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An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper [KKD] 2008): In-home

geriatric assessment (IHGA). In an experiment conducted in the 1980s
(Hendriksen et al. 1984), 572 elderly people, representative of P =
{all non-institutionalized elderly people in Denmark}, were

randomized, 287 to a control (C ) group (who received standard
health care) and 285 to a treatment (T ) group (who received standard
care plus IHGA: a kind of preventive medicine in which each person’s
medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during
the two-year life of the study:

Number of Hospitalizations
Group 0 1 . . . k n Mean SD

Control nC0 nC1 . . . nCk nC = 287 ȳC sC
Treatment nT0 nT1 . . . nTk nT = 285 ȳT sT

Let µC and µT be the mean hospitalization rates (per two years) in P
under the C and T conditions, respectively.

Here are four statistical questions that arose from this study:
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The Four Principal Statistical Activities

Q1: Was the mean number of hospitalizations per two years in the

IHGA group different from that in control by an amount that was

large in practical terms?
[
description involving

(
ȳT−ȳC

ȳC

)]
Q2: Did IHGA (causally) change the mean number of

hospitalizations per two years by an amount that was large in

statistical terms?
[
inference about

(
µT−µC

µC

)]
Q3: On the basis of this study, how accurately can You predict the
total decrease in hospitalizations over a period of N years if IHGA

were implemented throughout Denmark? [prediction]

Q4: On the basis of this study, is the decision to implement IHGA
throughout Denmark optimal from a cost-benefit point of view?

[decision-making]

These questions encompass almost all of the discipline of statistics:
describing a data set D, generalizing outward inferentially from D,
predicting new data D∗, and helping people make decisions in the
presence of uncertainty (I include sampling/experimental design

under decision-making; omitted: data quality assurance (QA), ...).
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An Axiomatization of Statistics

1 (definition) Statistics is the study of uncertainty: how to measure
it well, and how to make good choices in the face of it.

2 (definition) Uncertainty is a state of incomplete information
about something of interest to You (Good, 1950: a generic person

wishing to reason sensibly in the presence of uncertainty).

3 (axiom) (Your uncertainty about) “Something of interest to
You” can always be expressed in terms of propositions: true/false

statements A,B, . . .

Examples: You may be uncertain about the truth status of

• A = (Hillary Clinton will be elected U.S. President in 2016), or

• B = (the in-hospital mortality rate for patients at hospital H
admitted in calendar 2010 with a principal diagnosis of heart attack

was between 5% and 25%).

4 (implication) It follows from 1 – 3 that statistics concerns Your
information (NOT Your beliefs) about A,B, . . .
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Axiomatization (continued)

5 (axiom) But Your information cannot be assessed in a vacuum:
all such assessments must be made relative to (conditional on) Your
background assumptions and judgments about how the world works

vis à vis A,B, . . . .

6 (axiom) These assumptions and judgments, which are themselves a
form of information, can always be expressed in a set B of

background propositions, all of which You believe to be true.

Examples of B:

• In the IHGA study, based on the experimental design, B would
include the propositions

(Subjects were representative of [like a random sample from] P),

(Subjects were randomized into one of two groups, treatment
(standard care + IHGA) or control (standard care)).

7 (definition) Call the “something of interest to You” θ; in
applications θ is often a vector (or matrix, or array) of real numbers,

but in principle it could be almost anything (a function,
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Axiomatization (continued)

an image of the surface of Mars, a phylogenetic tree, ...).

IHGA example: θ = mean relative decrease
(

µT−µC
µC

)
in hospitalization rate in P.

8 (axiom) There will typically be an information source (data set) D
that You judge to be relevant to decreasing Your uncertainty about θ;
in applications D is often again a vector (or matrix, or array) of real
numbers, but in principle it too could be almost anything (a movie,

the words in a book, ...).

9 (implication) The presence of D creates a dichotomy:

• Your information about θ {internal, external} to D.

(People often talk about a different dichotomy: Your information
about θ {before, after} D arrives (prior, posterior), but temporal

considerations are actually irrelevant.)

10 (implication) It follows from 1 – 9 that statistics concerns itself
principally with five things (omitted: description, data QA, ...):

(1) Quantifying Your information about θ internal to D (given B),
and doing so well (this term is not yet defined);
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Foundational Question

(2) Quantifying Your information about θ external to D (given B),
and doing so well;

(3) Combining these two information sources (and doing so well) to
create a summary of Your uncertainty about θ (given B) that includes
all available information You judge to be relevant (this is inference);

and using all Your information about θ (given B) to make

(4) Predictions about future data values D∗ and

(5) Decisions about how to act sensibly, even though Your
information about θ may be incomplete.

