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Getting From the Context and Design to the Model
Definition. In model specification, optimal = {conditioning only on

propositions rendered true by the context of the problem and the
design of the data-gathering process, while at the same time
ensuring that the set of conditioning propositions includes all

relevant problem context}.
This seems hard to achieve; for example, in the IHGA case study,

visualizing the data set before it arrives, it would look like the table
shell presented back on page 2 of Part 1 of the Lecture Notes:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

The problem context and design make this table shell something You
can condition on, and the lack of previous trials with IHGA (this was

the first time it was implemented anywhere) implies that You can
also condition on a diffuse choice for p(θ|B) (with 572 observations,
it won’t matter much how this diffuseness is specified), but context

and design don’t seem to have anything to say about the
predictive (sampling) distribution p(D|θB).
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Model Uncertainty
In problems of realistic complexity You’ll generally notice that (a)

You’re uncertain about θ but (b) You’re also uncertain about how to
quantify Your uncertainty about θ, i.e., You have

model uncertainty.
Cox’s Theorem says that You can draw logically-consistent inferences
about an unknown θ, given data D and background information B, by
specifying M = {p(θ|M B), p(D|θM B)}, but item (b) in the previous

paragraph implies that there will typically be more than one such
plausible M; what should You do about this?

It would be nice to be able to solve the inference problem by using
Bayes’s Theorem to compute p(θ|DMall B), where Mall is the set of
all possible models, but this is not feasible: just as Kolmogorov had

to resort to σ-fields because the set of all subsets of an Ω with
uncountably many elements is too big to meaningfully assign

probabilities to all of the subsets, with a finite data set D, Mall is
too big for D to permit meaningful plausibility assessment of all the

models in Mall .
Having adopted the Calibration Principle, it makes sense to talk about
an underlying data-generating model MDG , which is unknown to You

(more on this below).
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An Ensemble M of Models

Not being able to compute p(θ|DMall B), in practice the best You
can do is to compute p(θ|DMB), where M is an ensemble of models

(finite or countably or uncountably infinite) chosen “well” by You,
where “well” can and should be brought into focus by the Calibration

Principle (and some of the other Principles to be introduced later):
evidently what You want, among other things, is for M to contain one

or more models that are identical (or at least close) to MDG .

Suppose initially, for the sake of discussion, that You’ve identified such
an ensemble (I’ll present some ideas for how to do this later) and that it
turns out to be finite: M = (M1, . . . ,Mk) for 2 ≤ k <∞; what next?

Are You supposed to try to choose one of these models (the model
selection problem) and discard the rest, or combine them in some way

(if so, how?), or what?

Solving the model uncertainty problem. People used to “solve” the
problem of what to do about model uncertainty by ignoring it: it was

common, at least through the mid-1990s, to
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Dealing With Model Uncertainty
(a) use the data D to conduct a search among possible models,

settling on a single (apparently) “best” model M∗ arising from the
search, and then

(b) draw inferences about θ pretending that M∗ “=” MDG .

This of course can lead to quite bad calibration, almost always in the
direction of pretending You know more than You actually do, so

that, e.g., Your nominal 90% posterior predictive intervals for data
values not used in the modeling process would typically include

substantially fewer than 90% of the actual observations.

The M∗ approach “solves” the problem of how to specify M by setting
M = {M∗}; I’ll continue to postpone for the moment how You might

do a better job of arriving at M.

Having chosen M in some way, how can You assess Your uncertainty
across the models in M, and appropriately propagate this through to

Your uncertainty about θ, in a well-calibrated way?

I’m aware of three approaches to improved assessment and
propagation of model uncertainty: BMA, BNP, CCV.
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BMA, BNP
• Bayesian model averaging (BMA): If interest focuses on

something that has the same meaning across all the models in M —
for example, a set of future data values D∗ to be predicted —

calculation reveals (e.g., Leamer, 1978) that

p(D∗|DMB) =

∫
M

p(D∗|D M B) p(M|DMB) dM , (1)

which is eminently reasonable: equation (1) tells You to form a
weighted average of Your conditional predictive distributions

p(D∗|D M B), given particular models M ∈M, weighted by those
models’ posterior probabilities p(M|DMB).

This approach typically provides (substantially) better calibration
than that obtained by the M∗ method.

• Bayesian nonparametric (BNP) modeling: The BMA integral in
(1) can be thought of as an approximation to the (unattainable?)

ideal of averaging over all worthwhile models; a better
approximation to this ideal can often be achieved with Bayesian

nonparametric modeling, which dates back to de Finetti (1937).
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Exchangeability

Continuing the Kaiser example on page 14 (Part 1), suppose You also
observe (for each of the n = 112 randomly-sampled patients from the

population P of N = 8,561 heart-attack patients) a real-valued
conceptually-continuous quality-of-care score yi , and (following de

Finetti) You’re thinking about Your predictive distribution
p(y1 . . . yn|B) for these scores before any data have arrived.

de Finetti pointed out that, if You have no covariate information
about the patients, Your predictive distribution p(y1 . . . yn|B) should
remain the same under arbitrary permutation of the order in which
the patients are listed, and he coined the term exchangeability to

describe this state of uncertainty.

He (and later Diaconis/Freedman) went on to prove that, if Your
judgment of exchangeability extends from (y1 . . . yn) to (y1 . . . yN) (as
it certainly should here, given the random sampling) and N >> n (as is

true here), then all logically-internally-consistent predictive
distributions can approximately be expressed hierarchically as follows:
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Bayesian Nonparametric (BNP) Modeling
letting F stand for the empirical CDF of the population values

(y1 . . . yN), the hierarchical model is (for i = 1, . . . , n){
(F |B) ∼ p(F |B)

(yi |F B)
IID∼ F

}
.

This requires placing a scientifically-appropriate prior distribution
p(F |B) on the set F of all CDFs on <, which de Finetti didn’t know
how to do in 1937; thanks to work by Freedman, Ferguson, Lavine,
Escobar/West, and others, two methods for doing this sensibly —

Pólya trees and Dirichlet-process (DP) priors — are now in routine
use: this — placing distributions on function spaces — is

Bayesian nonparametric (BNP) modeling.

IHGA Example, Revisited: Once again visualizing the IHGA data
set before it arrives, here’s the table shell one more time:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT
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BNP Case Study
Letting (as before) µC and µT be the mean hospitalization rates (per

two years) in the population P (of all elderly non-institutionalized
people in Denmark in the early 1980s) under the C and T conditions,

respectively, the inferential quantity of main interest is still
θ = µT−µC

µC
(or this could be redefined without loss as θ = µT

µC
); how

can You draw valid and accurate inferences about θ while coping
with Your uncertainty about the population C and T CDFs — call
them FC and FT , respectively — of numbers of hospitalizations per

person (per two years)?
One approach: Bayesian qualitative-quantitative inference (Draper
2013): exchangeability implies a multinomial sampling distribution
on the qualitative outcome variable with category labels 0, 1, . . . ,
and this permits optimal model specification here (this approach

treats the hospitalization outcome categorically but permits
quantitative inference about θ).

Another approach: Bayesian nonparametric modeling — it turns out
that DP priors put all their mass on discrete distributions, so one

BNP model for this data set would involve placing parallel DPs priors
on FC and FT ; see KKD (2008) for details on the results.
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BNP Case Study (continued)

To serve as the basis of the M∗ (cheating) approach (in which You
look at the data for inspiration on which models to fit), here’s a

table of the actual data values:
Number of Hospitalizations

Group 0 1 2 3 4 5 6 7 n Mean SD
Control 138 77 46 12 8 4 0 2 287 0.944 1.24

Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently (description) IHGA lowered the mean hospitalization rate
(for these elderly Danish people, at least) by (0.944− 0.768) = 0.176,
which is a

{
100

( 0.768−0.944
0.944

) .
=
}

19% reduction from the control level,
a difference that’s large in clinical terms, but (inference) how strong

is the evidence for a positive effect in P = {all people similar to those
in the experiment}?

It’s natural to think initially of parallel Poisson(λC ) and Poisson(λT )
modeling (M1), but there’s substantial over-dispersion: the C and T

variance-to-mean ratios are 1.242

0.944
.

= 1.63 and 1.012

0.768
.

= 1.33.
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Bayesian Parametric Modeling
Unfortunately we have no covariates to help explain the extra-Poisson

variability, and there’s little information external to the data set
about the treatment effect; this latter state of knowledge is expressed

in prior distributions on parameters by making them diffuse (i.e.,
ensuring they have large variability to express

substantial uncertainty).

