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Hierarchical Models
for Combining Information

Formulating hierarchical models for
quantitative outcomes from
scientific context

Case Study: Meta-analysis of effects of aspirin

on heart attacks. Table 5.1 (Draper et al., 1993a) gives

the number of patients and mortality rate from all causes,

for six randomized controlled experiments comparing the
use of aspirin and placebo by patients following a

heart attack.

Table 5.1. Aspirin meta-analysis data.

Aspirin Placebo

# of Mortality # of Mortality
Study (i) Patients Rate (%) Patients Rate (%)

UK-1 615 7.97 624 10.74
CDPA 758 5.80 771 8.30
GAMS 317 8.52 309 10.36
UK-2 832 12.26 850 14.82
PARIS 810 10.49 406 12.81
AMIS 2267 10.85 2257 9.70
‘Total 5599 9.88 5217 10.73

Comparison
y; = DIiff VvV, = SE

Study () (%) of Diff (%) Z: p’
UK-1 277 1.65 1.68 .047
CDPA 2.50 1.31 1.91 .028
GAMS 1.84 2.34 0.79 .216
UK-2 2.56 1.67 1.54 .062
PARIS 2.31 1.98 1.17  .129
AMIS ~-1.15 0.90 -1.27 .898
Total 0.86 0.59 147 072

17, denotes the ratio of the difference in mortality rates over its standard
error, assuming a binomial distribution. %p; is the one-sided
p value associated with Z;, using the normal approximation.
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Meta-Analysis

The first five trials are reasonably consistent in showing a
(weighted average) mortality decline for aspirin patients of
2.3 percentage points, a 20% drop from the (weighted
average) placebo mortality of 11.5% (this difference is
highly clinically significant).

However, the sixth and largest trial, AMIS, went the other
way: an increase of 1.2 percentage points in aspirin
mortality (a 12% rise from the placebo baseline of 9.7%).

Some relevant questions (Draper, 1995):

Q1| Why did AMIS get such different results?

Q> | What should be done next to reduce the uncertainty
about @17

Q3 | If you were a doctor treating a patient like those eligible

for the trials in Table 5.1, what therapy should you
employ while answers to (1 and Q> are sought?

One possible paraphrase of (J3: | Q4| How should the
information from these six experiments be combined to
produce a more informative summary than those obtained
from each experiment by itself?

The discipline of | meta-analysis | is devoted to answering
questions like Q.

One leading school of frequentist meta-analysis (e.g.,
Hedges and Olkin, 1985) looks for methods for combining
the Z and p values in Table 5.1, an approach that often
leads only to an overall p value.



A Gaussian HM

A more satisfying form of meta-analysis (which has both
frequentist and Bayesian versions) builds a hierarchical
model (HM) that indicates how to combine information

from the mortality differences in the table.

A Gaussian meta-analysis model for the aspirin data, for
example (Draper et al., 1993a), might look like

(n,0%)  ~  p(p,o?) (prior)
(0|, o°) 1o N(p,0°)  (underlying effects) (1)
wlo) P N6, V) (data) .

The bottom level of (1), the data level of the HM, says
that—Dbecause of relevant differences in patient cohorts and
treatment protocols—each study has its own underlying
treatment effect 6,, and the observed mortality differences
y; are like random draws from a normal distribution with
mean 6; and variance V; (the normality is reasonable because
of the Central Limit Theorem, given the large numbers
of patients).

In meta-analyses of data like those in Table 5.1 the V; are
typically taken to be known (again because the patient
sample sizes are so big), V; = SEZ.Q, where SE; is the standard
error of the mortality difference for study 7 in Table 5.1.

The middle level of the HM is where you would bring in the
study-level covariates|, if you have any, to try to explain
why the studies differ in their underlying effects.

Here there are no study-level covariates, so the middle level
of (1) is equivalent to a Gaussian regression with no
predictor variables.



A Gaussian HM (continued)

Why the “error’” distribution should be Gaussian at this
level of the HM is not clear—it's a conventional option, not
a choice that's automatically scientifically reasonable (in fact

I'll challenge it later).

o2 in this model represents study-level heterogeneity.

The top level of (1) is where the prior distribution on the
regression parameters from the middle level is specified.

Here, with only an intercept term in the regression model, a
popular conventional choice is the normal/scaIed—inverse-x2
prior we looked at earlier in our first Gaussian case study.

Fixed effects and random effects. | If o2 were known
somehow to be 0, all of the 6; would have to be equal

deterministically to a common value u, yielding a simpler

) indep
model: (yilp) ~" N(u, Vi), p~ p(p).

Meta-analysts call this a fixed-effects model, and refer to
model (1) as a random-effects model.

When o2 is not assumed to be 0, with this terminology the 6;
are called random effects (this parallels the use of this term
in the random-effects Poisson regression case study).



Approximate Fitting of Gaussian Hi-
erarchical Models: Maximum Likeli-
hood and Empirical Bayes

Fitting HM (1). Some algebra based on model (1) yields
that the conditional distributions of the study-level effects 6;
given the data and the parameters (u,0?), have a simple
and revealing form (I'll show this later):

indep «
Vi
with 07 = (1 — B;) vy; B; and B, = . 3
i = )i + Bi p Vo (3)

In other words, the conditional mean of the effect for study <
given y;, u, and o2 is a |weighted average | of the sample
mean for that study, y;, and the overall mean wu.

The weights are given by the so-called shrinkage factors B;
(e.g., Draper et al., 1993a), which in turn depend on how the
variability V; within study : compares to the between-study
variability o2: the more accurately y; estimates 6;, the more
weight the “local” estimate y; gets in the weighted average.

The term shrinkage refers to the fact that, with this
approach, unusually high or low individual studies are drawn
back or “shrunken” toward the overall mean u when making

the calculation (1 — B;) y; + B p.

Note that 67 uses data from all the studies to estimate the
effect for study +—this is referred to as borrowing strength
in the estimation process.

Closed-form expressions for p(uly) and p(6;|y) with
vy = (y1,...,yr), k = 6 are not available even with a
normal-x—2 prior for (u,0?); MCMC is needed (see below).



Maximum Likelihood
and Empirical Bayes
In the meantime | maximum likelihood | calculations provide

some idea of what to expect: the likelihood function based
on model (1) is

(1, 02]y) —c[H m] exp [__Z(V+a ] (4)

The maximum likelihood estimates (MLEs) (f,52) then turn
out to be the iterative solutions to the following equations:

T k = —~
— <k 7 = R )
Zz:l 1 ZZ:]. WZQ
1
where W, = Tt (6)

Start with 62 = 0 and iterate (5—6) to convergence (if 52
converges to a negative value, 62 = 0 is the MLE); the
MLEs of the 0, are then given by

) . Vi
0,=(1— B,) v, + B; where B; = —. 7
(1—Bi) vi+ Bifa T (7)

These are called |empirical Bayes | (EB) estimates of the
study-level effects, because it turns out that this analysis
approximates a fully Bayesian solution by (in effect) using
the data to estimate the prior specifications for u and o2,

Large-sample (mainly meaning large k) approximations to
the (frequentist) distributions of the MLEs are given by

pp~ N
+ 62

z:k: A]_ and  0;~ N|[6;,Vi(1 - By)]. (8)




MLEB (continued)

NB The variances in (8) don’t account fully for the
uncertainty in o2 and therefore underestimate the actual
sampling variances for small k£ (adjustments are available;

see, e.d., Morris (1983, 19838)).

