
Bayesian Hierarchical Modeling

3: Bayesian Hierarchical and Mixture Modeling

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

and (1 Jul–31 Dec 2013) eBay Research Labs

{draper@ams.ucsc.edu, dadraper@ebay.com}
www.ams.ucsc.edu/∼draper

Short Course (Day 2)
University of Reading (UK)

28 Nov 2013

c© 2013 David Draper (all rights reserved)

3: Bayesian Hierarchical and Mixture Modeling David Draper Bayesian Hierarchical Modeling



Hierarchical Model
Selection: A Case Study

Case Study: In-home geriatric assessment

(IHGA). In an experiment conducted in the 1980s

(Hendriksen et al. 1984), 572 elderly people living

in a number of villages in Denmark were

randomized, 287 to a control (C) group (who

received standard care) and 285 to an

experimental (E) group (who received standard

care plus IHGA: a kind of preventive medicine in

which each person’s medical and social needs were

assessed and acted upon individually).

One important outcome was the number of

hospitalizations during the two-year life

of the study (Table 4.1).

Table 4.1. Distribution of number of hospitalizations in the
IHGA study over a two-year period.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Experimental 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered the mean hospitalization

rate (for these elderly Danish people, at least) by

(0.944− 0.768) = 0.176, which is about a

100
(
0.768−0.944

0.944

)
= 19% reduction from the

control level, a difference that’s

large in clinical terms.
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Modeling the IHGA Data

An off-the-shelf analysis of this experiment might

pretend (Model 0) that the data are Gaussian,
(
Ci|µC, σ2C

)
IID∼ N

(
µC, σ

2
C

)
, i = 1, . . . , nC,

(
Ej|µE, σ2E

)
IID∼ N

(
µE, σ

2
E

)
, j = 1, . . . , nE, (35)

and use the ordinary frequentist

two-independent-samples “z-machinery”:

rosalind 15> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> C <- c( rep( 0, 138 ), rep( 1, 77 ), rep( 2, 46 ),
rep( 3, 12 ), rep( 4, 8 ), rep( 5, 4 ), rep( 7, 2 ) )

> print( n.C <- length( C ) )

[1] 287 # sample size in the control group

> mean( C )

[1] 0.9442509 # control group mean

> sqrt( var( C ) )

[1] 1.239089 # control group
# standard deviation (SD)

> table( C )

0 1 2 3 4 5 7 # control group
138 77 46 12 8 4 2 # frequency distribution
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Analysis of Model 0

> E <- c( rep( 0, 147 ), rep( 1, 83 ), rep( 2, 37 ),
rep( 3, 13 ),rep( 4, 3 ), rep( 5, 1 ), rep( 6, 1 ) )

> print( n.E <- length( E ) )

[1] 285 # sample size in the
# experimental group

> mean( E )

[1] 0.7684211 # experimental group mean

> sqrt( var( E ) )

[1] 1.008268 # experimental group SD

> table( E )

0 1 2 3 4 5 6 # experimental group
147 83 37 13 3 1 1 # frequency distribution

> print( effect <- mean( E ) - mean( C ) )

[1] -0.1758298 # mean difference ( E - C )

> effect / mean( C )

[1] -0.1862109 # relative difference ( E - C ) / C

> SE.effect <- sqrt( var( C ) / n.C + var( E ) / n.E )

[1] 0.09442807 # standard error of the difference

> print( CI <- c( effect - 1.96 * SE.effect,
effect + 1.96 * SE.effect ) )

[1] -0.3609 0.009249 # the 95% confidence interval from
# model 0 runs from -.36 to +.01
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Deficiencies of Model 0

The frequentist analysis of Model 0 is equivalent

to a Bayesian analysis of the same model with

diffuse priors on the control and experimental

group means and SDs (µC, σC, µE, σE), and is

summarized in Table 4.2.

Table 4.2. Summary of analysis of Model 0.