In this situation You could fit parallel Negative Binomial models
(M2), but a parametric choice that more readily generalizes is

obtained by letting (xi , yi ) = (C/T status, outcome) — so that xi = 1 if
Treatment, 0 if Control and yi = the number of hospitalizations —

for person i = 1, . . . , n and considering the
random-effects Poisson regression model (M3):

(yi |λi M3 B)
indep∼ Poisson(λi )

log(λi ) = γ0 + γ1xi + εi (2)
(εi |σ2

ε M3 B)
IID∼ N

(
0, σ2

ε

)(
γ0 γ1 σ

2
ε |M3 B

)
∼ diffuse.

In this model the unknown of main policy interest is
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BNP Example
θ = population T̄

population C̄
= eγ1 ; the other parameters can be collected in a

vector η = (γ0, σ
2
ε ); and the random effects εi can be thought of as

proxying for the combined main effect
∑J

j=2 γj(xij − x̄j) of all the
unobserved relevant covariates (age, baseline health status, ...).

The first line of (2) makes good scientific sense (the yi are counts of
relatively rare events), but the Gaussian assumption for the random
effects is conventional and not driven by the science; a potentially
better model (M4) is obtained by putting a prior distribution on the
CDF of the εi that’s centered at the N

(
0, σ2

ε

)
distribution but that

expresses substantial prior uncertainty about the
Gaussian assumption:

(yi |λi M4 B)
indep∼ Poisson(λi )

log(λi ) = γ0 + γ1xi + εi (3)
(εi |F M4 B)

IID∼ F
(F |ασ2

ε M4 B) ∼ DP(α,F0), F0 = N(0, σ2
ε )(

γ0 γ1 σ
2
ε |M4 B

)
∼ diffuse; (α|M4) ∼ small positive .
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Dirichlet-Process Mixture Modeling

Many Bayesian prior distributions p(θ|Mj B) have two user-friendly
inputs: a quantity θ0 that acts like a prior estimate of the unknown
θ, and a number n0 that behaves like a prior sample size (i.e., a

measure of how tightly the prior is concentrated around θ0); DP
priors are no exception to this pattern.

In equation (3), DP(α,F0) is a Dirichlet-process prior on F with prior
estimate F0 = N(0, σ2

ε ) and a quantity (α) that behaves something like
a prior sample size; this is referred to as Dirichlet-process mixture

modeling, because (3) is a mixture model — each person in the study
has her/his own λ, drawn from FC (control) or FT (treatment) — in

which uncertainty about FC and FT is quantified via a DP.

NB Bayesian model averaging (BMA) with a finite set of models
can be regarded as a crude approximation to what Bayesian

nonparametric (BNP) modeling is trying to do, namely average over
Your uncertainty in model space to provide an honest representation

of Your overall uncertainty that doesn’t condition on things You
don’t know are true.
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Cross-Validation
• Calibration cross-validation (CCV): The way the IHGA example
unfolded looks a lot like the M∗ approach I condemned previously: I

used the entire data set to suggest which models to consider.

This has the (strong) potential to underestimate uncertainty;
Bayesians (like everybody else) need to be able to look at the data to

suggest alternative models, but all of us need to do so
in a way that’s well-calibrated.

Cross-validation — partitioning the data (e.g., exchangeably) into
subsets used for different tasks (modeling, validation, ...) can help.

— The M∗ approach is an example of what might be called 1CV
(one-fold cross-validation): You use the entire data set D both to

model and to see how good the model is (this is clearly inadequate).

— 2CV (two-fold cross-validation) is frequently used: You (a)
partition the data into modeling (M) and validation (V) subsets, (b)
use M to explore a variety of models until You’ve found a “good” one
M∗, and (c) see how well M∗ validates in V (a useful Bayesian way to

do this is to use the data in M
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Calibration Cross-Validation (CCV)
to construct posterior predictive distributions for all of the data

values in V and see how the latter compare with the former).

2CV is a lot better than 1CV, but what do You do (as frequently
happens) if M∗ doesn’t validate well in V?

— CCV (calibration cross-validation): going out one more term in
the Taylor series (so to speak),

(a) partition the data into modeling (M), validation (V) and
calibration (C) subsets,

(b) use M to explore a variety of models until You’ve found one or
more plausible candidates M = {M1, . . . ,Mm},

(c) see how well the models in M validate in V,

(d) if none of them do, iterate (b) and (c) until You do get good
validation, and

(e) fit the best model in M (or, better, use BMA) on the data in M +
V, and report both (i) inferential conclusions based on this fit and (ii)
the quality of predictive calibration of Your model/ensemble) in C.
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CCV (continued)
The goal with this method is both

(1) a good answer, to the main scientific question, that has paid a
reasonable price for model uncertainty (the inferential answer is
based only on M + V, making Your uncertainty bands wider) and

(2) an indication of how well calibrated {the iterative fitting process
yielding the answer in (1)} is in C (a good proxy for future data).

You can use decision theory (Draper and Southwood, 2013) to decide
how much data to put in each of M, V and C: the more important

calibration is to You, the more data You want to put in C, but only up
to a point, because getting a good answer to the scientific question is

also important to You.
This is related to the machine-learning practice (e.g., Hastie,
Tibshirani, Friedman [HTF] 2009) of Train/Validation/Test

partitioning, with one improvement (decision theory provides an
optimal way to choose the data subset sizes); I don’t agree with HTF

that this can only be done with large data sets: it’s even more
important to do it with small and medium-size data sets (You just

need to work with multiple (M, V, C) partitions and average).
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Modeling Algorithm
CCV provides a way to pay the right price for hunting around in the
data for good models, motivating the following modeling algorithm:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

For human analysts the choice in (a) is not hard, although it might
not be easy to automate in full generality; for humans the choice in

(c) demands creativity, and as a profession, at present, we have no
principled way to automate it; here I want to focus on the questions

in (b) and (d):

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?
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The Modeling-As-Decision Principle

These questions sound fundamental but are not: better for what
purpose? Good enough for what purpose? This implies (see, e.g.,

Bernardo and Smith, 1995; Draper, 1996; Key et al., 1999) a

Modeling-As-Decision Principle: Making clear the purpose to which
the modeling will be put transforms model specification into a

decision problem, which should be solved by maximizing expected
utility with a utility function tailored to the specific problem

under study.

Some examples of this may be found (e.g., Draper and Fouskakis, 2008:
variable selection in generalized linear models under cost

constraints), but this is hard work; there’s a powerful desire for
generic model-comparison methods whose utility structure may

provide a decent approximation to problem-specific utility elicitation.

Two such methods are Bayes factors and log scores.

• Bayes factors. It looks natural to compare models on the basis of
their posterior probabilities; from Bayes’s Theorem in odds form,
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Bayes Factors

p(M2|D B)

p(M1|D B)
=

[
p(M2|B)

p(M1|B)

]
·
[

p(D|M2 B)

p(D|M1 B)

]
; (4)

the first term on the right is just the prior odds in favor of M2 over M1,
and the second term on the right is called the Bayes factor,

so in words equation (4) says
posterior

odds
for M2
over M1

 =

 prior odds
for M2
over M1

 ·
 Bayes factor

for M2
over M1

 . (5)

(Bayes factors seem to have first been considered by Turing and Good
(∼ 1941), as part of the effort to break the German Enigma codes.)

Odds o are related to probabilities p via o = p
1−p and p = o

1+o ; these
are monotone increasing transformations, so the decision rules
{choose M2 over M1 if the posterior odds for M2 are greater} and
{choose M2 over M1 if p(M2|D B) > p(M1|D B)} are equivalent.
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Decision-Theoretic Basis for Bayes Factors
This approach does have a decision-theoretic basis, but it’s rather odd:
if You pretend that the only possible data-generating mechanisms are
M = {M1, . . . ,Mm} for finite m, and You pretend that one of the

models in M must be the true data-generating mechanism MDG , and
You pretend that the utility function

U(M,MDG ) =

{
1 if M = MDG
0 otherwise

}
(6)

reflects Your real-world values, then it’s decision-theoretically
optimal to choose the model in M with the highest posterior

probability (i.e., that choice maximizes expected utility).

If it’s scientifically appropriate to take the prior model probabilities
p(Mj |B) to be equal, this rule reduces to choosing the model with the

highest Bayes factor in favor of it; this can be found by (a)
computing the Bayes factor in favor of M2 over M1,

BF (M2 over M1|D B) =
p(D|M2 B)

p(D|M1 B)
, (7)
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Parametric Model Comparison

favoring M2 if BF (M2 over M1|D B) > 1, i.e., if
p(D|M2 B) > p(D|M1 B), and calling the better model M∗; (b)

computing the Bayes factor in favor of M∗ over M3, calling the better
model M∗; and so on up through Mm.