MLEB estimation| can be implemented simply in about
15 lines of R code (Table 5.2).

Table 5.2. R program to perform MLEB calculations.

mleb <- function( y, V, m ) {

sigma2 <- 0.0

for (i in 1:m ) {
W<-1.0/ (V + sigma2 )
theta <- sum( W *x y ) / sum( W )
sigma2 <- sum( W2 * ( ( y - theta )2 -V ) ) / sum( W*2 )
B<-V/ (V+ sigma2 )
effects <- (1 - B ) *x y + B * theta
se.theta <- 1.0 / sqrt( sum( 1.0 / ( V + sigma2 ) ) )
se.effects <- sqrt( V. x ( 1.0 - B ) )
print( c( i, theta, se.theta, sigma2 ) )
print( cbind( W, ( W / sum( W ) ), B, y, effects, se.effects ) )

With the aspirin data it takes 18 iterations (less than 0.1
second on a 400MHz UltraSPARC Unix machine) to get
convergence to 4-digit accuracy, leading to the summaries
in Table 5.3 and the following estimates
(standard errors in parentheses):

i = 1.45 (0.809), &2=1.53.

Table 5.3. Maximum likelihood empirical Bayes
meta-analysis of the aspirin data.

study(4) V; | normalized W; | B; Yi 0; SE (@J)
1 0.235 0.154 0.640 2.77 1.92 0.990
2 0.308 0.202 0.529 2.50 1.94 0.899
3 0.143 0.0934 0.782 1.84 1.53 1.09
4 0.232 0.151 0.646 2.56 1.84 0.994
5 0.183 0.120 0.719 2.31 1.69 1.05
6 0.427 0.280 0.346 || —1.15 | —0.252 0.728




Aspirin Meta-Analysis: Conclusions

Note that (1) AMIS gets much less weight (normalized W)
than would have been expected given its small V;; (2) the
shrinkage factors (B;) are considerable, with AMIS shrunk
almost all the way into positive territory (see Figure 5.1); (3)
there is considerable study-level heterogeneity (c = 1.24
percentage points of mortality); and (4) the standard errors
of the effects are by and large smaller than the /V; (from
the borrowing of strength) but are still considerable.

raw estimates (y)

shrunken estimates (theta.hat)

1 0 1 2 3
Estimated Effects
Figure 5.1. Shrinkage plot for the aspirin MLEB meta-analysis.

The 95% interval estimate of i, the overall underlying
effect of aspirin on mortality, from this approach comes out

ii+1.96 - SE(@) = (—0.140,3.03),

which if interpreted Bayesianly gives

P(aspirin reduces mortality|data) =1 — ®(%222) = 0.96 |,

where & is the standard normal CDF.

Thus although the interval includes 0O, so that in a
frequentist sense the effect is not statistically significant, in
fact from a Bayesian point of view the evidence is
running strongly in favor of aspirin’s usefulness.
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MCMC Details

In many cases (as with this example) empirical Bayes
methods have the advantage of vielding closed-form
solutions, but I view them at best as approximations to fully
Bayesian analyses—which can in any case be carried out with
MCMC—so I won’t have any more to say about EB methods
here (see Carlin and Louis, 1996, for more on this topic).

MCMC details. | First let's derive that likelihood function
I mentioned on page 7: the model, once again, is

(n,0%)  ~  p(p,o?) (prior)

(6|, o) 1o N(p,0?)  (underlying effects) (9)
(yil0:) ngee N (0, Vi) (data) .

The parameters we're interested in here are (u,0?); Bayes’s
Theorem gives (as usual)

p(u,o%ly) = cp(p, o) p(ylp, o), (10)
so let's look at the sampling distribution for a single y;:
pulo® = [ pbino®) o,

- / p(yil6i, 11, 0%) p(8ilp, 0%) d6;  (11)

—0o

= / p(yil6:) p(0ilp, 0°) db;
(what we're doing here is integrating out the random
effect 0,).

Now p(;]0;) is normal in this model, and p(6;|u,c?) is also
normal; you could put in the normal densities and grind
away at the algebra and integration, but there's a better
way: the last line of (11) is a mixture representation, and
a normal mixture of normals is normal, so I know that
p(yilp, o?) is normal, and the only questions are, what are its
mean and variance??



Adam and Eve

These questions can be answered with little difficulty via
the Double Expectation Theorem, which has two parts
that are so central to Bayesian calculations that Carl
Morris refers to them as Adam and Eve: for any two
random variables X and Y,

E(Y) Ex [E(Y|X)] (Adam)
V(Y) Ex [VY[X)] 4+ Vx [E(Y]X)] (Eve),

in which Ex and Vx refer to expectation and variance with
respect to the distribution of X.

(12)

If there's additional conditioning going on, you just need to
remember to include it in all the relevant places: for any
three random variables X, Y and Z,
Exiz) [E(Y]X, Z)]
Exiz [VY|X, Z)] + Vixiz [E(Y|X, 2)],

and sO on.

E(Y|2)

V(Y|2) (13)

The application here is in two parts (Adam and Eve):

E(yilp,0%) = E@uon [EWilp, 0, 6]
Eo,u,02) [E(yi]0:)]

E 6,02 [0i]

@, and

V(yl|:u7 0-2) E(0i|,u,(72) [V(ylhjfa 0-27 01)] + ‘/(9i|u,02) [E(yZLU’a 027 92)]
Eguo2) [V (9il0)] + Viguo2) [E(yil0:)]
E(9i|ﬁb,02) [‘/Z] _|_ ‘/(91‘|M,0'2) [91]

Vi + 0% (14)
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Direct Use of Gibbs Sampling

So (a) (yi|p,0?) ~ N(u, V; + 62), (b) by inspection of the
form of the model, the y; are independent given (u,c?), so

(n,0%ly) = ep(ylp,o®) =c jpuﬁm,a?) (15)

[Hmz o0 | 33 Vet

as desired.

MCMC: how best to sample from the posterior?

All MCMC (with a parameter space of fixed dimension)
IS one special case or another of the Metropolis-Hastings
algorithm, but (as usual) we have a number of
possibilities: generic (e.g., random-walk) Metropolis?
Metropolis mixed with Gibbs steps? All Gibbs? With or
without auxiliary (e.g., latent) variables? ...

First let's try direct Gibbs, for which we would need the
full conditionals:

p(ulo®y) = cp(p, 0’ y) (16)

cp(p, a®) p(ylp, o).

By virtue of integrating out the random effects above, we
have p(y|u,0?) as a product of independent univariate

Gaussians; what shall we take for the prior p(u,o?), given
that there's no conjugate choice?