Foundational question: How should these tasks be accomplished?

This question has two parts: probability and statistics.

The probability foundations (addressed here first), have an interesting
and unfortunate history, in which much of the 20th century will (in

my view) be seen in the 21st century to have been a series of missed
scientific opportunities.
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Theory of Probability: Kolmogorov

From the 1650s (Fermat, Pascal) through the 18th century (Bayes,
Laplace) to the period 1860–1930 (Venn, Boole, von Mises), three

different approaches for how to think about uncertainty
quantification — classical, Bayesian, and frequentist probability —
were put forward in an intuitive way, but no one ever tried to prove a

theorem of the form {given these premises, there’s only one sensible
way to quantify uncertainty} until Kolmogorov, de Finetti, and

RT Cox.

— Kolmogorov (1933): following (and rigorizing) Venn, Boole and
von Mises, probability is a function on (possibly some of) the subsets

of a sample space Ω of uncertain possibilities, constrained to obey
some reasonable axioms; this is excellent, as far as it goes, but many

types of uncertainty cannot (uniquely, comfortably) be fit
into this framework (examples follow).

Kolmogorov was trying to make precise the intuitive notion of
repeatedly choosing a point at random in a Venn diagram and asking
how frequently the point falls inside a specified set, i.e., his concept

of probability had a repeated-sampling, frequentist character:
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Frequentist Probability: Kolmogorov

“The basis for the applicability of the results of the mathematical theory of
probability to real ‘random phenomena’ must depend on some form of the
frequency concept of probability, the unavoidable nature of which has been

established by von Mises in a spirited manner.”

∗ Example: You’re about to roll a pair of dice and You regard this

dice-rolling as fair, by which You mean that (in Your judgment) all
62 = 36 elemental outcomes in Ω = {(1, 1), (1, 2), . . . , (6, 6)} are

equally probable; then the Kolomogorov probability of snake eyes
((1, 1)) exists and is unique (from Your fairness judgment),

namely 1
36 ; but

∗ Example: You’re a doctor; a new patient presents saying that he

may be HIV positive; what’s the Kolmogorov probability that he is?

What’s Ω? This patient is not the result of a uniquely-specifiable
repeatable “random” process, he’s just a guy who walked into Your

doctor’s office, and — throughout the repetitions of whatever
repeatable phenomenon anyone might imagine — his HIV status is

not fluctuating “randomly”: he’s either HIV positive or he’s not.
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Theory of Probability: de Finetti

The closest You can come to making Kolmogorov’s approach work
here is to imagine the set Ω of all people {similar to this patient in

all relevant ways} and ask how often You’d get an HIV-positive
person if You repeatedly chose one person at random from Ω, but to
make this operational You have to specify what You mean by “similar

to, in all relevant ways,” and if You try to do this You’ll notice that
it’s not possible to do so uniquely (in such a way that all other

reasonable people would unanimously agree with You).

— de Finetti (1937): rigorizing Bayes, probability is a quantification
of betting odds about the truth of a proposition, constrained to obey
axioms guaranteeing coherence (absence of internal contradictions);
this is more general than Kolmogorov — in fact, it’s as general as

You can get: any statement about sets can be expressed in terms of
propositions — but betting odds are not fundamental to science.

de Finetti made many important contributions — in particular, his
concept of exchangeability (see AMS 206 or 206B) is crucial in

Bayesian modeling — but (in my view) science is about information,
not betting.
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Theory of Probability: RT Cox

— RT Cox (1946): following Laplace, probability is a quantification
of information about the truth of one or more propositions,

constrained to obey axioms guaranteeing internal logical consistency;
this is both fundamental to science and as general as You can get.

Cox’s goal was to identify what basic rules pl(A|B) — the plausibility
(weight of evidence in favor) of (the truth of) A given B — should

follow so that pl(A|B) behaves sensibly, where A and B are
propositions with B assumed by You to be true and the truth status of

A unknown to You.