Notice that there’s something else a bit funny about this: p(D|Mj B) is
the prior (not posterior) predictive distribution for the data set D

under model Mj , so the Bayes factor rule tells You to choose the
model that does the best job of predicting the data

before any data arrives.

Let’s look at the general problem of parametric model comparison,
in which model Mj has its own parameter vector γj (of length kj),

where γj = (θ, ηj), and is specified by

Mj :

{
(γj |Mj B) ∼ p(γj |Mj B)

(D|γj Mj B) ∼ p(D|γj Mj B)

}
. (8)

Here the quantity p(D|Mj B) that defines the Bayes factor is
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Integrated Likelihoods

p(D|Mj B) =

∫
p(D|γj Mj B) p(γj |Mj B) dγj ; (9)

this is called an integrated likelihood (or marginal likelihood) because
it tells You to take a weighted average of the sampling

distribution/likelihood p(D|γj Mj B), but NB weighted by the
prior for γj in model Mj ; as noted above, this may seem surprising, but

it’s correct, and it can lead to trouble, as follows.

The first trouble is technical: the integral in (9) can be difficult to
compute, and may not even be easy to approximate.

The second thing to notice is that (9) can be rewritten as

p(D|Mj B) = E(γj |Mj B) p(D|γj Mj B) . (10)

In other words the integrated likelihood is the expectation of the
sampling distribution over the prior for γj in model Mj (evaluated at

the observed data set D).

A few additional words about prior distributions on parameters:
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Instability of Bayes Factors
A distribution (density) for a real-valued parameter θ that

summarizes the information

{θ is highly likely to be near θ0}

will have most of its mass concentrated near θ0,
whereas the information

{not much is known about θ}

would correspond to a density that’s rather flat (or diffuse) across a
broad range of θ values; thus when the scientific context offers little

information about γj external to the data set D, this translates into a
diffuse prior on γj , and this spells trouble for Bayes factors:

p(D|Mj B) = E(γj |Mj B) p(D|γj Mj B) .

You can see that if the available information implies that p(γj |Mj B)
should be diffuse, the expectation defining the integrated likelihood

can be highly unstable with respect to small details in how the
diffuseness is specified.

Example: Integer-valued data set D = (y1 . . . yn); ȳ = 1
n
∑n

i=1 yi ;
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Instability of Bayes Factors (continued)
M1 = Geometric(θ1) likelihood with a Beta(α1, β1) prior on θ1;
M2 = Poisson(θ2) likelihood with a Gamma(α2, β2) prior on θ2.

The Bayes factor in favor of M1 over M2 turns out to be
Γ(α1 + β1) Γ(n + α1) Γ(nȳ + β1) Γ(α2) (n + β2)nȳ+α2

(∏n
i=1 yi !

)
Γ(α1) Γ(β1) Γ(n + nȳ + α1 + β1) Γ(nȳ + α2)βα2

2
. (11)

With standard diffuse priors — take (α1, β1) = (1, 1) and
(α2, β2) = (ε, ε) for some ε > 0 — the Bayes factor reduces to

Γ(n + 1) Γ(nȳ + 1) Γ(ε) (n + ε)nȳ+ε
(∏n

i=1 yi !
)

Γ(n + nȳ + 2) Γ(nȳ + ε) εε
. (12)

This goes to +∞ as ε ↓ 0, i.e., You can make the evidence in favor of
the Geometric model over the Poisson as large as You want, no

matter what the data says, as a function of a quantity near 0 that
scientifically You have no basis to specify.

If instead You fix and bound (α2, β2) away from 0 and let (α1, β1) ↓ 0,
You can completely reverse this and make the evidence in favor of the
Poisson model over the Geometric as large as You want (for any y).
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Approximating Integrated Likelihoods
The bottom line is that, when scientific context suggests diffuse

priors on the parameter vectors in the models being compared, the
integrated likelihood values that are at the heart of Bayes factors

can be hideously sensitive to small arbitrary details in how the
diffuseness is specified.

This has been well-known for quite awhile now, and it’s given rise to an
amazing amount of fumbling around, as people who like Bayes

factors have tried to find a way to fix the problem: at this point the list
of attempts includes {partial, intrinsic, fractional} Bayes factors,

well-calibrated priors, conventional priors, intrinsic priors, expected
posterior priors, ... (e.g., Pericchi 2004), and all of them exhibit a level
of ad-hockery that’s otherwise absent from the Bayesian paradigm.

Approximating integrated likelihoods. The goal is

p(D|Mj B) =

∫
p(D|γj Mj B) p(γj |Mj B) dγj ; (13)

maybe there’s an analytic approximation to this that will suggest
how to avoid trouble.
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Laplace Approximation
Laplace (1785) already faced this problem 225 years ago, and he

offered a solution that’s often useful, which people now call a Laplace
approximation in his honor (it’s an example of what’s also known in the
applied mathematics literature as a saddle-point approximation).

Noticing that the integrand P∗(γj) ≡ p(D|γj Mj B) p(γj |Mj B) in
p(D|Mj B) is an un-normalized version of the posterior distribution

p(γj |D Mj B), and appealing to a Bayesian version of the Central Limit
Theorem — which says that with a lot of data, such a posterior

distribution should be close to Gaussian, centered at the posterior
mode γ̂j — You can see that (with a large sample size n) log P∗(γj)

should be close to quadratic around that mode; the Laplace idea is to
take a Taylor expansion of log P∗(γj) around γ̂j and retain only the

terms out to second order; the result is
log p(D|Mj B) = log p(D|γ̂j Mj B) + log p(γ̂j |Mj B)

+
kj
2 log 2π − 1

2 log |Îj |+ O
(

1
n

)
; (14)

here γ̂j is the maximum likelihood estimate of the parameter vector
γj under model Mj and Îj is the observed information matrix under Mj .
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BIC
Notice that the prior on γj in model Mj enters into this approximation

through log p(γ̂j |Mj B), and this is a term that won’t go away with
more data: as n increases this term is O(1).

Using a less precise Taylor expansion, Schwarz (1978) obtained a
different approximation that’s the basis of what has come to be

known as the Bayesian information criterion (BIC):

log p(y |Mj B) = log p(y |γ̂j Mj B)− kj
2 log n + O(1). (15)

People often work with a multiple of this for model comparison:

BIC(Mj |D B) = −2 log p(D|γ̂j Mj B) + kj log n (16)

(the −2 multiplier comes from deviance considerations); multiplying
by –2 induces a search (with this approach) for models with small BIC.

This model-comparison method makes an explicit trade-off between
model complexity (which goes up with kj at a log n rate) — and model

lack of fit (through the −2 log p(D|γ̂j Mj B) term).
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BIC and the Unit-Information Prior
BIC is called an information criterion because it resembles

AIC (Akaike, 1974). which was derived using
information-theoretic reasoning:

AIC(Mj |D B) = −2 log p(D|γ̂j Mj B) + 2 kj . (17)

AIC penalizes model complexity at a linear rate in kj and so can have
different behavior than BIC, especially with moderate to large n (BIC

tends to choose simpler models; more on this later).

It’s possible to work out what implied prior BIC is using, from the
point of view of the Laplace approximation; the result is

(γj |Mj B) ∼ Nkj (γ̂j , nÎ−1
j ). (18)

In the literature this is called a unit-information prior, because in large
samples it corresponds to the prior being equivalent to 1 new

observation yielding the same sufficient statistics
as the observed data.

This prior is data-determined, but this effect is close to negligible
even with only moderate n.
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Bayes Factors; Log Scores
The BIC approximation to Bayes factors has the extremely desirable

property that it’s free of the hideous instability of integrated
likelihoods with respect to tiny details, in how diffuse priors are

specified, that do not arise directly from the science of the problem;
in my view, if You’re going to use Bayes factors to choose among

models, You’re well advised to use a method like BIC that protects
You from Yourself in mis-specifying those tiny details.

I said back on page 18 that there are two generic utility-based
model-comparison methods: Bayes factors and log scores.

• Log scores are based on the

Prediction Principle: Good models make good predictions, and bad
models make bad predictions; that’s one scientifically important way

You know a model is good or bad.

This suggests developing a generic utility structure based on predictive
accuracy: consider first a setting in which D = y = (y1 . . . yn) for

real-valued yi and the models to be compared are (as before)
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Log Scores

Mj:

{
(γj |Mj B) ∼ p(γj |Mj B)

(y |γj Mj B) ∼ p(y |γj Mj B)

}
. (19)

When comparing a (future) data value y∗ with the predictive
distribution p(·|y Mj B) for it under Mj , it’s been shown that (under

reasonable optimality criteria) all optimal scores measuring the
discrepancy between y∗ and p(·|y Mj B) are linear functions of

log p(y∗|y Mj B) (the log of the height of the predictive distribution at
the observed value y∗).