Even with somewhat informative priors on a vector of
parameters, for simplicity people often assume
independence of the components — in this case,

p(u, 0?) = p(p) p(c?) — on the ground that whatever
correlation the parameters should have in the posterior will
be learned via the likelihood function; let’'s make this
simplifying assumption; then

p(plo®,y) = cp(p) p(a?) p(ylp, 0%) = cp(p) p(y|p, o). (17)
11



Direct Gibbs; Latent Gibbs

Now the product of two Gaussians is Gaussian, so if we
take the prior for p to be Gaussian we'll have a Gaussian
full conditional for p that’ll be easy to sample from; what
about 027

p(o?|p,y) = cp(p,o?,y)

cp(p, o) p(y|u, o) (18)
cp(p) p(o®) p(ylp, o)

cp(o?) p(ylp, o°).

Here we run into trouble: when considered as a function of
o? for fixed p and y, p(y|u,o?) is not recognizable as a
member of a standard parametric family (because the y;
(given p and ¢2) are independent but not identically
distributed); we could choose, e.g., a x~2 prior on ¢2 and
use rejection sampling to sample from the resulting
non-standard full conditional, but that would not be
especially pleasant.

So instead let’s use a trick that's generally helpful in
random-effects models: treat the (latent) random effects
as auxiliary variables to be sampled along with (u, o?).

In other words, letting 6 = (61,...,60;), we're going to sample
from the augmented posterior p(u,0?,0|y); the hope is that
this will have completely tractable full conditionals;
let’s see.

p(ulo?,0,y) = cp(u,0?,0,y) (19)
= cp(p, o) p(0|u, o?) p(y|0, u, o)

Notice how naturally this factorization matches the
hierarchical character of (9), which starts at the top with
a model for (u,0?), and then builds a model for (|u,o?),
and then at the bottom there’s a model for p(y|0, u, 0?),
which — by virtue of the hierarchical structure — can be
simplified to p(y|9).
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Latent Gibbs (continued)

Since (a) we're assuming that p(u, 0?) = p(r) p(o?) and (b)
p(y|@) doesn’t involve pu, the full conditional for y becomes

p(plo®,0,y) = cp(p) p(0lp,0°) ; (20)
with a Gaussian prior on u this will be Gaussian;
how about o27

cp(p,02,6,y) (21)
cp(p, 0?) p(0lu, o?) p(ylo, p, 0%)
cp(p) p(a?) p(0|p, o%) p(y|6)
cp(o?) p(6|p, 0°).

Here's another trick: instead of slogging through the
details, try to recognize situations in which you already

know the conjugate updating, and just use what you
already know.

p(a?|p, 0, y)

For example, in this calculation (8|u,0?) is Gaussian with
known 1 and unknown o2, and we know the conjugate

prior for ¢2 in that model — y—2 — so with that prior
choice the full conditional for o2 will also be x~2; how
about 67
p(0lp, 0%, y) = cp(p,0°,0,y) (22)

cp(p, o) p(0u, o) p(yl6, p, o°)
cp(0|u, o) p(y|6).

Here p(0|u, 0?) and p(y|d) are both Gaussian, so the full
conditional for 6 — the product — will also be Gaussian.

Thus using the latent Gibbs approach in this
random-effects model, all of the full conditionals have
familiar forms; this approach will work smoothly; we just

need to work out the details.

(I recommend this as a basic Gibbs strategy: in the first
step make a sketchy pass through the full conditionals
without working out all of the details, to ensure that
everything works fine, and then go back and fill in
the details.)

13



Detalils

(1) | Full conditional for u:

p(plo,0,y) = cp(p) p(8lp, o). (23)

In this calculation (a) o2 is known and (b) the latent vector

0 = (01,...,0,) acts like the data vector y = (y1,...,yn) in

11D .
the model pu ~ N(,uo,aio),(yﬂ,u) ~ N(u,0%) (i=1,...,n), so

we already know the answer: (u|o?,0,y) ~ N(ug,02), where

_ kopo + k6 o2

and o2 = , 24
Mk ko + k O ko + k (24)
and in which the prior sample size is kg = 2- and
__ 1 k HO
0=z > i1 6.
(2) | Full conditional for o2:
2 - 2 2
p(o°|u,0,y) = cp(o”) p(O|u,0°). (25)
In parallel with the situation with g, in this calculation (a)
1 is known and (b) the latent vector 6 = (61,...,60;) acts
like the data vector y = (y1,...,yn) in the model
02 ~ X2 (10,020), (4ilo®) '™ N(u,02) (i=1,...,n), s0 we

already know the answer: (¢2|u,0,y) ~ x %(vg, 07), Where

5 l/oggo-l-k’l)
O —
vo + k
in which v =13 (6; — p)2.

v, =19+ k and ) (26)
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Details (continued)

(3) | Full conditional for 0:
cp(8|p, o) p(yl6)

k
= c|]piln, o) p(yil6). (27)
i=1

p(0|u, 0%, y)

Now (0i|p,0?) ~ N(u,0?) and (yi0;) ~ N(6;,V;) (with V;
known), so this is just our old friend

{Gaussian likelihood (for y;) with unknown mean 6; and
known variance V, 4+ Gaussian prior for 6; with
hyper-parameters p and o2}

the (un-normalized) product p(0;|u, 0?) p(y;|0;) is just the
posterior for 6;, and the answer is therefore the same as it
was in the full conditional for u:
(6il, 02,y) ~ N(6;,02), with

1 1
pM‘F vYi VZ-,u—I—JQyi .

0F = = = B; 1 — B;)vy; and
1 Vio?
02 = T =—"—=Vi(l-B), (28)
~++  Vito?
in which B; = # is the shrinkage factor for study 7 (this

is the demonstration of equations (2) and (3) earlier).

Thus (8|p, 02, y) ~ Ni(6*, <) with 6* = (0%,...,6;) and
> =diag(s?), and one scan of the Gibbs sampler can be
described as follows:

(a) draw p from p(ulo?,0,y), obtaining p.;
(b) draw o2 from p(o?|us, 0,y), obtaining o2; and

(c) draw 60 from p(0|us, 02,y), either univariately on the 6,
(one by one) or multivariately on 6 all at once.

15



R Code

meta.analysis.gibbs <- function( mu.0, sigma2.mu.0, nu.0, sigma2.sigma.O,
mu.initial, sigma2.initial, theta.initial, y, V, M, B ) {

k <- length( y )

mu <- rep( O, M+ B + 1)

sigma2 <- rep( 0, M + B + 1 )
theta <- matrix( O, M + B + 1, k )
mu[ 1 ] <- mu.initial

sigma2[ 1 ] <- sigma2.initial
thetal[ 1, ] <- theta.initial

for (min 2: (M +B + 1) ) {

mu[ m ] <- mu.full.conditional( mu.0, sigma2.mu.0, sigma2[ m - 1 ],
thetal m - 1, 1, y )

sigma2[ m ] <- sigma2.full.conditional( nu.0, sigma2.sigma.O,
mu[l m ], thetal m -1, 1, y )

thetal m, ] <- theta.full.conditional( mu[ m ], sigma2[ m ], y, V )
if ( m %% 1000 == 0 ) print( m )

+

return( cbind( mu, sigma2, theta ) )

