Bayesian Model Specification

Lecture Notes Part 3:
 Bayesian Qualitative/Quantitative Inference

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz
and (1 Jul-31 Dec 2013) eBay Research Labs
\{draper@ams.ucsc.edu, dadraper@ebay.com\} http://www.ams.ucsc.edu/~draper

short course web page:

www.ams.ucsc.edu/~draper/Reading-2013-Day-3.html

$$
29 \text { Nov } 2013
$$

University of Reading (UK): Day 3

(c) 2013 David Draper (all rights reserved) Unpublished research: do not cite without author's permission

Bayesian Qual/Quant Inference

Recall from our earlier discussion that if I judge binary (y_{1}, \ldots, y_{n}) to be part of infinitely exchangeable sequence, to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have simple hierarchical form

$$
\begin{aligned}
\theta & \stackrel{p(\theta)}{\sim} \\
\left(y_{i} \mid \theta\right) & \stackrel{\text { IID }}{\sim}
\end{aligned}
$$

where $\theta=P\left(y_{i}=1\right)=$ limiting value of mean of y_{i} in infinite sequence.

Writing $s=\left(s_{1}, s_{2}\right)$ where s_{1} and s_{2} are the numbers of $0 \mathbf{s}$ and 1s, respectively in $\left(y_{1}, \ldots, y_{n}\right)$, this is equivalent to the model

$$
\begin{align*}
\theta_{2} & \sim p\left(\theta_{2}\right) \tag{1}\\
\left(s_{2} \mid \theta_{2}\right) & \sim \operatorname{Binomial}\left(n, \theta_{2}\right)
\end{align*}
$$

where (in a slight change of notation) $\theta_{2}=P\left(y_{i}=1\right)$; i.e., in this simplest case the form of the likelihood function (Binomial $\left(n, \theta_{2}\right)$) is determined by coherence.

The likelihood function for θ_{2} in this model is

$$
\begin{equation*}
l\left(\theta_{2} \mid y\right)=c \theta_{2}^{s_{2}}\left(1-\theta_{2}\right)^{n-s_{2}}=c \theta_{1}^{s_{1}} \theta_{2}^{s_{2}} \tag{2}
\end{equation*}
$$

from which it's evident that the conjugate prior for the Bernoulli/Binomial likelihood (the choice of prior having the property that the posterior for θ_{2} has the same mathematical form as the prior) is the family of $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$ densities

$$
\begin{align*}
p\left(\theta_{2}\right)= & c \theta_{2}^{\alpha_{2}-1}\left(1-\theta_{2}\right)^{\alpha_{1}-1}=c \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \tag{3}\\
& \text { for some } \alpha_{1}>0, \alpha_{2}>0
\end{align*}
$$

Bayesian Qual/Quant Inference

With this prior the conjugate updating rule is evidently
$\left\{\begin{array}{c}\theta_{2} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\ \left(s_{2} \mid \theta_{2}\right) \sim \operatorname{Binomial}\left(n, \theta_{2}\right)\end{array}\right\} \rightarrow\left(\theta_{2} \mid y\right) \sim \operatorname{Beta}\left(\alpha_{1}+s_{1}, \alpha_{2}+s_{2}\right)$,
where $s_{1}\left(s_{2}\right)$ is the number of $\mathbf{0 s}$ (1s) in the data set $y=\left(y_{1}, \ldots, y_{n}\right)$.

Moreover, given that the likelihood represents a (sample) data set with $s_{1} 0 \mathrm{~s}$ and $s_{2} 1 \mathrm{~s}$ and a data sample size of $n=\left(s_{1}+s_{2}\right)$, it's clear that
(a) the $\boldsymbol{B e t a}\left(\alpha_{1}, \alpha_{2}\right)$ prior acts like a (prior) data set with α_{1} Os and $\alpha_{2} 1 \mathrm{~s}$ and a prior sample size of $\left(\alpha_{1}+\alpha_{2}\right)$, and

(b) to achieve a relatively diffuse

(low-information-content) prior for θ_{2} (if that's what context suggests I should aim for) I should try to specify α_{1} and α_{2} not far from 0 .