Using this fact, perhaps the most natural-looking form for a composite
measure of predictive accuracy of Mj is a cross-validated version of

the resulting log score,

LSCV (Mj |y B) =
1
n

n∑
i=1

log p(yi |y−i Mj B) , (20)

in which y−i is the y vector with observation i omitted.

Somewhat surprisingly, Draper and Krnjajić (2010) have shown that a
full-sample log score that omits the leave-one-out idea,
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Full-Sample Log Score

LSFS(Mj |y B) =
1
n

n∑
i=1

log p(yi |y Mj B) , (21)

made operational with the rule {favor M2 over M1 if
LSFS(M2|y B) > LSFS(M1|y B)}, can have better small-sample model

discrimination ability than LSCV (in addition to being faster to
approximate in a stable way).

If, in the spirit of calibration, You’re prepared to think about an
underlying data-generating model MDG , LSFS also has a nice
interpretation as an approximation to the Kullback-Leibler
divergence between MDG and p(·|y Mj B), in which MDG is

approximated by the empirical CDF:

KL[p(·|y Mj B)||MDG ] = EMDG log MDG − EMDG log p(·|y Mj B)
.

= EMDG log MDG − LSFS(Mj |y B) ; (22)

the first term on the right side of (22) is constant in p(·|y Mj B), so
minimizing KL[p(·|y Mj B||MDG )] is approximately the same as

maximizing LSFS .
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Bayes Factors/BIC Versus Log Scores
What follows is a sketch of recent results (Draper, 2013) based on

simulation experiments with realistic sample sizes; in my view
standard asymptotic calculations — choosing between the models

in M = {M1,M2} as n→∞ with M remaining fixed — are
essentially irrelevant in calibration studies, for two reasons:

(1) With increasing n, You’ll want M to grow to satisfy Your desire
to do a better job of capturing real-world complexities, and

(2) Data usually accumulate over time, and with increasing n it
becomes more likely that the real-world process You’re modeling is

not stationary.

• Versions of Bayes factors that behave sensibly with diffuse priors
on the model parameters (e.g., intrinsic Bayes factors: Berger and

Pericchi, 1996, and more recent cousins) tend to have model
discrimination performance similar to that of BIC in calibration

(repeated-sampling with known MDG ) environments; I’ll show results
for BIC here.

Example: Consider assessing the performance of a drug, for lowering
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Clinical Trial to Quantify Improvement
systolic blood pressure (SBP) in hypertensive patients, in a phase–II
clinical trial, and suppose that a Gaussian sampling distribution for
the outcome variable is reasonable (possibly after transformation).

Two frequent designs in settings of this type have as their goals
quantifying improvement and establishing bio-equivalence.

• (quantifying improvement) Here You want to estimate the mean
decline in blood pressure under this drug, and it would be natural to
choose a repeated-measures (pre-post) experiment, in which SBP

values are obtained for each patient, both before and after taking the
drug for a sufficiently long period of time for its effect to

become apparent.

Let θ stand for the mean difference (SBPbefore − SBPafter ) in the
population of patients to which it’s appropriate to generalize from

the patients in Your trial, and let D = y = (y1 . . . yn). where yi is the
observed difference (SBPbefore − SBPafter ) for patient i (i = 1, . . . , n).

The real-world purpose of this experiment is to decide whether to
take the drug forward to phase III; under the weight of 20th-century
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Decision, Not Inference
inertia (in which decision-making was strongly — and incorrectly —
subordinated to inference), Your first impulse might be to treat this

as an inferential problem about θ, but it’s not;
it’s a decision problem that involves θ.

This is an example of the

• Decision-Versus-Inference Principle: We should all get out of the
habit of using inferential methods to make decisions: their implicit

utility structure is often far from optimal.

The action space here is A = (a1, a2) = (don’t take the drug forward
to phase III, do take it forward), and a sensible utility function

U(aj , θ) should be continuous and monotonically increasing in θ over
a broad range of positive θ values (the bigger the SBP decline for

hypertensive patients who start at (say) 160 mmHg, the better, up
to a drop of about 40 mmHg, beyond which the drug starts inducing

fainting spells).

However, to facilitate a comparison between BIC and log scores, here
I’ll compare two models M1 and M2 that dichotomize the θ range,
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Models For Quantifying Improvement
but not at 0: despite a century of textbook claims to the contrary,
there’s nothing special about θ = 0 in this setting, and in fact You

know scientifically that θ is not exactly 0 (because the outcome
variable in this experiment is conceptually continuous).

What matters here is whether θ > ∆, where ∆ is a
practical significance improvement threshold below which the drug is

not worth advancing into phase III (for example, any drug that did
not lower SBP for severely hypertensive patients — those whose

pre-drug values average 160 mmHg or more — by at least 15 mmHg
would not deserve further attention).

With little information about θ external to this experimental data
set, what counts in this situation is the comparison of the following

two models:

M1:

{
(θ|B) ∼ diffuse for θ ≤ ∆

(yi |θB)
IID∼ N(θ, σ2)

}
and (23)

M2:

{
(θ|B) ∼ diffuse for θ > ∆

(yi |θB)
IID∼ N(θ, σ2)

}
, (24)
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Quantifying Improvement: Model Comparison Methods

in which for simplicity I’ll take σ2 to be known (the results are similar
with σ2 learned from the data).

This gives rise to three model-selection methods that can be
compared calibratively:

• Full-sample log scores: choose M2 if LSFS(M2|y B) > LSFS(M1|y B).

• Posterior probability: let
M∗ = {(θ|B) ∼ diffuse on <, (yi |θB)

IID∼ N(θ, σ2)} and choose M2 if
p(θ > ∆|y M∗ B) > 0.5.

• BIC: choose M2 if BIC(M2|y B) < BIC(M1|y B).

Simulation experiment details, based on the SBP drug trial: ∆ = 15;
σ = 10; n = 10, 20, . . . , 100; data-generating θDG = 11, 12, . . . , 19;

α = 0.05; 1,000 simulation replications; Monte-Carlo approximations
of the predictive ordinates in LSFS based on 10,000 posterior draws.

The figures below give Monte-Carlo estimates of the
probability that M2 is chosen.
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LSFS Results: Quantifying Improvement
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This exhibits all the monotonicities that it should, and correctly
yields 0.5 for all n with θDG = 15.
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Posterior Probability Results: Quantifying Improvement
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Even though the LSFS and posterior-probability methods are quite
different, their information-processing in discriminating between M1
and M2 is identical to within ± 0.003 (well within simulation noise

with 1,000 replications).
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BIC Results: Quantifying Improvement
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Here BIC and the posterior-probability approach are algebraically
identical, making the model-discrimination performance of all three

approaches the same in this problem.
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Establishing Bio-Equivalence
• (establishing bio-equivalence) In this case there’s a previous

hypertension drug B (call the new drug A) and You’re wondering if
the mean effects of the two drugs are close enough to regard them as

bio-equivalent.

A good design here would again have a repeated-measures character,
in which each patient’s SBP is measured four times: before and after

taking drug A, and before and after taking drug B (allowing enough
time to elapse between taking the two drugs for the effects of the first

drug to disappear).

Let θ stand for the mean difference

[(SBPbefore,A − SBPafter ,A)− (SBPbefore,B − SBPafter ,B)] (25)

in the population of patients to which it’s appropriate to generalize
from the patients in Your trial, and let yi be the corresponding

difference for patient i (i = 1, . . . , n).

Again in this setting there’s nothing special about θ = 0, and as
before You know scientifically that θ is not exactly 0;
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Bio-Equivalence Modeling
what matters here is whether |θ| ≤ λ, where λ > 0 is a practical

significance bio-equivalence threshold (e.g., 5 mmHg).

Assuming as before a Gaussian sampling story and little information
about θ external to this experimental data set, what counts here is a

comparison of

M3:

{
(θ|B) ∼ diffuse for |θ| ≤ λ

(yi |θB)
IID∼ N(θ, σ2)

}
and (26)

M4:

{
(θ|B) ∼ diffuse for |θ| > λ

(yi |θB)
IID∼ N(θ, σ2)

}
, (27)

in which σ2 is again taken for simplicity to be known.

A natural alternative to BIC and LSFS here
is again based on posterior probabilities: as before, let

M∗ = {(θ|B) ∼ diffuse on <, (yi |θB)
IID∼ N(θ, σ2)}, but this time favor

M4 over M3 if p(|θ| > λ|y M∗ B) > 0.5.