}

mu.full.conditional <- function( mu.0, sigma2.mu.0, sigma2.current,
theta.current, y ) {

k <- length( y )
k.0 <- sigma2.current / sigma2.mu.0

theta.bar <- mean( theta.current )

16



R Code (continued)

mu.k <- ( k.0 * mu.0 + k * theta.bar ) / ( k.0 + k )

sigma2.k <- sigma2.current / ( k.0 + k )
mu.star <- rnorm( n = 1, mean = mu.k, sd = sqrt( sigma2.k ) )
return( mu.star )

}

sigma2.full.conditional <- function( nu.0, sigma2.sigma.O,
mu.current, theta.current, y ) {

k <- length( y )
nu.k <- nu.0 + k
v <- mean( ( theta.current - mu.current )~2 )
sigma2.k <- ( nu.0 * sigma2.sigma.0 + k * v ) / ( nu.0 + k )
sigma2.star <- rsichi2( 1, nu.k, sigma2.k )
return( sigma2.star )
}
rsichi2 <- function( n, nu, sigma2 ) {

sigma2.star <- 1 / rgamma( n, shape = nu / 2,
rate = nu * sigma2 / 2 )

return( sigma2.star )

+

theta.full.conditional <- function( mu.current, sigma2.current, y, V ) {
k <- length( y )

theta.star <- ( V * mu.current + sigma2.current * y ) /
( V + sigma2.current )

17



R Code (continued)

sigma2.star <- V * sigma2.current / ( V + sigma2.current )

theta.sim <- rnorm( n = k, mean = theta.star,
sd = sqrt( sigma2.star ) )

return( theta.sim )

+

mu.0 <- 0.0

sigma2.mu.0 <- 10072

nu.0 <- 0.001

sigma2.sigma.0 <- 1.53

mu.initial <- 1.45

sigma2.initial <- 1.53

theta.initial <- c( 1.92, 1.94, 1.53, 1.84, 1.69, -0.252 )

y <- c( 2.77, 2.50, 1.84, 2.56, 2.32, -1.15 )

V <-c(1.65, 1.31, 2.34, 1.67, 1.98, 0.90 )~2

M <- 100000

B <- 1000

mcmc.data.set <- meta.analysis.gibbs( mu.0, sigma2.mu.0, nu.O0,
sigma2.sigma.0, mu.initial, sigma2.initial, theta.initial,
y, V, M, B)

% took 47 seconds

mcmc.data.set <- cbind( mcmc.data.set[ , 1:2 ],
sqrt( mcmc.data.set[ , 2 ] ), mcmc.data.set[ , 3:8 ] )

18



R Code (continued)

apply( mcmc.data.set[ 1001:101001, 1, 2, mean )

mu sigma2
1.33013835 2.24106295 1.12196766 1.68639681 1.67526967 1.38514567 1.62389213
1.51615795 0.09356775
apply( mcmc.data.set[ 1001:101001, 1, 2, sd )
mu sigma2
0.9042468 4.4707971 0.9910910 1.1576621 1.0311309 1.2381000 1.1391841
1.1917662 0.9944885
mu.star <- mcmc.data.set[ 1001:101001, 1 ]
sum( mu.star > 0 ) / length( mu.star )
[1] 0.9484605
sigma.star <- mcmc.data.set[ 1001:101001, 3 ]

par( mfrow = c( 2, 1) )

hist( mu.star, nclass = 100, main = ’’, probability = T,
xlab = ’mu’ )

hist( sigma.star[ sigma.star < 5 ], nclass = 100, main = ’’,
probability = T, xlab = ’sigma’ )

0.4

Density

0.2

0.0

mu

1.2

Density
0.8

0.4

0.0

sigma
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WinBUGS Analysis of Aspirin Data

Aspirin meta-analysis revisited. I create three
files for WinBUGS: a model file, a data file, and an
initial values file (I'm using the most recent
release, 1.4.1, of WinBUGS).

The (first) model file for the aspirin data:

mu ~ dnorm( 0.0, 1.0E-6 )
tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )

for (i in 1:k ) {

thetal i ] ~ dnorm( mu, tau.theta )
y[L i ] 7 dnorm( thetal i ], tau.y[ i ] )

}

sigma.theta <- 1.0 / sqrt( tau.theta )

20



WinBUGS Analysis of Aspirin Data

Here u plays the role of # in model (10) above to avoid using
the name theta twice for two different purposes in the
WinBUGS program.

In specifying a normal distribution WinBUGS works not with a
standard deviation (SD) or a variance but with a
precision—the reciprocal of the variance—so that the
N(p, 0?) distribution is specified by dnorm( mu, tau )
with 7 = .

Then the SD has to be computed as a derived quantity
(o0 = %) which is written above as

sigma.theta <- 1.0 / sqrt( tau.theta )

If—before the aspirin experiments were performed—I'm
relatively ignorant about the quantities 6 (1) and o in model
(10), or equivalently p and 7 = % I can build a diffuse or
flat prior for both quantities that expresses this relative
ignorance.

Since u lives on (—oo0,00) a convenient choice for a flat prior
for it is a normal distribution with mean (say) 0 and very
small precision: mu ~ dnorm( 0.0, 1.0E-6 )

For tau.theta, which lives on (0,c0), I want something that's
flat throughout (almost) all of that range; a convenient
choice (to get an initial idea of where the posterior
distribution for sigma.theta is concentrated) is a gamma
distribution with small positive values of both of its
parameters.

This is the | (g, ¢€) | distribution for some small ¢ > 0 like
0.001: tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )
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WinBUGS Aspirin Analysis (continued)
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Figure 3.1. The M(0.001,0.001) distribution.
The data file in the aspirin meta-analysis is

list( k = 6, y = c( 2.77, 2.50, 1.84, 2.56, 2.31, -1.15 ),
tau.y = c( 0.3673, 0.5827, 0.1826, 0.3586, 0.2551, 1.235 ) )

Here, e.g., tau.y[ 1 ] = 14z = 0.3673, where 1.65 is the
standard error of the difference y[ 1 ] for experiment 1 in
Table 2.1 on p. 20.

Finally, the initial values file in the aspirin meta-analysis is
list( mu = 0.0, tau.theta = 1.0 )

In a simple example like this there's no harm in starting the
Markov chain off in a generic location: since u and 7y live on
(—o0,00) and (0,00), convenient generic choices for their
starting values are 0 and 1, respectively (more care may be
required in models with more complex
random-effects structure).
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WinBUGS Aspirin Analysis (continued)

i # aspirin-modell aspirin-datal

[ list{ k=6 y=c{ 277,250,184, 256, 231,-115),
“tauy = c{0.3673,05827,0.1826, 0.3586, 0.2551, 1.235 ) )

mu ~ dnorm( 0.0, 1.0E-6) :
tau theta ~ dgammal 1.0E-3, 1.0E-3) |41

foriiinTk){

theta[ i ] ~ dnarm{ mu, tau theta )
Y[ ]~ dnorm( theta[i ], tauy[i])

}
sigmatheta =- 1.0/ sqrt( tau theta ) =

undate 1000 refres |100
update| thir [T iterati[T000

I~ aver re ™ adapting

positive effect <- step( mu )

€23 specification Tool '8 5ample Monitor Tool x|

heck mod| load da’ra| noc | >l chair[1 tof1  percent
25 =

numof T bec |1 enc 10000 hjn |1 T
clear | f st | frace | histord] densi
load inits | for |1_E | - ] | ry| U{ a0

stats | | coda| uantile] jgrdiad it Co| 2B

I (1) get a Specification Tool from the Model menu, (2) click
on the model window and click check model, (3) click on the
data window and click load data and compile, (4) click on
the initial values window and click load inits, and (5) click
gen inits (because the random effects 6, were uninitialized in
the inits file); I'm now ready to do some MCMC sampling.

