a **multivariate generalization** of the Beta family.

Here the conjugate updating rule is

 $\left\{ \begin{array}{c} \theta \sim \mathsf{Dirichlet}(\alpha) \\ (s|\theta) \sim \mathsf{Multinomial}(n,\theta) \end{array} \right\} \rightarrow (\theta|y) \sim \mathsf{Dirichlet}(\alpha+s), \ (8)$

where $s = (s_1, \ldots, s_l)$ and s_j is the **number of** v_j values $(j = 1, \ldots, l)$ in the data set $y = (y_1, \ldots, y_n)$.

Furthermore, by **direct analogy** with the l = 2 case,

(a) the **Dirichlet**(α) prior acts like a **(prior) data set** with $\alpha_j v_j$ values (j = 1, ..., l) and a **prior sample size** of $\sum_{j=1}^{l} \alpha_j$, and

(b) to achieve a relatively **diffuse** (low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_j not far from 0.

To **summarize**:

(A) if the **data vector** $y = (y_1, ..., y_n)$ takes on l **distinct** values $v = (v_1, ..., v_l)$ (**real numbers or not**) and I judge (my uncertainty about) the infinite sequence $(y_1, y_2, ...)$ to be **exchangeable**, then (by a **representation theorem** of de Finetti) **coherence** compels me (i) to **think about** the quantities $\theta = (\theta_1, ..., \theta_l)$, where θ_j is the **limiting relative** frequency of the v_j values in the infinite sequence, and (ii) to **adopt** the Multinomial model

$$\theta \sim p(\theta)$$
(9)
$$p(y_i|\theta) = c \prod_{j=1}^{l} \theta_j^{s_j},$$

where s_j is the **number** of y_i values equal to v_j ;

(B) if context suggests a **diffuse** prior for θ a convenient (**conjugate**) choice is **Dirichlet**(α) with $\alpha = (\alpha_1, \dots, \alpha_l)$ and all of the α_j **positive but close to 0**; and

(C) with a **Dirichlet**(α) prior for θ the **posterior** is **Dirichlet**(α'), where $s = (s_1, \ldots, s_l)$ and $\alpha' = (\alpha + s)$.

Note, remarkably, that the v_j values themselves **make no appearance** in the model; this modeling approach is **natural** with **categorical** outcomes but can also be used when the v_j are **real numbers**.

For example, for real-valued y_i , if (as in the IHGA case study in Part 1) interest focuses on the (underlying population) mean in the infinite sequence $(y_1, y_2, ...)$, this is $\mu_y = \sum_{j=1}^l \theta_j v_j$, which is just a linear function of the θ_j with known coefficients v_j .

This fact makes it possible to draw an **analogy** with the **distribution-free** methods that are at the heart of **frequentist non-parametric** inference: when your **outcome variable** takes on a **finite number** of **real** values v_j , **exchangeability** compels a **Multinomial likelihood** on the **underlying frequencies** with which the v_j occur; you are not required to build a **parametric model** (e.g., normal, lognormal, ...) on the y_i values themselves.

In this sense, therefore, model (14)—particularly with the **conjugate Dirichlet** prior—can serve as a kind of **low-technology Bayesian non-parametric** modeling: this is the basis of the **Bayesian bootstrap** (Rubin 1981).

Moreover, if you're in a hurry and you're already familiar with WinBUGS you can readily carry out inference about quantities like μ_y above in that environment, but there's no need to do MCMC here: ordinary Monte Carlo (MC) sampling from the Dirichlet(α') posterior distribution is perfectly straightforward, e.g., in R, based on the following fact:

To generate a **random draw** $\theta = (\theta_1, \dots, \theta_l)$ from the **Dirichlet**(α') distribution, with $\alpha' = (\alpha'_1, \dots, \alpha'_l)$, **independently draw**

$$g_j \overset{\text{indep}}{\sim} \Gamma(\alpha'_j, \beta), \quad j = 1, \dots, l$$
 (10)

(where $\Gamma(a, b)$ is the **Gamma distribution** with parameters a and b) and compute

$$\theta_j = \frac{g_j}{\sum_{m=1}^l g_j}.$$
(11)

Any $\beta > 0$ will do in this calculation; $\beta = 1$ is a good choice that leads to fast random number generation.

The downloadable version of R doesn't have a built-in function for making Dirichlet draws, but it's easy to write one:

```
rdirichlet = function( n.sim, alpha ) {
    l = length( alpha )
    theta = matrix( 0, n.sim, l )
    for ( j in 1:l ) {
        theta[, j] = rgamma( n.sim, alpha[ j ], 1 )
    }
    theta = theta / apply( theta, 1, sum )
    return( theta )
}
```

The **Dirichlet**(α) distribution has the following **moments**: if $\theta \sim \text{Dirichlet}(\alpha)$ then

$$E(\theta_j) = \frac{\alpha_j}{\alpha_0}, \ V(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}, \ C(\theta_j, \theta_{j'}) = -\frac{\alpha_j \alpha_{j'}}{\alpha_0^2(\alpha_0 + 1)},$$

where $\alpha_0 = \sum_{j=1}^{l} \alpha_j$ (note the **negative correlation** between components of θ).