Posterior
Mean SD 95% Interval

Treatment effect
(µE − µC)

−0.176 0.0944 (−0.361,0.009)

However, both distributions have long right-hand

tails; in fact they look rather Poisson.
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Figure 4.1. Histograms of control and experimental numbers
of hospitalizations.
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4.1.1 Poisson Fixed-Effects Modeling

R code to make the histograms:

> x11( ) # to open a
# graphics window

> par( mfrow = c( 1, 2 ) ) # to plot two histograms

> hist( C, nclass = 8, probability = T,
xlab = ’Days Hospitalized’, ylab = ’Density’,
xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Control’ )

> hist( E, nclass = 8, probability = T,
xlab = ’Days Hospitalized’, ylab = ’Density’,
xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Experimental’ )

So I created a classicBUGS file called poisson1.bug

that looked like this:

model poisson1;

const

n.C = 287, n.E = 285;

var

lambda.C, lambda.E, C[ n.C ], E[ n.E ], effect;

data C in "poisson-C.dat", E in "poisson-E.dat";

inits in "poisson1.in";

53



Initial Poisson Modeling (continued)

{

lambda.C ~ dgamma( 0.001, 0.001 );
lambda.E ~ dgamma( 0.001, 0.001 );

for ( i in 1:n.C ) {

C[ i ] ~ dpois( lambda.C );

}

for ( j in 1:n.E ) {

E[ j ] ~ dpois( lambda.E );

}

effect <- lambda.E - lambda.C;

}

poisson1.in initializes both λC and λE to 1.0; the

Γ(0.001,0.001) priors for λC and λE are chosen (as

usual to create diffuseness) to be flat in the region

in which the likelihood is appreciable:

> sqrt( var( C ) / n.C )

[1] 0.07314114

> sqrt( var( E ) / n.E )

[1] 0.05972466

> c( mean( C ) - 3.0 * sqrt( var( C ) / n.C ),
mean( C ) + 3.0 * sqrt( var( C ) / n.C ) )
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Initial Poisson Modeling (continued)

[1] 0.7248275 1.1636743

> c( mean( E ) - 3.0 * sqrt( var( E ) / n.E ),
mean( E ) + 3.0 * sqrt( var( E ) / n.E ) )

[1] 0.5892471 0.9475950

> lambda.grid <- seq( 0.01, 2.0, 0.01 )

> plot( lambda.grid, 0.001 * dgamma( lambda.grid, 0.001 ),
type = ’l’, xlab = ’Lambda’, ylab = ’Density’ )

The likelihood under the Gaussian model is

concentrated for λC from about 0.7 to 1.2, and

that for λE from about 0.6 to 1; you can see from

the plot that across those ranges the

Γ(0.001, 0.001) prior is essentially constant.
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Figure 4.2. The Γ(0.001,0.001) distribution in the region in
which the likelihoods for λC and λE are appreciable.
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WinBUGS Implementation

The screendump above presents part of the

results of fitting the 2-independent-samples

additive Poisson model at the top of page 8

in WinBUGS.

A burn-in of 2,000 was almost instantaneous at

2.0 PC GHz and revealed good mixing for the

three main quantities of interest.
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WinBUGS Implementation (continued)

A monitoring run of 8,000 reveals that the effect

parameter in the 2-independent-samples

Poisson model is behaving like white noise, so

that already with only 8,000 iterations the

posterior mean has a Monte Carlo standard error

of less than 0.001.
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Initial Poisson Modeling (continued)

Thus a burn-in of 2,000 and a monitoring run of

8,000 yields good MCMC diagnostics and

permits a comparison between model 0 (Gaussian)

and model 1 (Poisson), as in Table 4.3.

Table 4.3. Comparison of inferential conclusions
from models 0 and 1.