I (6) get an Update Tool from the Model menu, and click
update to perform a burn-in of 1,000 iterations (the
default), which takes Os at 1.6 Pentium GHz; (7) I then get
a Sample Monitoring Tool from the Inference menu, and type
sigma.theta and click set.
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WinBUGS Aspirin Analysis (continued)
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bec enc 110000 thjn |1 x|
undatd50000  refres[100

update| thir[T iterati/51000

Coverre I adapting

olear| rEEt Traoe| hisTory| densi‘rﬂ gg

stats | coda| uanti|e| Jgrdiad uto Co| 95

ETETE)  at E e e ET]

(8) I type 50000 in the updates window in the Update Tool and
click update to get a monitoring run of 50,000 iterations
(this took 15s).

Then (9) selecting sigma.theta in the node window, all 10
buttons from clear through autoC are active, and I click on
history (to get a Time Series window), density (to get a
Kernel density window), autoC to get an Autocorrelation
function window, and stats (to get a Node statistics
window), vyielding the screen above.

The output of an MCMC sampler, when considered as a
time series, often exhibits positive autocorrelation; in fact
it often looks like a realization of an autoregressive AR,
model of order p =1 (0; = a + B0;—1 + e;) with positive
first-order autocorrelation p.
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WinBUGS Aspirin Analysis (continued)

This does not affect the validity of Monte Carlo inferences
about the unknowns (e.g., the mean of any stationary
stochastic process is a consistent estimator of the
underlying process mean), but it does affect the efficiency
of these inferences: for example, the Monte Carlo variance of
the sample mean 6 based on M draws from an AR; time

series is
2
oy (1+4p
V@_M(l—p)’ (29)

and the sample size inflation factor i—fpp 00 as p — +1.

An MCMC sampler which produces output for any given
unknown 6 with p near O (if p = 0 the output is white noise,
i.e., equivalent to IID draws from the posterior) is said to be

mixing well in that unknown.

The time series trace for oy above is only mixing moderately
well: the autocorrelation function has the familiar ski-slope
shape of an AR; series with p = 0.7 (the height of the bar

at lag 1).

The marginal posterior distribution for oy (from the Kernel
density window) looks heavily skewed to the right, which
makes sense for a scale parameter.

The posterior mean and SD of gy (using the (¢, €) prior
for 1y9) are estimated to be 1.14 and 1.00, respectively; the
Monte Carlo standard error of the posterior mean
estimate is 0.021 (so that with 50,000 monitoring iterations
I don't yet have 3 significant figures of accuracy for the
posterior mean); the posterior median is estimated to be
0.96; and a 95% central interval for oy with this prior is
estimated to run from 0.042 to 3.57.
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WinBUGS Aspirin Analysis (continued)
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stats | coda| uanTiIe| agr diEl(i wto Co| 9

1o/ x|
The main thing to notice, however, is that the range of
plausible values for sigma.theta in its posterior is
approximately from O to 16.

It has recently been shown that the simplest diffuse prior
on oy that has good calibration properties (i.e., such that
95% nominal Bayesian interval estimates for all of the
parameters in model (10) do in fact have actual coverage
close to 95%) is

gg ~ U(O,C), (30)

where c is chosen to be (roughly) the smallest value that
doesn’t truncate the likelihood function for oy; here it’s
evident that ¢ = 16 will work well.
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WinBUGS Aspirin Analysis (continued)

T emprmodez
1

& aspirin-datal

listi k=6,y=c{ 277,250,184, 256 231,-115],
tauy = c( 0.2673, 05827 01826, 0.3586, 0.2551, 1.235))
mu -~ dnorm{ 0.0, 1.0E-6 )

sigma.theta ~ dunif{ 0.0, 16.0) 1|

for{1in Tk =10lx]

theta[ i ]~ dnorm{ mu, tautheta ) list{ mu=0.0, sigmatheta=10) -

; Wi ]~ dnormi theta[i ] tauy[i]) q |

'}
tautheta <- 1.0/ ( powl sigmatheta, 2 1)
positive effect <- step( mu)

uoda’rsh Qo0 refrec |1 oo
Update| thirl1  iteratil1000

Coverre I adapting

EﬂSpeciﬁcatinn o x| EﬁSample Monitor Tool x|

heck mod| load da‘ra| noc | =] chairh_ ‘ro|1_ percent
2b =

rumof 1 bec | enc 110000 thn |1 it
dear | T2et [trace | history] densit] 90
load inits | +or [ H

stats | ooda| uanTiIe| gr diad it Co| 95

So I estimate a second model placing a Uniform(0, ¢) prior
on oy (this model also requires a new initial values file that
initializes sigma.theta instead of tau.theta).

This time in the Sample Monitor Tool I set all of the
interesting quantities: mu, sigma.theta, theta, and
positive.effect, and I use the same MCMC strategy as
before (a burn-in of 1,000 followed by a monitoring run
of 50,000).
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WinBUGS Aspirin Analysis (continued)
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With the Uniform(0, ¢) prior on oy the posterior mean of gy is
now sharply higher than before (2.02 versus the 1.14 value
I got with the initial (e, €) prior (this sort of discrepancy
will only arise when the number of studies k is small; when it
does arise I trust the results from the Uniform(0, c) prior).

Note that the posterior mean of oy is also quite a bit bigger
than the value (1.24) obtained from MLEB back on page
25—this is a reflection of the tendency of MLEB to
understate the between-study heterogeneity in model
(10) with small k.
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WinBUGS Aspirin Analysis (continued)
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20000
iteration

Mode statistics

node mean  sd MC error2.5% median 97.5% start
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x
noc [postive sfect - chairli to[1  Dercent
256 =

enc 110000 4hjn |1 x|
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UpdElTel thir [1 iterati [51000
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PETE v N o ]

On pp. 25—26 above we saw that the MLEB estimate of u
was 1.45 with an approximate standard error of 0.809, and
an approximate 95% confidence interval for p ran from
—0.14 to 4-3.03.

The corresponding Bayesian results are: posterior mean
1.52, posterior SD 1.21, 95% interval (—0.72, 4.06).

As is often true, the simple MLEB approximations leading to
these estimates have underestimated the actual
uncertainty about u: the Bayesian 95% interval with the
Uniform prior is 50% wider.