He did this by identifying a set of principles making operational the
word “sensible” (Jaynes, 2003):

• Suppose You’re willing to represent degrees of plausibility by real
numbers (i.e., pl(A|B) is a function from propositions A and B to <);

• You insist that Your reasoning be logically consistent:

— If a plausibility assessment can be arrived at in more than one
way, then every possible way must lead to the same value.
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Cox’s Principles and Axioms

— You always take into account all of the evidence You judge to be
relevant to the plausibility assessment under consideration (this is the

Bayesian version of objectivity).

— You always represent equivalent states of information by
equivalent plausibility assignments.

From these principles Cox derived a set of axioms:

• The plausibility of a proposition determines the plausibility of the
proposition’s negation; each decreases as the other increases.

• The plausibility of the conjunction AB = (A and B) of two
propositions A, B depends only on the plausibility of B and that of {A
given that B is true} (or equivalently the plausibility of A and that of

{B given that A is true}).

• Suppose AB is equivalent to CD; then if You acquire new
information A and later acquire further new information B, and

update all plausibilities each time, the updated plausibilities will be
the same as if You had first acquired new information C and then

acquired further new information D.
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Cox’s Theorem

From these axioms Cox proved a theorem showing that uncertainty
quantification about propositions behaves in one and only one way:

Theorem: If You accept Cox’s axioms, then to be logically
consistent You must quantify uncertainty as follows:

• Your plausibility operator pl(A|B) — for propositions A and B —
can be referred to as Your probability P(A|B) that A is true, given that

You regard B as true, and 0 ≤ P(A|B) ≤ 1, with certain truth of A
(given B) represented by 1 and certain falsehood by 0.

• (normalization) P(A|B) + P(A|B) = 1, where A = (not A).

• (the product rule):

P(AB|C ) = P(A|C ) · P(B|AC ) = P(B|C ) · P(A|B C ).

The proof (see, e.g., Jaynes (2003)) involves deriving two functional

equations F [F (x , y), z ] = F [x ,F (y , z)] and x S
[
S(y)
x

]
= y S

[
S(x)
y

]
that

pl(A|B) must satisfy and then solving those equations.

A number of important corollaries arise from Cox’s Theorem:
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Optimal Reasoning Under Uncertainty

• (the sum rule):

P(A or B|C ) ≡ P(A + B|C ) = P(A|C ) + P(B|C )− P(AB|C ).

• Extensions of the product and sum rules to an arbitrary finite
number of propositions are easy, e.g.,

P(AB C |D) = P(A|D) · P(B|AD) · P(C |AB D) and

P(A + B + C |D) = P(A|D) + P(B|D) + P(C |D)− P(AB|D)

−P(AC |D)− P(B C |D) + P(AB C |D) .

• This framework (obviously) covers optimal reasoning about
uncertain quantities θ taking on a finite number of possible values;
less obviously, it also handles (equally well) situations in which the set

Θ of possible values of θ has infinitely many elements.

— Example: You’re studying quality of care at the 17 Kaiser

Permanente (KP) northern California hospitals in 2003–7, before
the era of electronic medical records; during that time there was a

population P of N = 8,561 patients at these facilities with a primary
admission diagnosis of heart attack.
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Inference About a Population Parameter

You take a simple random sample of n = 112 of these admissions and
record whether or not each patient had an unplanned transfer to the

intensive care unit (ICU), observing s = 4 who did; θ is the proportion
of such unplanned transfers in all of P; here Θ = { 0

N ,
1
N , . . . ,

N
N }, which

can be conveniently approximated by Θ′ = [0, 1].

Prior to 2003, the proportion of such unplanned transfers for heart
attack patients at KP in the northern California region was about
q = 0.07, so interest focuses on P(A|D B), where A is the proposition

(θ ≤ q), D is the proposition (s = 4), and B includes (among other
things) details about the sampling experiment (e.g., (n = 112)).

In this setup θ is usually called a (population) parameter, and is not
itself the result of any sampling experiment (random or otherwise);

for this reason, it’s not possible to (directly) quantify uncertainty
about θ from the Kolmogorov (set-theoretic) point of view, but it

makes perfect sense to do so from the RT Cox (propositional) point
of view.
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Optimal Reasoning About a Continuous θ

You could now more generally define a function
F(θ|D B)(q) = P(θ ≤ q|D B) and call it the cumulative distribution

function (CDF) for (not of) (θ|D B), which is shorthand for

the CDF for Your uncertainty about θ given D and B.