Easy generalization of all of this: suppose the y_{i} take on $l \geq 2$ distinct values $v=\left(v_{1}, \ldots, v_{l}\right)$, and let $s=\left(s_{1}, \ldots, s_{l}\right)$ be the vector of counts ($s_{1}=\#\left(y_{i}=v_{1}\right)$ and so on).

If I judge the y_{i} to be part of an infinitely exchangeable sequence, then to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have the hierarchical form

$$
\begin{align*}
\theta & \sim p(\theta) \tag{5}\\
(s \mid \theta) & \sim \operatorname{Multinomial}(n, \theta)
\end{align*}
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$ and θ_{j} is the limiting relative frequency of v_{j} values in the infinite sequence.

Bayesian Qual/Quant Inference

The likelinood for (vector) θ in this case has the form

$$
\begin{equation*}
l(\theta \mid y)=c \prod_{j=1}^{l} \theta_{j}^{s_{j}} \tag{6}
\end{equation*}
$$

from which it's evident that the conjugate prior for the Multinomial likelihood is of the form

$$
\begin{equation*}
p(\theta)=c \prod_{j=1}^{l} \theta_{j}^{\alpha_{j}-1} \tag{7}
\end{equation*}
$$

for some $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ with $\alpha_{j}>0$ for $j=1, \ldots, l$; this is the Dirichlet (α) distribution, a multivariate generalization of the Beta family.

Here the conjugate updating rule is
$\left\{\begin{array}{c}\theta \sim \operatorname{Dirichlet}(\alpha) \\ (s \mid \theta) \sim \operatorname{Multinomial}(n, \theta)\end{array}\right\} \rightarrow(\theta \mid y) \sim \operatorname{Dirichlet}(\alpha+s)$,
where $s=\left(s_{1}, \ldots, s_{l}\right)$ and s_{j} is the number of v_{j} values ($j=1, \ldots, l$) in the data set $y=\left(y_{1}, \ldots, y_{n}\right)$.

Furthermore, by direct analogy with the $l=2$ case,
(a) the Dirichlet (α) prior acts like a (prior) data set with $\alpha_{j} v_{j}$ values ($j=1, \ldots, l$) and a prior sample size of

$$
\sum_{j=1}^{l} \alpha_{j}, \text { and }
$$

(b) to achieve a relatively diffuse
(low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_{j} not far from 0 .

Bayesian Qual/Quant Inference

To summarize:
(A) if the data vector $y=\left(y_{1}, \ldots, y_{n}\right)$ takes on l distinct values $v=\left(v_{1}, \ldots, v_{l}\right)$ (real numbers or not) and I judge (my uncertainty about) the infinite sequence (y_{1}, y_{2}, \ldots) to be exchangeable, then (by a representation theorem of de Finetti) coherence compels me (i) to think about the quantities $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$, where θ_{j} is the limiting relative frequency of the v_{j} values in the infinite sequence, and (ii) to adopt the Multinomial model

$$
\begin{align*}
\theta & \sim p(\theta) \tag{9}\\
p\left(y_{i} \mid \theta\right) & =c \prod_{j=1}^{l} \theta_{j}^{s_{j}},
\end{align*}
$$

where s_{j} is the number of y_{i} values equal to v_{j};
(B) if context suggests a diffuse prior for θ a convenient (conjugate) choice is Dirichlet (α) with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ and all of the α_{j} positive but close to $\mathbf{0}$; and
(C) with a Dirichlet (α) prior for θ the posterior is Dirichlet $\left(\alpha^{\prime}\right)$, where $s=\left(s_{1}, \ldots, s_{l}\right)$ and $\alpha^{\prime}=(\alpha+s)$.

Note, remarkably, that the v_{j} values themselves make no appearance in the model; this modeling approach is natural with categorical outcomes but can also be used when the v_{j} are real numbers.