It's easy to monitor the posterior probability that aspirin
IS beneficial, with the built-in step function applied to mu:
P(un > 0O|data, diffuse prior information) = 0.93, i.e.,
posterior betting odds of about 12.5 to 1 that aspirin
reduces mortality.
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WinBUGS Aspirin Analysis (continued)
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The marginal density plots of the 6; values show interesting

departures from normality, and the Bayesian estimates (a)

exhibit rather less shrinkage and (b) have 27—43% larger
uncertainty estimates.

Table 3.1. MLEB and Bayesian (posterior mean) estimates of the 6.

Maximum Likelihood | Bayesian Posterior
study(s) 0; SE(6;) mean SD
1 1.92 0.990 2.11 1.33
2 1.94 0.899 2.06 1.14
3 1.53 1.09 1.59 1.56
4 1.84 0.994 1.99 1.33
5 1.69 1.05 1.82 1.46
6 —0.252 0.728 —0.44 0.95
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Hierarchical Model Expansion

Looking at the shrinkage plot on p. 26 or the raw data

values themselves, it's evident that a Gaussian model for

the 6, may not be appropriate: study 6 is so different than

the other 5 that a heavier-tailed distribution may be a
better choice.

This suggests expanding the HM (10), by embedding it in a
richer model class of which it's a special case (this is the
main Bayesian approach in practice to dealing with
model inadequacies).

A natural choice would be a t model for the 6; with
unknown degrees of freedom v:

0,0%v) ~ p(,0°v) (prior)
(66, 02, v) 11D t(6,0%,v) (underlying effects) (31)
(vi]6:) e N(6;, Vi) (data) .

Here n ~ (6,02, v) just means that (”7_9) follows a standard

t distribution with v degrees of freedom. This is amazingly
easy to implement in WinBUGS (it is considerably more
difficult to carry out an analogous ML analysis).

The new model file is

mu ~ dnorm( 0.0, 1.0E-6 )
sigma.theta ~ dunif( 0.0, 16.0 )
nu ~ dunif( 3.0, 30.0 )

for (i in 1:k ) {

thetal i ] ~ dt( mu, tau.theta, nu )
y[L i ] 7 dnorm( thetal i 1, tau.y[ i 1 )

}

tau.theta <- 1.0 / pow( sigma.theta, 2 )
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Model Expansion (continued)
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PR

To express comparative prior ignorance about v I use a
uniform prior on the interval from 2.0 to 30.0 (below v =2
the t distribution has infinite variance, and above about 30

it starts to be indistinguishable in practice from
the Gaussian).

A burn-in of 1,000 and a monitoring run of 100,000
iterations takes about twice as long as with 50,000
iterations in the Gaussian model (i.e., about the same
speed per iteration) and yields the
posterior summaries above.

It's clear that there’'s little information in the likelihood
function about v: the prior and posterior for this parameter
virtually coincide.

The results for x and the 6; are almost unchanged; this
would not necessarily be the case if study 6 had been
more extreme.
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Educational Meta-Analysis

Incorporating Study-Level Covariates

Case Study: Meta-analysis of the effect of teacher

expectancy on student IQ (Bryk and Raudenbush, 1992).
Do teachers’ expectations influence students’ intellectual
development,

as measured by IQ scores?

Table 5.4. Results from 19 experiments estimating the effects of teacher
expectancy on pupil IQ.

Weeks of Estimated | Standard

Prior Effect Error of

Study (7) Contact (z;) | Size (vy;) vi =VV;
1. Rosenthal et al. (1974) 2 0.03 0.125
2. Conn et al. (1968) 3 0.12 0.147
3. Jose & Cody (1971) 3 -0.14 0.167
4. Pellegrini & Hicks (1972) 0 1.18 0.373
5. Pellegrini & Hicks (1972) 0 0.26 0.369
6. Evans & Rosenthal (1969) 3 -0.06 0.103
7. Fielder et al. (1971) 3 -0.02 0.103
8. Claiborn (1969) 3 -0.32 0.220
9. Kester & Letchworth (1972) 0 0.27 0.164
10. Maxwell (1970) 1 0.80 0.251
11. Carter (1970) 0 0.54 0.302
12. Flowers (1966) 0 0.18 0.223
13. Keshock (1970) 1 -0.02 0.289
14. Henrickson (1970) 2 0.23 0.290
15. Fine (1972) 3 -0.18 0.159
16. Greiger (1970) 3 -0.06 0.167
17. Rosenthal & Jacobson (1968) 1 0.30 0.139
18. Fleming & Anttonen (1971) 2 0.07 0.094
19. Ginsburg (1970) 3 -0.07 0.174
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Teacher Expectancy

Raudenbush (1984) found k = 19 experiments, published
between 1966 and 1974, estimating the effect of teacher
expectancy on student IQ (Table 5.4).

In each case the experimental group was made up of children
for whom teachers were (deceptively) encouraged to have
high expectations (e.g., experimenters gave treatment
teachers lists of students, actually chosen at random, who
allegedly displayed dramatic potential for intellectual
growth), and the controls were students about whom no
particular expectations were encouraged.

The estimated | effect sizes| y;, = SDi_Ci (column 3 in
:pooled

Table 5.4) ranged from —.32 to 4+1.18; why?

One good reason: the studies differed in how well the
experimental teachers knew their students at the time
they were given the deceptive information—this time period
x; (column 2 in Table 5.4) ranged from O to 3 weeks.

Figure 5.2 plots y; against z;—you can see that the studies
with bigger x; had smaller IQ effects on average.

1.0

Estimated Effect Size

1 2
Weeks of Prior Contact

Figure 5.2. Scatterplot of estimated effect size against weeks of prior
contact in the IQ meta-analysis. Radii of circles are proportional to
w; = V;‘l (see column 4 in Table 5.4); fitted line is from weighted

regression of y; on x; with weights w;.
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Conditional Exchangeability

Evidently model (1) will not do here — it says that your
predictive uncertainty about all the studies is exchangeable
(similar, i.e., according to (1) the underlying study-level
effects 0, are like IID draws from a normal distribution),
whereas Figure 5.2 clearly shows that the x; are useful in
predicting the y;.

This is another way to say that your uncertainty about the
studies is not unconditionally exchangeable but

conditionally exchangeable given «x
(Draper et al., 1993b).

In fact Figure 5.2 suggests that the y; (and therefore the 6,)
are related linearly to the z;.

Bryk and Raudenbush, working in the frequentist paradigm,
fit the following HM to these data:

indep

(0ile, B,05) ~ N(a+Bzi,0;) (underlying effects)
(wilor) P N (6, Vi) (data).  (32)

According to this model the estimated effect sizes y; are like
draws from a Gaussian with mean 6; and variance V;, the
squared standard errors from column 4 of Table 5.4—~here as
in model (1) the V; are taken to be known—and the 6;
themselves are like draws from a Gaussian
with mean a + Bz; and variance .

The top level of this HM in effect assumes, e.g., that the 5
studies with x = 0 are sampled representatively from {all
possible studies with x = 0}, and similarly for the other
values of x.

This (and the Gaussian choice on the top level) are
conventional assumptions, not automatically
scientifically reasonable—for example, if you know of some
way in which (say) two of the studies with x = 3 differ from
each other that's relevant to the outcome of interest, then
you should include this in the model as a study-level
covariate along with x.
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An MLEB Drawback

Bryk and Raudenbush used MLEB methods, based on the
EM algorithm, to fit this model.