λC Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian 0.944 0.0731 (0.801,1.09)
Poisson 0.943 0.0577 (0.832,1.06)

λE Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian 0.768 0.0597 (0.651,0.885)
Poisson 0.769 0.0521 (0.671,0.875)

∆ = λE − λC Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian -0.176 0.0944 (−0.361,0.009)
Poisson -0.174 0.0774 (−0.325,−0.024)

The two models produce almost identical point

estimates, but the Poisson model leads to

sharper inferences (e.g., the posterior SD for the

treatment effect ∆ = λE − λC is 22% larger in

model 0 than in model 1).
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Additive and
Multiplicative Treatment Effects

This is the same point we noticed with the NB10

data—when a location parameter is the only thing

at issue, the Gaussian is a conservative modeling

choice (intuitively, the Poisson gains its “extra

accuracy” from the variance and the mean being

equal, which permits second-moment information

to help in estimating the λ values along with the

usual first-moment information).

Both the Gaussian and Poisson models so far

implicitly assume that the treatment effect

is additive:

E
st
= C + effect, (36)

where
st
= means is stochastically equal to; in other

words, apart from random variation the effect of

the IHGA is to add or subtract a constant to or

from each person’s underlying rate of

hospitalization.

However, since the outcome variable is

non-negative, it is plausible that a better model

for the data is

E
st
= (1+ effect)C. (37)
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Additive vs. Multiplicative Effect

Here the treatment effect is multiplicative—in

other words, apart from random variation the

effect of the IHGA is to multiply each person’s

underlying rate of hospitalization by a constant

above or below 1.

A qqplot of the control and experimental outcome

values can in some cases be helpful in choosing

between additive and multiplicative models:

> CEqq <- qqplot( C, E, plot = F )

> table( CEqq$y, CEqq$x )

Interpolated C values
0 0.965 1 1.5 2 2.82 3 3.91 4 4.96 5 6.99 7

0 137 1 9 0 0 0 0 0 0 0 0 0 0
1 0 0 66 1 16 0 0 0 0 0 0 0 0
2 0 0 0 0 29 1 7 0 0 0 0 0 0

E 3 0 0 0 0 0 0 4 1 7 1 0 0 0
4 0 0 0 0 0 0 0 0 0 0 3 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1

> symbols( c( 0, 0.964798, 1, 1, 1.5, 2, 2, 2.823944, 3, 3,
3.908447, 4, 4.964813, 5, 6.985962, 7 ), c( rep( 0, 3 ),
rep( 1, 3 ), rep( 2, 3 ), rep( 3, 4 ), 4, 5, 6 ),
circles = c( 137, 1, 9, 66, 1, 16, 29, 1, 7, 4, 1, 7, 1,
3, 1, 1 ), xlab = ’C’, ylab = ’E’ )
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Additive vs. Multiplicative Effect

> abline( 0, 1 ) # E = C (no effect)

> abline( 0, 0.793, lty = 2 ) # E = 0.816 C
# (multiplicative)

> abline( -0.174, 1, lty = 3 ) # E = C - 0.174 (additive)
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Figure 4.3. QQplot of E versus C values, with the radii of
the plotted circles proportional to the number of observations

at the indicated point. The solid line corresponds to no
treatment effect, the small dotted line to the best-fitting

multiplicative model (E
st
= 0.816C), and the large dotted line

to the best-fitting additive model (E
st
= C − 0.174).

Here, because the Poisson model has only one

parameter for both location and scale, the

multiplicative and additive formulations fit equally

well, but the multiplicative model generalizes

more readily (see below).
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A Multiplicative Poisson Model

A simple way to write the multiplicative model is

to re-express the data in the form of a regression

of the outcome y on a dummy variable x which is

1 if the person was in the experimental group and

0 if he/she was in the control group:

i 1 2 · · · 287 288 289 · · · 572
xi 0 0 · · · 0 1 1 · · · 1
yi 1 0 · · · 2 0 3 · · · 1

Then for i = 1, . . . , n = 572 the

multiplicative model can be written

(yi |λi)
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi (38)

(γ0, γ1) ∼ diffuse

In this model the control people have

log(λi) = γ0 + γ1(0) = γ0, i.e., λC = eγ0, (39)

and the experimental people have

log(λi) = γ0 + γ1(1) = γ0 + γ1, i.e.,

λE = eγ0+γ1 = eγ0eγ1 = λCe
γ1. (40)

Now you may remember from basic Taylor series

that for γ1 not too far from 0

eγ1
.
= 1+ γ1, (41)
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A Multiplicative Poisson Model

so that finally (for γ1 fairly near 0)

λE
.
= (1+ γ1)λC, (42)

which is a way of expressing equation (3) in
Poisson language.