For example, for real-valued y_{i}, if (as in the IHGA case study in Part 1) interest focuses on the (underlying population) mean in the infinite sequence (y_{1}, y_{2}, \ldots), this is $\mu_{y}=\sum_{j=1}^{l} \theta_{j} v_{j}$, which is just a linear function of the θ_{j} with known coefficients v_{j}.

Bayesian Qual/Quant Inference

This fact makes it possible to draw an analogy with the distribution-free methods that are at the heart of frequentist non-parametric inference: when your outcome variable takes on a finite number of real values v_{j}, exchangeability compels a Multinomial likelihood on the underlying frequencies with which the v_{j} occur; you are not required to build a parametric model (e.g., normal, lognormal, ...) on the y_{i} values themselves.

In this sense, therefore, model (14)—particularly with the conjugate Dirichlet prior-can serve as a kind of low-technology Bayesian non-parametric modeling: this is the basis of the Bayesian bootstrap (Rubin 1981).

Moreover, if you're in a hurry and you're already familiar with WinBUGS you can readily carry out inference about quantities like μ_{y} above in that environment, but there's no need to do MCMC here: ordinary Monte Carlo (MC) sampling from the Dirichlet $\left(\alpha^{\prime}\right)$ posterior distribution is perfectly straightforward, e.g., in R, based on the following fact:

To generate a random draw $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$ from the
Dirichlet $\left(\alpha^{\prime}\right)$ distribution, with $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{l}^{\prime}\right)$,
independently draw

$$
\begin{equation*}
g_{j} \stackrel{\text { indep }}{\sim} \Gamma\left(\alpha_{j}^{\prime}, \beta\right), \quad j=1, \ldots, l \tag{10}
\end{equation*}
$$

(where $\Gamma(a, b)$ is the Gamma distribution with parameters a and b) and compute

$$
\begin{equation*}
\theta_{j}=\frac{g_{j}}{\sum_{m=1}^{l} g_{j}} \tag{11}
\end{equation*}
$$

Any $\beta>0$ will do in this calculation; $\beta=1$ is a good choice that leads to fast random number generation.

Bayesian Qual/Quant Inference

The downloadable version of R doesn't have a built-in function for making Dirichlet draws, but it's easy to write one:

```
rdirichlet = function( n.sim, alpha ) {
```

 l = length(alpha)
 theta \(=\) matrix (0, n.sim, l)
 for (j in 1:1) \{
 theta[, j] = rgamma(n.sim, alpha[j], 1)
 \}
 theta \(=\) theta \(/\) apply (theta, 1, sum \()\)
 return (theta)
 \}

The Dirichlet (α) distribution has the following moments: if $\theta \sim$ Dirichlet (α) then

$$
E\left(\theta_{j}\right)=\frac{\alpha_{j}}{\alpha_{0}}, V\left(\theta_{j}\right)=\frac{\alpha_{j}\left(\alpha_{0}-\alpha_{j}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}, C\left(\theta_{j}, \theta_{j^{\prime}}\right)=-\frac{\alpha_{j} \alpha_{j^{\prime}}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)},
$$

where $\alpha_{0}=\sum_{j=1}^{l} \alpha_{j}$ (note the negative correlation between components of θ).

This can be used to test the function above:

Bayesian Qual/Quant Inference

```
> alpha = c( 5.0, 1.0, 2.0 )
> alpha.0 = sum( alpha )
> test = rdirichlet( 100000, alpha ) # 15 seconds at 550 Unix MHz
> apply( test, 2, mean )
[1] 0.6258544 0.1247550 0.2493905
> alpha / alpha.0
[1] 0.625 0.125 0.250
> apply( test, 2, var )
[1] 0.02603293 0.01216358 0.02071587
> alpha * ( alpha.0 - alpha ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
[1] 0.02604167 0.01215278 0.02083333
> cov( test )
\begin{tabular}{rrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 0.026032929 & -0.008740319 & -0.017292610 \\
{\([2]\),} & -0.008740319 & 0.012163577 & -0.003423259 \\
{\([3]\),} & -0.017292610 & -0.003423259 & 0.020715869
\end{tabular}
> - outer( alpha, alpha, "*" ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
    [,1] [,2] [,3]
[1,] -0.043402778 -0.008680556 -0.017361111
[2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals
[3,] -0.017361111 -0.003472222 -0.006944444
```


Bayesian Qual/Quant Inference

Example: re-analysis of IHGA data from Part 1; recall policy and clinical interest focused on $\eta=\frac{\mu_{E}}{\mu_{C}}$.