As in Section 5.2, this estimation method combines the two
levels of model (9) to construct a single likelihood for the
Yy, and then maximizes this likelihood as usual in the ML
approach.

They obtained (a,B8) = (.407 +.087,—.157 £+ .036) and
792 = 0, naively indicating that all of the study-level
variability has been “explained” by the covariate zx.

However, from a Bayesian point of view, this model is
missing a third layer:

(a,B,08) ~ pla,B,03)

(92'|Oé,5,0'92) inquep N<04+B(332 _£)70_92> (33)
(i) P N6, V).

(it will help convergence of the sampling-based MCMC
methods to make a and 3 uncorrelated by | centering | the z;
at O rather than at ).

As will subsequently become clear, the trouble with MLEB is
that in Bayesian language it assumes in effect that the
posterior for o7 is point-mass on the MLE. This is bad

(e.g., Morris, 1983) for two reasons:

e If the posterior for o is highly skewed, the mode will be a
poor summary; and

e \Whatever point-summary you use, pretending the posterior
SD for o2 is zero fails to propagate uncertainty about ag
through to uncertainty about «, 3, and the 6;.

The best way to carry out a fully Bayesian analysis of model
(10) is with MCMC methods.
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WinBUGS Implementation

rathes

alpha ~ dnormi 0.0, 1.0E-6 |

beta ~ dnorm{ 0.0, 1.0E-6 ¥

tau theta ~ dgamma( 0.001, 0.001)
wbar <-mean(x ]}

for{iin1nj{

mufi]=-alpha +beta® {«[i]-xbar)
thetal i ]~ dnorm{ mui ], tau theta )
Y[ ]~ dnorm( theta[ i ], tau[i]}

! —
. a0 : 850 300
sigma theta = 1.0/ sgri tau theta ) teration iteration

: o]

R T TS e
: T

T T
ga0 a00
iteration

list{y=c{003,012,-014, 118 026 -006,-002, -032 027,080,054, 0.18,-0.02, 023,
-018,-006,030,007 -007),%=¢c(2330,0,3,33,01,0,0,1,23,31,2,3),
tau=c(84.0 46.3,359,7.19,7.34,943,943 207,372,159 110,201,120, 11.9,
396,359,518 113.2,330),n=18)

For p(a, B,02) in model (10) I've chosen the usual WinBUGS

diffuse prior p(a)p(8)p(c7): since a and B live on the whole
real line I've taken marginal Gaussian priors for them with

mean 0 and precision 107°, and since p = % is positive I use

a M(0.001,0.001) prior for it.

Model (10) treats the variances V; of the y; as known (and
equal to the squares of column 4 in Table 5.4); I've
converted these into precisions in the data file (e.g.,

— )
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WinBUGS Implementation
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A burn-in of 1,000 (certainly longer than necessary) from
default initial values (o, 3,79) = (0.0,0.0,1.0) and a
monitoring run of 10,000 yield the following preliminary
MCMC results.

Because this is a random-effects model we don't expect
anything like IID mixing: the output for o behaves like an
AR; time series with p; = 0.86.

The posterior mean for «, 0.135 (with an MCSE of 0.002),
shows that « in model (10) and « in model (9) are not
comparable because of the recentering of the predictor x
in model (10): the MLE of « in (9) was 0.41 £ 0.09.
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WinBUGS Implementation
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But 5 means the same thing in both models (9) and
(10): its posterior mean in (10) is —0.161 4+ 0.002, which is
not far from the MLE —0.157.

Note, however, that the posterior SD for 3, 0.0396, is 10%
larger than the standard error of the maximum likelihood
estimate of 8 (0.036).

This is a reflection of the underpropagation of uncertainty
about oy in maximum likelihood mentioned on page 15.
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node mean sd MC error2.5% median 97.5% start
sigma.theta 0.06379 003637 0001543 0.0212 0.05452 01589 1001 nooo0

T T T T T
1401 5000 7500 10000 a
iteration

In these preliminary results oy has posterior mean
0.064 + 0.002 and SD 0.036, providing clear
evidence that the MLE g9g =0 is a
poOoOr summary.

Note, however, that the likelihood for oy may be
appreciable in the vicinity of 0 in this case,
meaning that some sensitivity analysis with

diffuse priors other than M(0.001,0.001)—such as
U(0,c) for ¢ around 0.5—would be in order.
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When you specify node theta in the Sample Monitor
Tool and then look at the results, you see that
WinBUGS presents parallel findings with a single
click for all elements of the vector 6.

Some of the 6, are evidently
Mmixing better than others.
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The marginal density traces of the 6; look rather
like t distributions with fairly low degrees of
freedom (fairly heavy tails).
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node mean  sd MC error2.5% median 97.5% start sample
theta[1] 007914 0057 0001621 -0.06158 003178 02083 1001 10000
thetal2] 0.03745 007771 0002503 01787 0.04117 013 1007 10000
thetal3] 0.07873 00771 0002139 0.2409 007674 007068 1001 10000
theta[4] 0442 01206 0005198 02208 04379 0B8PS 1001 10000
thetal5] 04083 01152 0004757 01802 04117 06233 1001 10000
thetalk] 0.06584 00E417 0001823 01915 -0.0BE9S 0.0B055 1001 10000
thetal7] 0.05633 006543 0001951 01834 005685 007543 1001 10000
theta[s] 0.09112 008347 0002333 02772 008547 00B135 1001 10000
theta[2] 03942 01022 000442 01846 0398 0587 1001 10000
theta[10] 02915 Q09705 0003804 012668 02851 05119 1001 10000
theta[11] 042 01139 0.004513 0192 04217 0kB415 1001 10000
theta[12] 03939 01095 0004472 01722 03971 05978 1001 10000
theta[13] 02387 009165 0003086 005124 02422 04105 1001 10000
theta[14] 009939 008011 0002044 005295 009718 02684 1001 10000
theta[15] -0.08512 007562 0002023 02462 -0.08189 005245 1001 10000
theta[16]  -0.06751 007592 0002041 -0.2161 -0.0BE28 008384 1001 10000
theta[17] 026802 007768 0002718 01114 0261 04162 100 10000
theta[18] 008655 005332 0001467 -0.03271 00863 02022 1001 10000
theta[19] 00635 Q07743 0002036 -0.2254 -0.0BS0Y 008493 1001 10000

HRunning quantiles
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Many of the 6, have posterior probability
concentrated near 0, but not all; 64,05,609,011,
and 61, are particularly large (looking back on
page 12, what's special about the
corresponding studies?).
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Some of the 8, are not far from white noise;
others are mixing quite slowly.