If F(θ|D B)(q) turns out to be continuous and differentiable in q (I
haven’t said yet how to calculate F ), it will be convenient to write

F(θ|D B)(b)− F(θ|D B)(a) = P(a < θ ≤ b|D B) =

∫ b

a

p(θ|D B)(q) dq , (1)

where the (partial) derivative p(θ|D B)(q) of F(θ|D B) with respect to q

can be called the density for (not of) (Your uncertainty about) θ

given D and B.

In a small abuse of notation it’s common to write F (θ|D B) and
p(θ|D B) instead of F(θ|D B)(q) and p(θ|D B)(q) (respectively), letting the

argument θ of F (·|D B) and p(·|D B) serve as a reminder of the
uncertain quantity in question.
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Ontology and Epistemology

NB In the Kolmogorov approach a random variable X is a function
from Ω to some outcome space O, and if O = < You’ll often find it

useful to summarize X ’s behavior through the CDF of X :
FX (x) = P(the set of ω ∈ Ω such that X (ω) ≤ x), usually written in

propositional-style shorthand as FX (x) = P(X ≤ x).

In the RT Cox approach, there are no random variables; there are
uncertain things θ whose uncertainty (when Θ = <k , for integer

1 ≤ k <∞) can usefully be summarized with CDFs and densities.

Jaynes (2003) makes a worthwhile distinction: the statements

There is noise in the room. The room is noisy.

seem quite similar but are in fact quite different: the former is
ontological (asserting the physical existence of something), whereas

the latter is epistemological (expressing the personal perception of the
individual making the statement).

Talking about “the density of θ” would be to confuse ontology
and epistemology;
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The Mind-Projection Fallacy

Jaynes calls this confusion of {the world} (ontology) with {Your
uncertainty about the world} (epistemology) the mind-projection

fallacy, and it’s clearly a mistake worth avoiding.

Returning to the corollaries of Cox’s Theorem,

• Given the set B, of propositions summarizing Your background
assumptions and judgments about how the world works as far as θ,

D and future data D∗ are concerned:

(a) It’s natural (and indeed You must be prepared in this approach) to
specify two conditional probability distributions:

— p(θ|B), to quantify all information about θ external to D that You
judge relevant; and

— p(D|θB), to quantify Your predictive uncertainty, given θ, about
the data set D before it’s arrived.

(b) Given the distributions in (a), the distribution p(θ|D B) quantifies
all relevant information about θ, both internal and external to D,

and must be computed via Bayes’s Theorem:
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Optimal Inference, Prediction and Decision

p(θ|D B) = c p(θ|B) p(D|θB) , (inference) (2)

where c > 0 is a normalizing constant chosen so that the left-hand
side of (2) integrates (or sums) over Θ to 1;

(c) Your predictive distribution p(D∗|D B) for future data D∗ given the
observed data set D must be expressible as follows:

p(D∗|D B) =

∫
Θ

p(D∗|θD B) p(θ|D B) dθ ;

often there’s no information about D∗ contained in D if θ is known, in
which case this expression simplifies to

p(D∗|D B) =

∫
Θ

p(D∗|θB) p(θ|D B)dθ ; (prediction) (3)

(d) to make a sensible decision about which action a You should take in
the face of Your uncertainty about θ, You must be prepared to specify

(i) the set A of feasible actions among which You’re choosing, and
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Bayesian Reasoning

(ii) a utility function U(a, θ), taking values on < and quantifying Your
judgments about the rewards (monetary or otherwise) that would

ensue if You chose action a and the unknown actually took the value
θ; without loss of generality You can take large values of U(a, θ) to

be better than small values;

then the optimal decision is to choose the action a∗ that maximizes
the expectation of U(a, θ) over p(θ|D B):

a∗ = argmax
a∈A

E(θ|D B)U(a, θ) = argmax
a∈A

∫
Θ

U(a, θ) p(θ|D B) dθ . (4)

The equation solving the inference problem is traditionally attributed
to Bayes (1764), although it’s just an application of the product rule

(page 13), which was already in use by (James) Bernoulli and de
Moivre around 1715, and Laplace made much better use of this

equation from 1774 to 1827 than Bayes did in 1764; nevertheless the
Laplace/Cox propositional approach is typically referred to as

Bayesian reasoning.
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Logical Consistency → Bayesian Reasoning Justified

Cox’s Theorem is equivalent to the assertion

If You wish to quantify Your uncertainty about an unknown θ (and
make predictions and decisions in the presence of that uncertainty) in

a logically internally consistent manner (as specified through Cox’s
axioms), on the basis of data D and background

assumptions/judgments B, then You can achieve this goal with
Bayesian reasoning, by specifying p(θ|B), p(D|θB), and {A,U(a, θ)}

and using equations (2–4).