	Number of Hospitalizations										
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	287	0.944	1.24
Experimental	147	83	37	13	3	1	1	0	285	0.768	1.01

In this two-independent-samples setting I can apply de Finetti's representation theorem twice, in parallel, on the C and E data.

I don't know much about the underlying frequencies of $0,1, \ldots, 7$ hospitalizations under C and E external to the data, so I'll use a Dirichlet $(\epsilon, \ldots, \epsilon)$ prior for both θ_{C} and θ_{E} with $\epsilon=0.001$, leading to a Dirichlet $(138.001, \ldots, 2.001)$
posterior for θ_{C} and a Dirichlet(147.001,..., 0.001) posterior for θ_{E} (other small positive choices of ϵ yield similar results).

```
> alpha.C = c( 138.001, 77.001, 46.001, 12.001, 8.001, 4.001, 0.001, 2.001 )
> alpha.E = c( 147.001, 83.001, 37.001, 13.001, 3.001, 1.001, 1.001, 0.001 )
```

> theta.C = rdirichlet(100000, alpha.C) \# 17 sec at 550 Unix MHz
> theta.E = rdirichlet(100000, alpha.E) \# also 17 sec
> print(post.mean.theta.C = apply(theta.C, 2, mean))
[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02
[6] 1.395287e-02 3.180905e-06 6.959859e-03
> print(post.SD.theta.C <- apply(theta.C, 2, sd))
[1] 0.02941429630 .02610012590 .02165526610 .01179254650 .0096747630
[6] 0.00691215070 .00010172030 .0048757485

Bayesian Qual/Quant Inference

> print(post.mean.theta.E <- apply(theta.E, 2, mean))
[1] $5.156872 \mathrm{e}-01 \quad 2.913022 \mathrm{e}-01 \quad 1.298337 \mathrm{e}-01 \quad 4.560130 \mathrm{e}-02 \quad 1.054681 \mathrm{e}-02$
[6] $3.518699 \mathrm{e}-033.506762 \mathrm{e}-033.356346 \mathrm{e}-06$
> print(post.SD.theta.E <- apply(theta.E, 2, sd))
[1] 0.0295930470 .0269156440 .0198592130 .0123022520 .006027157
[6] 0.0035015680 .0034878240 .000111565
$>$ mean.effect.C <- theta.C $\% * \%$ ($0: 7$)
$>$ mean.effect.E <- theta.E $\% * \%$ ($0: 7$)
> mult.effect <- mean.effect.E / effect.C
> print(post.mean.mult.effect <- mean(mult.effect))
[1] 0.8189195
> print (post. SD.mult.effect <- sd (mult.effect))
[1] 0.08998323
$>$ quantile(mult.effect, probs $=c(0.0,0.025,0.5,0.975,1.0)$)

0%	2.5%	50%	97.5%	100%
0.5037150	0.6571343	0.8138080	1.0093222	1.3868332

> postscript("mult.effect.ps")
> plot (density (mult.effect, $n=2048$), type = 'l', cex.lab = 1.25, xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25, main = 'Posterior Distribution for Multiplicative Treatment Effect', cex.main $=1.25$)
> dev.off()

Bayesian Qual/Quant Inference

In this example the low-tech BNP, Dirichlet-Multinomial, exchangeability-plus-diffuse-prior-information model has reproduced the parametric REPR results almost exactly and without a complicated search through model space for a "good" model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_{i} values form a complete set of \{all possible values the outcome y could take on $\}$.

Bayesian Qual/Quant Inference

This is clearly not true in the IHGA case study, and yet in that case the Bayesian qualitative/quantitative inferential approach did a terrific job of reproducing what we will later see is an excellent parametric model for the IHGA data, without any parametric modeling assumptions.