As before, a careful real-world choice between M3 and M4 in this case
would be based on a utility function that quantified the
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Bio-Equivalence Model Comparison
costs and benefits of

{claiming the two drugs were bio-equivalent when they were,
concluding that they were bio-equivalent when they were not,

deciding that they were not bio-equivalent when they were,
judging that they were not bio-equivalent when they were not},

but here I’ll again simply compare the calibrative performance of
LSFS , posterior probabilities, and BIC.

Simulation experiment details, based on the SBP drug trial: λ = 5;
σ = 10; n = 10, 20, . . . , 100; data-generating

θDG = {−9,−7,−5,−3,−1, 0, 1, 3, 5, 7, 9}; α = 0.05; 1,000 simulation
replications, M = 10,000 Monte-Carlo draws for LSFS .

NB It has previously been established that when making the
(unrealistic) sharp-null comparison θ = 0 versus θ 6= 0 in the context

of (yi |θB)
IID∼ N(θ, σ2), as n→∞ LSFS selects the θ 6= 0 model with

probability → 1 even when θDG = 0; this “inconsistency of log scores
at the null model” has been used by some people as a reason to

dismiss log scores as a model-comparison method.
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LSFS Results: Bio-Equivalence
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In this more realistic setting, comparing |θ| ≤ λ versus |θ| > λ with
λ > 0, LSFS has the correct large-sample behavior, both when

|θDG | ≤ λ and when |θDG | > λ.
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Posterior Probability Results: Bio-Equivalence
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The qualitative behavior of the LSFS and posterior-probability
methods is identical, although there are some numerical differences

(highlighted later).
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BIC Results: Bio-Equivalence
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In the quantifying-improvement case, the BIC and
posterior-probability methods were algebraically identical; here they

nearly coincide (differences of ± 0.001 with
1,000 simulation repetitions).
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LSFS Versus BIC Results: Bio-Equivalence
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If You call choosing M4: |θ| > λ when |θDG | ≤ λ a false-positive error
and choosing M3: |θ| ≤ λ when |θDG | > λ a false-negative mistake,

with n = 10 there’s a trade-off: LSFS has more false positives and BIC
has more false negatives.
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LSFS Versus BIC Results: Bio-Equivalence

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LS.FS Versus BIC (n = 50)

Data−Generating Theta

P
( 

M
.4

 C
ho

se
n 

)

LS.FS
BIC

By the time You reach n = 50 in this problem, LSFS and BIC are
essentially equivalent.
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The Decision-Versus-Inference Principle, Revisited
In the context of the quantifying-improvement example, the

real-world purpose of the experiment was to decide whether or not
to take the drug forward to phase III.

Suppose that You tried to solve this decision problem with a popular
inferential tool: frequentist hypothesis-testing of H0: θ ≤ ∆ versus

HA: θ > ∆ at significance level α.

Decision-theoretically this is already wrong; as noted back on page
34, the utility function should actually be continuous in θ rather than

artificially dichotomizing Θ into (−∞,∆] and (∆,∞).

Even if You temporarily buy into this incorrect dichotomization, to
solve the problem properly You’d have to quantify the real-world
consequences of each of the cells in this table specifying U(a, θ)

(here uij ≥ 0):

Truth
Action θ ≤ ∆ θ > ∆

a1 (stop) u11 −u12
a2 (phase III) −u21 u22
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Decision-Theory (Not Inference) For Decision Problems
Truth

Action θ ≤ ∆ θ > ∆
a1 (stop) u11 −u12

a2 (phase III) −u21 u22

• u11 is the gain from correctly not taking the drug forward
to phase III (this is clearly 0);

• u12 is the loss from incorrectly failing to take the drug forward
to phase III;

• u21 is the loss from incorrectly taking the drug forward to phase III;

• u22 is the gain from correctly taking the drug forward to phase III.

The optimal Bayesian decision turns out to be:
choose a2 (go forward to phase III) iff

P(θ > ∆|y B) ≥ u21
u12 + u21 + u22

= u∗ . (28)

The frequentist (hypothesis-testing) inferential approach is
equivalent to this only if
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Optimal Decision-Making in Phase-II Trials
α = 1− u∗ =

u12 + u22
u12 + u21 + u22

. (29)

The implicit trade-off between false positives and false negatives in
BIC and LSFS — and the built-in trade-off in level–α

hypothesis-testing for any given α — may be close to optimal or not,
according to the real-world values of {u12, u21, u22}.

In phase-II clinical trials or micro-array experiments, when You’re
screening many drugs or genes for those that may lead to an

effective treatment and — from the drug company’s point of view
— a false-negative error (of failing to move forward with a drug or
gene that’s actually worth further investigation) can be much more
costly than a false-positive mistake, this corresponds to u12 >> u21
and leads in the hypothesis-testing approach in phase-II trials to a

willingness to use (much) larger α values than the conventional 0.01
or 0.05, something that good frequentist biostatisticians have long

known intuitively.
(In work I’ve done with a Swiss pharmaceutical company, this

approach led to α values on the order of 0.45, which is close to the
implicit trade-off in BIC and LSFS .)
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For People Who Like to Test Sharp-Null Hypotheses
An extreme example of the false-positive/false-negative differences

between LSFS and BIC in this setting may be obtained, albeit
unwisely, by letting λ ↓ 0.

This is unwise here (and is often unwise) because it amounts, in
frequentist language, to testing the sharp-null hypothesis H0: θ = 0

against the alternative HA: θ 6= 0.

It’s necessary to distinguish between problems in which there is or is
not a structural singleton in the (continuous) set Θ of possible

values of θ: settings where it’s scientifically important to distinguish
between θ = θ0 and θ 6= θ0 — an example would be discriminating

between {these two genes are on different chromosomes (the
strength θ of their genetic linkage is θ0 = 0)} and {these two genes

are on the same chromosome (θ > 0)}.

Sharp-null testing without structural singletons is always unwise
because

(a) You already know from scientific context, when the outcome
variable is continuous, that H0 is false, and (relatedly)
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Testing Sharp-Null Hypotheses (continued)
(b) it’s silly from a measurement point of view: with a

(conditionally) IID N(θ, σ2) sample of size n, your measuring
instrument ȳ is only accurate to resolution σ√

n > 0; claiming to be
able to discriminate between θ = 0 and θ 6= 0 — with realistic values

of n — is like someone with a scale that’s only accurate to the
nearest ounce telling You that Your wedding ring has 1 gram (0.035

ounce) less gold in it than the jeweler claims it does.

Nevertheless, for people who like to test sharp-null hypotheses, here
are some results: here I’m comparing the models (i = 1, . . . , n)

M5:

{
(σ2|B) ∼ diffuse on (0, large)

(yi |σ2 B)
IID∼ N(0, σ2)

}
and (30)

M6:

{
(θ σ2|B) ∼ diffuse on (−large, large)× (0, large)

(yi |θ σ2 B)
IID∼ N(θ, σ2)

}
, (31)

In this case a natural Bayesian competitor to BIC and LSFS would be
to construct the central 100(1− α)% posterior interval for θ under

M6 and choose M6 if this interval doesn’t contain 0.
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Testing Sharp-Null Hypotheses (continued)
Simulation experiment details: data-generating σDG = 10;

n = 10, 20, . . . , 100; data-generating θDG = {0, 1, . . . , 5}; 1,000
simulation replications, M = 100,000 Monte-Carlo draws for LSFS ;

the figures below give Monte-Carlo estimates of the
probability that M6 is chosen.

As before, let’s call choosing M6: θ 6= 0 when θDG = 0 a false-positive
error and choosing M5: θ = 0 when θDG 6= 0 a false-negative mistake.
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LSFS Results: Sharp-Null Testing
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In the limit as λ ↓ 0, the LSFS approach makes hardly any
false-negative errors but quite a lot of false-positive mistakes.
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Interval (α = 0.05) Results: Sharp-Null Testing
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The behavior of the posterior interval approach is of course quite
different: it makes many false-negative errors because its rate of

false-positive mistakes is fixed at 0.05.
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Interval (α Modified to LSFS Behavior) Results
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When the interval method is modified so that α matches the LSFS
behavior at θDG = 0 (letting α vary with n), the two approaches have

identical model-discrimination ability.
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BIC Results: Sharp-Null Testing
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BIC’s behavior is quite different from that of LSFS and fixed-α
posterior intervals: its false-positive rate decreases as n grows, but it

suffers a high false-negative rate to achieve this goal.
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Interval (α Modified to BIC Behavior) Results
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When the interval method is modified so that α matches the BIC
behavior at θDG = 0 (again letting α vary with n), the two approaches

have identical model-discrimination ability.
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LSFS Versus BIC: Geometric Versus Poisson
As another model-comparison example, suppose You have an

integer-valued data set D = y = (y1 . . . yn) and You wish to compare

M7 = Geometric(θ1) sampling distribution with a
Beta(α1, β1) prior on θ1, and

M8 = Poisson(θ2) sampling distribution with a
Gamma(α2, β2) prior on θ2.