This assertion has not rendered Bayesian analyses ubiquitous,
although the value of Bayesian reasoning has become increasingly

clear to an increasingly large number of people in the last 20 years,
now that advances in computing have made the routine use

of equations (2–4) feasible.

Advantages include a unified probabilistic framework: e.g., in my
earlier ICU example, Kolmogorov’s non-Bayesian approach does not
permit direct probability statements about a population parameter,

but Cox’s Theorem permits You to make such statements
(summarizing all relevant available information) in a natural way.
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The Specification Burden

It’s worth noting, however, that there really is a theorem here, of the
form A→ B, from which B → A; this comes close to the assertion

If You employ non-Bayesian reasoning then You’re open to the
possibility of logical inconsistency,

and indeed there have been some embarrassing moments in
non-Bayesian inference over the past 100 years (e.g., negative

estimates for quantities that are constrained to be non-negative).

Challenges: These corollaries to Cox’s theorem solve problems (3–5)

above (page 7) — they leave no ambiguity about how to draw
inferences, and make predictions and decisions, in the presence of
uncertainty — but problems (1) and (2) are still unaddressed: to

implement this logically-consistent approach in a given application,
You have to specify

• p(θ|B), usually called Your prior information about θ (given B; this is
better understood as a summary of all relevant information about θ

external to D, rather than by appeal to any temporal
(before-after) considerations);
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The Specification Burden (continued)

• p(D|θB), often referred to as Your sampling distribution for D given
θ (and B; this is better understood as Your conditional predictive

distribution for D given θ, before D has been observed, rather than by
appeal to other data sets that might have been observed); and

• the action space A and the utility function U(a, θ) for
decision-making purposes.

The results of implementing this approach are

• p(θ|D B), often referred to as Your posterior distribution for θ given D
(and B; as above, this is better understood as the totality of Your

current information about θ, again without appeal to
temporal considerations);

• Your posterior predictive distribution p(D∗|D B) for future data D∗

given the observed data set D; and

• the optimal decision a∗ given all available information (and B).
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Theory of Applied Statistics

To summarize: Inference and prediction require You to specify
p(θ|B) and p(D|θB); decision-making requires You to specify the same

two ingredients plus A and U(a, θ); how should this be done in a
sensible way?

Cox’s Theorem and its corollaries provide no constraints on the
specification process, apart from the requirement that all probability

distributions be proper (integrate or sum to 1).

In my view, in seeking answers to these specification questions, as a
profession we’re approximately where the discipline of statistics was in
arriving at an optimal theory of probability before Cox’s work: many
people have made ad-hoc suggestions (some of them good), but little

formal progress has been made.

Developing (1) principles, (2) axioms and (3) theorems about optimal
specification could be regarded as creating a Theory of Applied

Statistics, which we need but do not yet have.

Definition. Let’s agree to call {p(θ|B), p(D|θB),A,U(a, θ)} Your
model M for Your uncertainty about θ, with the convention that

24 / 27



Optimal Model Specification

when no decision-making is involved this simplifies to
{p(θ|B), p(D|θB)}.

How should M be specified? Where is the progression

Principles → Axioms → Theorems

to guide You, the way Cox’s Theorem settled the foundational
questions for probability?

In my view this is the central unsolved foundational problem in
statistical inference, prediction and decision-making.

Optimal model specification. Can M be specified optimally?

That depends on what You mean by optimal; here’s my definition:

Definition. In model specification, optimal = {conditioning only on
propositions rendered true by the context of the problem and the

design of the data-gathering process, while at the same time
ensuring that the set of conditioning propositions includes all

relevant problem context}.
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Optimal Model Specification (continued)

Repeat Q: Can this optimality goal be achieved?

A, Part 1: Yes, sometimes.

Focusing for the moment on inference and prediction, in some special
settings, You really don’t have any model uncertainty at all —

sometimes the prior distribution and/or likelihood/sampling
distribution arise directly from problem context

(Lecture Notes, Part 2).

Distribution-free well-calibrated Bayesian inferential methods are
sometimes also available (Lecture Notes, Part 2A).
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