44



node
muf1]
mu2]
mu[3]
mu4]
muf5]
mu[B]
mu[7]
mu[8]
mu[g]
mu[10]
mu[11]
mu[12]
mu[13]
mu[14]
mu[15]
mu[16]
mu[17]
mu[18]
mu[19]

mean
0.09231
-0.06593
-0.06893
0.4142
0.4143
-0.06593
-0.06893
-0.06593
0.4143
0.2536
0.4143
0.4142
0.2536
0.09231
-0.06893
-0.065898
0.2536
0.08231
-0.06893

WinBUGS Implementation

sd
0.04185
0.05827
0.05827
0.09549
0.09549
0.05827
0.05827
0.05827
0.09549
0.06217
0.09549
0.09549
0.08217
0.04185
0.05827
0.05827
0.08217
0.04185
0.05827

MC error2.5%

0.001769
0.002071
0.002071
0.004759
0.004759
0.002071
0.002071
0.002071
0.004759
0.003041
0.004759
0.004759
0.003041
0.001769
0.002071
0.002071
0.003041
0.001769
0.002071

0.01142
-0.172
-0.172
0.2314
0.2314
-0.172
-0.172
-0.172
0.2314
0.134
0.2314
0.2314
0.134
0.01142
-0.172
-0172
0.134
0.01142
-0.172

ks | [osst ] wses | hsoy | densty ||
_sas | _coto | cumntes] borgg | swocar| o=

median 97.5%
009231 01736
-0.0pE24 003334
-0.05824 003334
0491 05904
0491 05904
-0.0pE24 003334
-0.05824 003334
-0.0pE24 003334
0491 05904
02557 03679
0491 05904
0491 05904
02557 0.3679
009231 01736

node
theta[1]
theta[2]
theta[3]
theta[4]
theta[5]
theta[s]
thetal7]
theta[3]
theta[d]
theta[10]
theta[11]
theta[12]
theta[13]
theta[14]
theta[15]
theta[1B]
theta[17]
theta[15]
theta[19]

start
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

mean
0.07914
-0.03745
-0.07873
04412
0.4088
-0.06684
-0.05633
0.09112
0.3342
02915
0.42
0.3539
0.2387
0.09989
-0.08512
-0.06751
0.2609
0.08658
-0.0695

sd
0.0657
0.07771
0.0771
01206
0.1159
0.06417
0.06543
0.08347
0.1029
0.09704
01139
01095
0.09166
0.08011
0.07569
0.07892
0.077E8
0.05889
0.07743

ﬂ Update Tool

Inl

MC error2.5% median 97.5% start sample
0001621 005158 008178 02083 1001 10000
0002505 01787 0.04117 01 1001 10000
0002139 02408 -0.07674 007088 1001 10000
0005195 02206 04372 06375 1001 10000
0004757 01802 04117 0E283 1001 10000
0001823 01915 -0.08625 0.06058 1001 10000
0001951 01834 -0.08685 007543 1001 10000
0002335 02772  -0.08547 006136 1001 10000
000442 01846 0393 05867 10M 10000
0003304 01266 02851 05119 1001 10000
0.004813 0199 04217  0E#E5 1001 10000
0.004472 01722 03971 05978 1001 10000
0003085 005124 02429 04105 1001 10000
0002044 005295 009718 02684 1001 10000
0002023 02462 -0.08183 005945 1001 10000
0002041 02161 -0.06628 008384 1001 10000
0002718 01114 0261 04162 10M 10000
0001467 -0.03271 008625 02029 1001 10000
0002035 022654 -0.08907 008433 1001 10000

It's also useful to monitor the u; = a + B(z; — ),
because they represent an important part of the
shrinkage story with model (10).
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Shrinkage Estimation

In a manner parallel to the situation with the
simpler model (1), the posterior means of the
underlying study effects 0, should be at least
approximately related to the raw effect sizes y;
and the u; via the shrinkage equation

E(0ily) = (1 — B;) yi + BiE(paly) ; (34)

Vi
Vi+og

here B, = and G2 is the posterior mean of o2.

This is easy to check in R:
> mu <- c( 0.09231, -0.06898, -0.06898, 0.4149, 0.4149, -0.06898, -0.06898,
-0.06898, 0.4149, 0.2536, 0.4149, 0.4149, 0.2536, 0.09231, -0.06898,
-0.06898, 0.2536, 0.09231, -0.06898 )

>y <-c¢(0.03, 0.12, -0.14, 1.18, 0.26, -0.06, -0.02, -0.32, 0.27, 0.80,
0.54, 0.18, -0.02, 0.23, -0.18, -0.06, 0.30, 0.07, -0.07 )

\"4

theta <- c( 0.08144, -0.03455, -0.07456, 0.4377, 0.4076, -0.0628,
-0.05262, -0.08468, 0.3934, 0.289, 0.4196, 0.3938, 0.2393, 0.1014,
-0.08049, -0.06335, 0.2608, 0.08756, -0.06477 )

v

V<-1/ tau

v

B.hat <- V/ (V + 0.06472 )

Vv

theta.approx <- ( 1 - B.hat ) * y + B.hat * mu
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The Shrinkage Story (continued)

> cbind( y, theta, mu, sigma.2, B.hat, theta.approx )

y theta mu V B.hat theta.approx

[1,] 0.03 0.08144 0.09231 0.015625 0.7923026 0.07936838
[2,] 0.12 -0.03455 -0.06898 0.021609 0.8406536 -0.03886671
[3,] -0.14 -0.07456 -0.06898 0.027889 0.8719400 -0.07807482
[4,] 1.18 0.43770 0.41490 0.139129 0.9714016 0.43678060
[65,] 0.26 0.40760 0.41490 0.136161 0.9707965 0.41037637
[6,] -0.06 -0.06280 -0.06898 0.010609 0.7214553 -0.06647867
[7,] -0.02 -0.05262 -0.06898 0.010609 0.7214553 -0.05533688
[8,] -0.32 -0.08468 -0.06898 0.048400 0.9219750 -0.08856583
[9,] 0.27 0.39340 0.41490 0.026896 0.8678369 0.39574956
[10,] 0.80 0.28900 0.25360 0.063001 0.9389541  0.28695551
[11,] 0.54 0.41960 0.41490 0.091204 0.9570199  0.42027681
[12,] 0.18 0.39380 0.41490 0.049729 0.9239015  0.39702447
[13,] -0.02 0.23930 0.25360 0.083521 0.9532511  0.24080950
[14,] 0.23 0.10140 0.09231 0.084100 0.9535580  0.09870460
[15,] -0.18 -0.08049 -0.06898 0.025281 0.8605712 -0.08445939
[16,] -0.06 -0.06335 -0.06898 0.027889 0.8719400 -0.06783002
[17,] 0.30 0.26080 0.25360 0.019321 0.8250843 0.26171609
[18,] 0.07 0.08756 0.09231 0.008836 0.6832663 0.08524367
[19,] -0.07 -0.06477 -0.06898 0.030276 0.8808332 -0.06910155

You can see that equation (11) is indeed a good
approximation to what’'s going on: the posterior means of
the 0; (column 3 of this table, counting the leftmost column
of study indices) all fall between the y; (column 2) and the
posterior means of the u; (column 4), with the closeness to

y; or E(uily) expressed through the shrinkage factor B;.

Since 53 is small (i.e., most—but not quite all—of the
between-study variation has been explained by the covariate
x), the raw y; values are shrunken almost all of the way
toward the regression line o + 8(xz; — 7).
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