LSFS and BIC both have closed-form expressions in this situation:
with s =

∑
i=1 yi and θ̂1 = α1+n

α1+β1+s+n ,

LSFS(M7|y B) = log Γ(α1 + n + β1 + s) + log Γ(α1 + n + 1)

− log Γ(α1 + n)− log Γ(β1 + s) (32)

+
1
n

n∑
i=1

[log Γ(β1 + s + yi )

− log Γ(α1 + n + β1 + s + yi + 1)] ,

BIC(M7|y B) = −2[n log θ̂1 + s log(1− θ̂1)] + log n , (33)
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Geometric Versus Poisson (continued)
LSFS(M8|y B) = (α2 + s) log(β2 + n)− log Γ(α2 + s)

−(α2 + s) log(β2 + n + 1) (34)

+
1
n

n∑
i=1

[log Γ(α2 + s + yi )− yi log(β2 + n + 1)

− log Γ(yi + 1)] , and

BIC(M8|y B) = −2[s log θ̂2 − n θ̂2 −
n∑

i=1
log(yi !)] + log n , (35)

where θ̂2 = α2+s
β2+n .

Simulation details: n = {10, 20, 40, 80}, α1 = β1 = α2 = β2 = 0.01,
1,000 simulation replications; it turns out that with (θ1)DG = 0.5

(Geometric) and (θ2)DG = 1.0 (Poisson), both data-generating
distributions are monotonically decreasing and not easy to tell apart

by eye.

Let’s call choosing M8 (Poisson) when MDG = Geometric a
false-Poisson error and choosing M7 (Geometric) when MDG =

Poisson a false-Geometric mistake.
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Geometric Versus Poisson (continued)

The table below records the Monte-Carlo probability that the
Poisson model was chosen.

M.DG = Poisson M.DG = Geometric

n LS.FS BIC n LS.FS BIC

10 0.8967 0.8661 10 0.4857 0.4341
20 0.9185 0.8906 20 0.3152 0.2671
40 0.9515 0.9363 40 0.1537 0.1314
80 0.9846 0.9813 80 0.0464 0.0407

Both methods make more false-Poisson errors than false-Geometric
mistakes; the results reveal once again that neither BIC nor LSFS

uniformly dominates — each has a different pattern of false-Poisson
and false-Geometric errors (LSFS correctly identifies the Poisson

more often than BIC does, but as a result BIC gets the Geometric
right more often than LSFS).
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Properties of LSFS

• Log scores are entirely free from the diffuse-prior problems
bedeviling Bayes factors:

LSFS(Mj |y B) =
1
n

n∑
i=1

log p(yi |y Mj B) ,

in which

p(yi |y Mj B) =

∫
p(yi |γj Mj B) p(γj |y Mj B) dγj (36)

= E(γj |y Mj B)p(yi |γj Mj B) ;

this expectation is over the posterior (not the prior) distribution for
the parameter vector γj in model Mj , and is therefore completely
stable with respect to small variations in how prior diffuseness (if
scientifically called for) is specified, even with only moderate n.

• Following the Modeling-As-Decision Principle, the
decision-theoretic justification for Bayes factors involves not only

the Bayes factors themselves but also the prior model probabilities,
which can be hard to specify in a scientifically-meaningful way: under

the Bayes-factor (possibly unrealistic) 0/1 utility structure,
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Properties of LSFS (continued)
You’re supposed to choose the model with the highest posterior

probability, not the one with the biggest Bayes factor.

By contrast, specification of prior model probabilities doesn’t arise
with log scores, which have a direct decision-theoretic justification

based on the Prediction Principle.

• It may seem that log scores have no penalty for unnecessary model
complexity, but this is not true: for example, if one of Your models
carries around a lot of unnecessary parameters, this will needlessly
inflate its predictive variances, making the heights of its predictive

densities go down, thereby lowering its log score.

• It may also seem that the behavioral rule based on
posterior Bayes factors (Aitkin 1991) is the same as the rule based on

LSFS , which favors model Mj over Mj′ if
n LSFS(Mj |y ,B) > n LSFS(Mj′ |y ,B). (37)

But this is not true either: for example, in the common situation in
which the data set D consists of observations yi that are conditionally

IID from p(yi |ηj ,Mj ,B) under Mj ,
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Summary

nLSFS(Mj |y ,B) = log
n∏

i=1

[∫
p(yi |ηj ,Mj ,B) p(ηj |y ,Mj ,B) dηj

]
, (38)

and this is not the same as

log
∫ [ n∏

i=1
p(yi |ηj ,Mj ,B)

]
p(ηj |y ,Mj ,B) dηj = L̄PBF

j (39)

because the product and integral operators do not commute.

• Some take-away messages:

— In the bio-equivalence example, even when You (unwisely) let
λ ↓ 0, thereby testing a sharp-null hypothesis, the asymptotic

behavior of log scores is irrelevant; what counts is the behavior of
log scores and Bayes factors with Your sample size and the models
being compared, and for any given n it’s not possible to say that

the false-positive/false-negative trade-off built into Bayes factors is
universally better for all applied problems than the

false-positive/false-negative trade-off built into log scores,
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Summary (continued)
or vice versa — You have to think it through in each problem.

For instance, the tendency of log scores to choose the “bigger”
model in a nested-model comparison is exactly the right qualitative

behavior in the following two examples (and many more such
examples exist):

— Variable selection in searching through many compounds or
genes to find successful treatments: here a false-positive mistake

(taking an ineffective compound or gene forward to the next level of
investigation) costs the drug company $C , but a false-negative error

(failing to move forward with a successful treatment, in a
highly-competitive market) costs $k C with k = 10–100.

— In a two-arm clinical-trial setting, consider the random-effects
Poisson regression model

(yi |λi ,B)
indep∼ Poisson(λi )

log λi = β0 + β1xi + ei (40)
(ei |σ2

e ,B)
IID∼ N(0, σ2

e ) , (β0, β1, σ
2
e ) ∼ diffuse ,
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Summary (continued)

where the yi are counts of a relatively rare event and xi is 1 for the
treatment group and 0 for control; You would consider fitting this
model instead of its fixed-effects counterpart, obtained by setting

σ2
e = 0, to describe unexplainable heterogeneity (Poisson

over-dispersion).

In this setting, Bayes factors will make the mistake of {telling You
that σ2

e = 0 when it’s not} more often than log scores, and log
scores will make the error of {telling You that σ2

e > 0 when it’s
actually 0} more often than Bayes factors, but the former mistake is

much worse than the latter, because You will underpropagate
uncertainty about the fixed effect β1, which is the whole point of the

investigation.

• All through this discussion it’s vital to keep in mind that

the gold standard for false-positive/false-negative behavior is
provided neither by Bayes factors nor by log scores but instead by

Bayesian decision theory in Your problem.
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Summary (continued)
• Asymptotic conclusions are often misleading: while it’s true that

Old Theorem: PθDG =0(LSFS chooses θ = 0)→ 0 as n→∞,

it’s also true that

New Theorem (Draper, 2013): for any λ > 0,
P|θDG |≤λ(LSFS chooses |θ| ≤ λ)→ 1 as n→∞,

and the second theorem would seem to call the relevance of the first
theorem into question.

• As a profession, we need to strengthen the progression

Principles → Axioms → Theorems

in optimal model specification; the Calibration Principle, the
Modeling-As-Decision Principle, the Prediction Principle and the

Decision-Versus-Inference Principle seem helpful in moving toward
this goal.
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Is M1 Good Enough?
What about Q2 : Is M1 good enough?

As discussed previously, by the Modeling-As-Decision Principle a full
judgment of adequacy requires real-world input (“To what purpose

will the model be put?”), so it’s not possible to propose generic
methodology to answer Q2 (apart from maximizing expected utility,
with a utility function that’s appropriately tailored to the problem at

hand), but the somewhat related question

Q2′ : Could the data have arisen from model Mj?

can be answered in a general way by simulating from Mj many
times, developing a distribution of (e.g.) LSFS values, and seeing how

unusual the actual data set’s log score is in this distribution.

This is related to the posterior predictive model-checking method of
Gelman et al. (1996), which produces a P-value.

However, this sort of thing needs to be done carefully (Draper 1996),
or the result will be poor calibration; indeed, Bayarri and Berger (2000)

and Robins et al. (2000) have demonstrated that the
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Is M1 Good Enough? (continued)
Gelman et al. procedure may be (sharply) conservative: You may get
P = 0.4 from Gelman et al. (indicating that Your model is fine) when a
well-calibrated version of their idea would have P = 0.04 (indicating

that it’s not fine).