This can be used to **test** the function above:

> alpha = c(5.0, 1.0, 2.0) > alpha.0 = sum(alpha) > test = rdirichlet(100000, alpha) # 15 seconds at 550 Unix MHz > apply(test, 2, mean) [1] 0.6258544 0.1247550 0.2493905 > alpha / alpha.0 [1] 0.625 0.125 0.250 > apply(test, 2, var) [1] 0.02603293 0.01216358 0.02071587 > alpha * (alpha.0 - alpha) / (alpha.0² * (alpha.0 + 1)) [1] 0.02604167 0.01215278 0.02083333 > cov(test) [.1] [,2] [.3] [1,] 0.026032929 -0.008740319 -0.017292610 [2,] -0.008740319 0.012163577 -0.003423259 [3,] -0.017292610 -0.003423259 0.020715869 > - outer(alpha, alpha, "*") / (alpha.0^2 * (alpha.0 + 1)) [,1] [,2] [.3] [1,] -0.043402778 -0.008680556 -0.017361111 [2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals [3,] -0.017361111 -0.003472222 -0.006944444

Example: re-analysis of **IHGA data** from Part 1; recall **policy** and **clinical interest** focused on $\eta = \frac{\mu_E}{\mu_C}$.

Number of Hospitalizations											
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	287	0.944	1.24

In this **two-independent-samples** setting I can apply de Finetti's representation theorem **twice**, in parallel, on the Cand E data.

I don't know much about the **underlying frequencies** of 0, 1, ..., 7 hospitalizations under *C* and *E* **external** to the data, so I'll use a **Dirichlet**(ϵ , ..., ϵ) **prior** for both θ_C and θ_E with $\epsilon = 0.001$, leading to a **Dirichlet**(138.001, ..., 2.001) **posterior** for θ_C and a **Dirichlet**(147.001, ..., 0.001) **posterior** for θ_E (other small positive choices of ϵ yield **similar results**).

> theta.C = rdirichlet(100000, alpha.C) # 17 sec at 550 Unix MHz

> theta.E = rdirichlet(100000, alpha.E) # also 17 sec

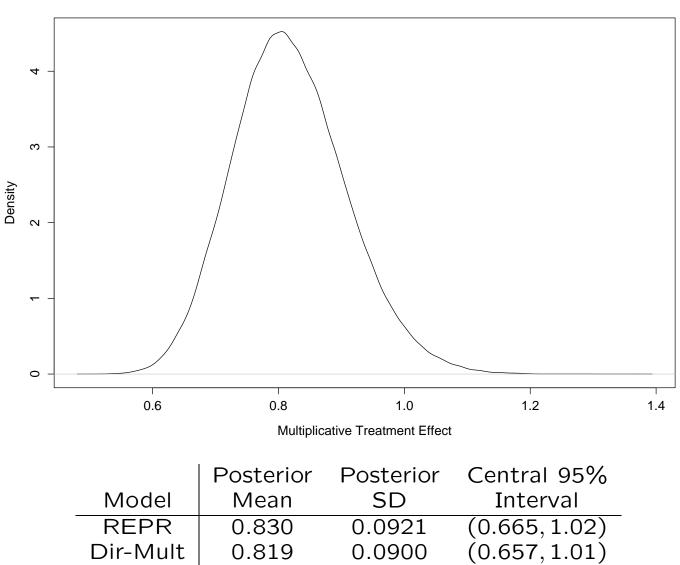
> print(post.mean.theta.C = apply(theta.C, 2, mean))

[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02 [6] 1.395287e-02 3.180905e-06 6.959859e-03

> print(post.SD.theta.C <- apply(theta.C, 2, sd))</pre>

[1] 0.0294142963 0.0261001259 0.0216552661 0.0117925465 0.0096747630
[6] 0.0069121507 0.0001017203 0.0048757485

```
> print( post.mean.theta.E <- apply( theta.E, 2, mean ) )</pre>
[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02 1.054681e-02
[6] 3.518699e-03 3.506762e-03 3.356346e-06
> print( post.SD.theta.E <- apply( theta.E, 2, sd ) )</pre>
[1] 0.029593047 0.026915644 0.019859213 0.012302252 0.006027157
[6] 0.003501568 0.003487824 0.000111565
> mean.effect.C <- theta.C %*\% ( 0:7 )
> mean.effect.E <- theta.E %*\% ( 0:7 )
> mult.effect <- mean.effect.E / effect.C</pre>
> print( post.mean.mult.effect <- mean( mult.effect ) )</pre>
[1] 0.8189195
> print( post.SD.mult.effect <- sd( mult.effect ) )</pre>
[1] 0.08998323
> quantile( mult.effect, probs = c( 0.0, 0.025, 0.5, 0.975, 1.0 ) )
       0%
               2.5%
                           50%
                                   97.5%
                                               100%
0.5037150 0.6571343 0.8138080 1.0093222 1.3868332
> postscript( "mult.effect.ps" )
> plot( density( mult.effect, n = 2048 ), type = '1', cex.lab = 1.25,
    xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25,
    main = 'Posterior Distribution for Multiplicative Treatment Effect',
    cex.main = 1.25)
> dev.off( )
```



Posterior Distribution for Multiplicative Treatment Effect

In this example the **low-tech BNP**, **Dirichlet-Multinomial**, **exchangeability-plus-diffuse-prior-information** model has **reproduced** the **parametric REPR results** almost exactly and without a **complicated search through model space** for a **"good"** model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_i values form a complete set of {all possible values the outcome y could take on}.

This is clearly not true in the IHGA case study, and yet in that case the Bayesian qualitative/quantitative inferential approach did a terrific job of reproducing what we will later see is an excellent parametric model for the IHGA data, without any parametric modeling assumptions.