Using a modification of an idea suggested by Robins et al., Draper and
Krnjajić (2010) have developed a simulation-based method for

accurately calibrating the log-score scale (I’d be happy to send You
the paper).

How should You judge how unusual the actual data set’s log score is
in the simulation distribution?

In all of Bayesian inference, prediction and decision-making, except
for calibration concerns, there’s no need for P-values, but — since
this is a calibrative question — it’s no surprise that tail areas (or
something else equally ad-hoc, such as the ratio of the attained

height to the maximum height of the simulation distribution) arise.

I don’t see how to avoid this ad-hockery except by directly answering
Q2 with decision theory (instead of answering Q2′ with a tail area).
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Summary

• I’ve offered an axiomatization of inferential, predictive and
decision-theoretic statistics based on information, not belief, and RT

Cox’s (1946) notion of probability as a measure of the weight of
evidence in favor of the truth of a true-false proposition whose truth

status is uncertain for You.

• Cox’s Theorem lays out a progression from

Principles → Axioms → Theorem

to prove that Bayesian reasoning is justified under natural logical
consistency assumptions; for me this secures the foundations of

applied probability.

• But Cox’s Theorem does not go far enough for statistical work in
science, in two ways related to model specification:

— Nothing in its consequences requires You to
pay attention to how often You get the right answer,

which is a basic scientific concern, and
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Summary (continued)
— it doesn’t offer any advice on how to specify the required

ingredients: with θ as the unknown of principal interest, B as Your
relevant background assumptions and judgments, and an

information source (data set) D relevant to decreasing Your
uncertainty about θ, the ingredients are

∗ {p(θ|B), p(D|θB)} for inference and prediction, and

∗ in addition {A,U(a, θ)} for decision, where A is Your set of
available actions and U(a, θ) is Your utility function (mapping from

actions a and unknown θ to real-valued consequences).

• To secure the foundations of statistics, work is needed laying out
the logical progression

Principles → Axioms → Theorems

for model specification; progress in this area is part of the
Theory of Applied Statistics.

• A Calibration Principle helps address the first of the
two deficiencies above:
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Summary (continued)
Calibration Principle: In model specification, You should pay
attention to how often You get the right answer, by creating

situations in which You know what the right answer is and seeing how
often Your methods recover known truth.

Interest in calibration can be seen to be natural in Bayesian work by
thinking decision-theoretically, with a utility function that rewards
both quality of scientific conclusions and good calibration of the

modeling process yielding those conclusions.

• In problems of realistic complexity You’ll generally notice that (a)
You’re uncertain about θ but (b) You’re also uncertain about how to

quantify Your uncertainty about θ, i.e., You have
model uncertainty.

• This acknowledgment of Your model uncertainty implies a
willingness by You to consider two or more models in an ensemble
M = {M1,M2, . . . }, which gives rise immediately to two questions:

Q1 : Is M1 better than M2? Q2 : Is M1 good enough?
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Summary (continued)
• These questions sound fundamental but are not: better for what

purpose? Good enough for what purpose? To address the second of
the two deficiencies above (lack of guidance from Cox’s Theorem on

model specification), this implies a

Modeling-As-Decision Principle: Making clear the purpose to which
the modeling will be put transforms model specification into a

decision problem, solvable by maximizing expected utility with a
utility function tailored to the specific problem under study.

This solves the model-specification problem but is hard work; there’s
a powerful desire for generic model-comparison methods whose

utility structure may provide a decent approximation to
problem-specific utility elicitation.

Two such methods are Bayes factors (whose utility justification is less
than compelling) and log scores, which are based on the

Prediction Principle: Good models make good predictions, and bad
models make bad predictions; that’s one scientifically important way

You know a model is good or bad.
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Summary (continued)
• I’m aware of three approaches to improved assessment and

propagation of model uncertainty: Bayesian model averaging
(BMA), Bayesian nonparametric (BNP) modeling, and calibration

(3-fold) cross-validation (CCV).

• CCV provides a way to pay the right price for hunting around in the
data for good models, motivating the following modeling algorithm:

(a) Start at a model M0 (how choose?); set the current model
Mcurrent ← M0 and the current model ensemble Mcurrent ← {M0}.

(b) If Mcurrent is good enough to stop (how decide?), return Mcurrent; else
(c) Generate a new candidate model Mnew (how choose?) and set
Mcurrent ←Mcurrent ∪Mnew.

(d) If Mnew is better than Mcurrent (how decide?), set Mcurrent ← Mnew.
(e) Go to (b).

• For the choice in (a), there’s usually a default off-the-shelf initial
model based on the structure of the data set D and the

scientific context.
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Summary (continued)

• In manual model search the choice in (c) is typically based on the
results of a variety of diagnostics, with the new model suggested by

deficiencies revealed in this way; at present, we have no better way to
automate this choice in many cases than choosing Mnew at random (I

offer no new ideas on this topic today).

• In comparing M1 with M2 (the choice in (d)), consider a calibrative
scenario in which the the data-generating model MDG is one or the
other of M = {M1,M2} (apart from parameter estimation), and call
{choosing M2 when MDG = M1} a false positive and {choosing M1

when MDG = M2} a false negative; then

— The right way to do this, following the Modeling-As-Decision
Principle, is to build a utility function by quantifying the real-world

consequences of

{choosing M1 when MDG = M1, choosing M1 when MDG = M2,
choosing M2 when MDG = M1, choosing M2 when MDG = M2}

and maximize expected utility.
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Summary (continued)
— If instead You contemplate using Bayes factors/BIC or log scores,
it is not the case that one of these two methods uniformly dominates
the other in calibrative performance; in some settings they behave
the same, in others (for Your sample size) they will have a different
balance of false positives and false negatives; it’s a good idea to

investigate this before settling on one method or the other.

• See Draper and Krnjajić (2013) for a method for answering the
question Q2′ : Could the data have arisen from model Mj? in a

well-calibrated way.

• CCV provides an approach to finding a good ensemble M of
models, and gives You a decent opportunity both to arrive at good

answers to Your main scientific questions and to evaluate the
calibration of the iterative modeling process that led You to Your

answers.

• Decision-Versus-Inference Principle: We should all get out of the
habit of using inferential methods to make decisions: their implicit

utility structure is often far from optimal.
76 / 89



Another Unsolved Foundational Problem
• One more unsolved foundational problem: how can good decisions
be arrived at when “You” is a collective of individuals, all with their

own utility functions that imply partial cooperation and
partial competition?

Example: Allocation of finite resources by two or more people who
have agreed to band together in some sense (i.e., politics, at the level

of family or nation or ...).

An instance of this: Defining and funding good quality of health
care — the actors in the drama include

{patient, doctor, hospital, state and local regulatory bodies, federal
regulatory system};

all are in partial agreement and partial disagreement on how (and
how many) resources should be allocated to the problem of addressing

this patient’s immediate health needs.

(But that’s for another day, as is the topic of Bayesian computing
with large data sets.)
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Cromwell’s Rule, Part 1: Inference and Prediction
The following two facts are easy consequences of the definition of
conditional probability: for any two propositions A and B and any

background information B:

• Cromwell’s Rule, Part 1(a) If P(A|B) = 0 then P(A|B B) = 0 for
all B for which P(A|B B) is defined (i.e., for which P(B|B) > 0).

• Cromwell’s Rule, Part 1(b) If P(A|B) = 1 then P(A|B B) = 1 for
all B for which P(A|B B) is defined (i.e., for which P(B|B) > 0).

To see the implications of these facts, let A be a proposition about
something unknown to You, such as (θ < 0), and let B be a

proposition about Your data set D, such as
(y1 = 3, y2 = −0.4, . . . , yn = 6.9).

Then Part 1(a) of Cromwell’s Rule says that any proposition about
the unknown θ to which You give prior probability 0 must have

posterior probability 0, no matter how the data set D comes out,
and Part 1(b) of Cromwell’s Rule says the same thing with 0

replaced by 1.
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Cromwell’s Rule Part 1 (continued)

Bayes’s Theorem is supposed to be a piece of machinery that
permits You to learn, about unknowns from new data, in an optimal

way; Cromwell’s Rule Part 1 says that if You dogmatically place
prior probability 0 or 1 on something, no learning is possible when

new data values arrive.

This is obviously a way to break the Bayes’s Theorem learning
machine, so the practical consequence of Cromwell’s Rule Part 1 is

captured in the following piece of advice:

You should try hard never to put prior probability 0 or 1
on anything that might later have posterior probability between

0 and 1, depending on how new information comes out.

This has direct consequences for Bayesian model specification:
for example, consider the NB10 data set from Day 1, for which (by

exchangeability) Your basic sampling model for the data values
y = (y1, . . . , yn) before You see the data is (yi |F B)

IID∼ F for some
(unknown) CDF F .
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Cromwell’s Rule Part 1 (continued)
If, before You see the data, You put all Your modeling eggs in the

Gaussian basket, so that You replace (yi |F B)
IID∼ F with

(yi |µσ B)
IID∼ N(µ, σ2), this means that You’ve placed all of your

prior probability on the Gaussian family, thereby implicitly giving
prior probability 0 to all non-Gaussian behavior (such as

multimodality, skewness and/or heavy tails).

Now what do You do when the data set arrives and — as in the case
of the NB10 data — demonstrates much heavier tails than the

Gaussian family can accommodate?

Strictly speaking, by Cromwell’s Rule Part 1(a), all such
non-Gaussian behavior must have posterior probability 0, and yet

the data set clearly makes You wish that You hadn’t been so
dogmatic in Your “prior on model space.”

Going back and changing Your prior on model space based on how
the data set came out is a clear violation of the dichotomization
{information internal to D, information external to D}, which was

part of the axiomatization in the Day 3 (Part 1) Lecture Notes:
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Cromwell’s Rule, Part 2: Decision-Making

in effect, when You do this You’re using the data twice — once in
specifying the prior on model space, and again in updating that prior

with the data set D — and the typical consequence will be
understatement of Your actual uncertainty.

I see only two ways out of this dilemma:

• Bayesian nonparametric methods, which — when used properly —
give positive prior probability to all possible CDFs F ), and

• Calibration cross-validation, which (1) allows You to “cheat” by
looking at the data and changing Your prior on model space but (2)

forces You to pay an appropriate price for having done so.

Cromwell’s Rule, Part 2: Part 1 of Cromwell’s Rule is about
inference and prediction; Part 2 concerns decision-making, and it

also has a part (a) and a part b), which give advice on how to specify
Your action space A and Your utility function U(a, θ) (respectively).
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Cromwell’s Rule, Part 2 (continued)

• Cromwell’s Rule, Part 2(a): In enumerating the possible actions
{a1, a2, . . . } while specifying Your action space A in the problem P on
which You’re working, You should try hard not to omit any action

ai that might turn out to be optimal if it’s included in A.

The point is that Bayesian decision theory only optimizes over the
possible actions You remember to put in A: if You forget a

feasible action ai that (unknown to You) is better than all of the
actions in Your current A, maximization of expected utility cannot

protect You from this omission.

Example: HIV screening with ELISA and Western Blot (Day 1,
Lecture Notes Part 1). In that case study it was tempting to think

that the only two possible actions were a1 = {test the blood sample
with ELISA} and a2 = {test the blood sample with Western Blot},

but a third action — a3 = {test half of the blood sample with
ELISA; if negative, declare HIV negative; if positive, test the other

half of the blood sample with Western Blot} — turned out to
dominate the others.
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Cromwell’s Rule, Part 2 (continued)

Example: People at eBay are constantly running randomized
controlled trials on the eBay web experience, looking for variations
on things like (i) search algorithms and (ii) {presentation of items

for sale to the users} that may create a better marketplace.

Having run an experiment in which the control group gets the
current best eBay website and the treatment group gets {the

current best eBay website plus a particular intervention I}, thereby
obtaining a data set D, the unknown θ is {what the future would be

like, as far as important outcome variables (such as user
satisfaction) are concerned, if intervention I is or is not

implemented}, and it appears that there are only two possible
actions: a1 = {implement I} and a2 = {don’t implement I}.

However, as with the HIV case study, there’s a third possible action
that has an adaptive flavor: perhaps there’s still too much

uncertainty, on the basis of D, to make a good choice between a1
and a2, so (if You’re not in a tremendous hurry to choose) why not

include a3 = {get more data before deciding} in Your A?
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Cromwell’s Rule, Part 2 (continued)
Bayesian sequential experimental design and analysis has this

adaptive character — get some data, see if the optimal choice is
clearcut yet, if so make it, if not get more data — and have been
shown to yield results with good false-positive and false-negative
rates that involve collecting (far) less data than approaches with

sample sizes that are fixed at the design stage.

• Cromwell’s Rule, Part 2(a): In specifying Your utility function
for the problem P on which You’re working, You should try hard

to ensure that

(1) Your vector of unknowns θ contains all relevant unknowns, and

(2) Your utility function U(a, θ) captures all relevant costs and
benefits to be balanced against each other.

The point is that

• any relevant unknown that You mistakenly omit from θ has no
opportunity to influence Your decision; the result will often be

decisions that don’t hedge sufficiently against uncertainty,
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Cromwell’s Rule, Part 2 (continued)

because omitting a relevant unknown is tantamount to pretending
that it’s known; and

• any relevant cost or benefit that You mistakenly omit from U(a, θ)
has no opportunity to influence the optimal trade-off between costs

and benefits, and (dramatically) sub-optimal decisions can result
when this happens.

In enumerating the relevant costs and benefits, You’ll have to fight
against the following three basic human tendencies:

(1) Things that are easy to measure tend to get measured; things
that are hard to measure tend to get ignored.

With respect to a particular cost or benefit, the classifications C1 =
{important, not important} and C2 = {hard to quantify, easy to

quantify} have nothing to do with each other; including or omitting
costs and benefits solely on the basis of C2 provides no assurance
that the included costs and benefits are correct with respect to C1.
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Cromwell’s Rule, Part 2 (continued)

(2) People with optimistic world views tend to exaggerate benefits
and downplay costs; pessimists tend to make the opposite mistakes;
not many people get this right unless they’re on the lookout for it.

(3) If costs and benefits are balanced against each other additively
in Your utility function, You’ll typically find it relatively easy to

choose the scale on which to quantify the costs (e.g., in monetary
terms), but it may then be quite difficult to quantify the benefits on

the same scale.

Example: The new drug Olysio (simeprevir, approved for use in the
U.S. in Nov 2013) has been shown to be quite effective at reducing

the viral load of Hepatitis C patients, permitting their livers to
begin to heal, as long as the drug is taken for at least three months.

The drug company that markets Olysio, Janssen, has set the
wholesale price of a 12-week supply of this drug at $66,360

(about £41,000).
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Cromwell’s Rule, Part 2 (continued)

Q: Should the NHS decide to approve Olysio for routine treatment
of Hepatitis C in the UK?

The cost term in the NHS’s utility function clearly comes out in £;
to trade this off against the health benefits (e.g., lengthened life

span, better quality of life), the NHS has to be prepared to measure
those benefits in monetary terms, leading to unpleasant questions

such as “What’s the monetary value of human life?”

Example: Draper (1995) examines an attempt by economists in
1980 to predict future oil prices over the horizon 1981–2020; many
companies and governments routinely make investment decisions

based on such predictions.

The OPEC oil embargo of 1973–74 created a large spike in oil
prices, because demand stayed constant and supply dramatically

dropped; this was the first time anything like that
had ever occurred.
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Cromwell’s Rule, Part 2 (continued)
If You had undertaken the 1980 predictive exercise mentioned

above prior to 1973, You would have had no straightforward way to
include {Will another OPEC oil embargo occur, and if so when?}
as part of the unknowns in Your θ vector, but You would have no
excuse for omitting this unknown after 1973–74, and indeed this
omission could lead to a dramatic understatement of Your future
uncertainty about the price of oil, causing You to make decisions

that fail to hedge sufficiently against
the totality of Your uncertainty.

Example: You’re about to make a long drive by car, and You’re
wondering about the optimal driving speed: the faster You drive the

quicker You get to Your destination (good), but undesirable
outomes increase in probability as You speed up (bad).

The action space clearly consists of possible speeds (that was easy),
but what about θ and U(a, θ)?

As a first pass, You might include in θ only the unknown {will You
get a speeding ticket?}, in which case Your utility function would

have only two terms, which could be combined additively:
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Cromwell’s Rule, Part 2 (continued)
a benefit (quantified in monetary terms) based on how short the
journey is, and a cost (also expressed in money) based on what
happens if You get a ticket (You have to pay a fine, and Your

insurance costs may rise).

I’ve found that this formulation typically leads to a recommendation
to drive quite rapidly.

However, a number of additional relevant unknowns have been
omitted from this first-pass specification of A and U(a, θ):

• {Will You get into an accident?} If so, {How serious is the
accident?} {How badly is Your car damaged?} {Does the accident

injure or kill You?} If other people are involved in the accident,
{How badly is their vehicle damaged?} {Does the accident injure

or kill any of them?}

Increasingly unfavorable answers to all of these questions will all
result in additional cost terms in Your utility function, with the

result that Your optimal driving speed will monotonically decrease
as You increase the realism of Your utility specification.
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