Fitting this model in BUGS is easy:

model poisson2;

const

n = 572;

var

gamma.0, gamma.1, lambda[ n ], x[ n ], y[ n ], lambda.C,
lambda.E, mult.effect;

data x in "poisson-x.dat", y in "poisson-y.dat";
inits in "poisson2.in";

{
gamma.0 ~ dnorm( 0.0, 1.0E-4 ); # flat priors for
gamma.1 ~ dnorm( 0.0, 1.0E-4 ); # gamma.0 and gamma.1

for ( i in 1:n ) {

log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ];
y[ i ] ~ dpois( lambda[ i ] );

}

lambda.C <- exp( gamma.0 );
lambda.E <- exp( gamma.0 + gamma.1 );
mult.effect <- exp( gamma.1 );

}
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WinBUGS Implementation (continued)

The multiplicative Poisson model (11) takes

longer to run—2,000 burn-in iterations now take

about 4 seconds at 2.0 PC GHz—but still

exhibits fairly good mixing, as we’ll see below.
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WinBUGS Implementation (continued)

A total of 10,000 iterations (the chain started

essentially in equilibrium, so the burn-in can be

absorbed into the monitoring run) reveals that the

multiplicative effect parameter eγ1 in model

(11) behaves like an AR1 series with ρ̂1
.
= 0.5, but

the Monte Carlo standard error for the posterior

mean is still only about 0.001 with a run of

this length.
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Additive versus Multiplicative Fit

A burn-in of 2,000 and a monitoring run of 8,000

again yields good MCMC diagnostics and

permits a comparison between the additive and

multiplicative Poisson models, as in Table 4.4.

Table 4.4. Comparison of inferential conclusions
from the additive and multiplicative Poisson models.

λC Posterior Posterior Central 95%

Model Mean SD Interval
additive 0.943 0.0577 (0.832,1.06)

multiplicative 0.945 0.0574 (0.837,1.06)

λE Posterior Posterior Central 95%

Model Mean SD Interval
additive 0.769 0.0521 (0.671,0.875)

multiplicative 0.768 0.0518 (0.671,0.872)

effect Posterior Posterior Central 95%
Model Mean SD Interval
additive -0.174 0.0774 (−0.325,−0.024)

multiplicative -0.184 0.0743 (−0.324,−0.033)

With this model it is as if the experimental

people’s average underlying rates of hospitalization

have been multiplied by 0.82,

give or take about 0.07.

The additive and multiplicative effects are similar

here, because both are not too far from zero.
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Extra-Poisson Variability

However, none of this has verified that the

Poisson model is reasonable for these data—the

histograms show that the Gaussian model is clearly

unreasonable, but the diagnostic plots in WinBUGS

and CODA only check on the adequacy of the

MCMC sampling, not the model.

In fact we had a good clue that the data are not

Poisson back on page 2: as noted in part 2, the

Poisson(λ) distribution has mean λ and also

variance λ—in other words, the

variance-to-mean-ratio (VTMR) for the Poisson

is 1. But

> var( C ) / mean( C )
[1] 1.62599
> var( E ) / mean( E )
[1] 1.322979

i.e., the data exhibit extra-Poisson variability

(VTMR > 1).

This actually makes good sense if you think

about it, as follows.

The Poisson model assumes that everybody in the

control group has the same underlying rate λC
of hospitalization, and similarly everybody in the

experimental group has the same rate λE.
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Unobserved Predictor Variables

In reality it’s far more reasonable to think that

each person has his/her own underlying rate of

hospitalization that depends on baseline health

status, age, and various other things.

Now Hendriksen forgot to measure (or at least

to report on) these other variables (he may have

hoped that the randomization would balance them

between C and E)—the only predictor we have is

x, the experimental status dummy variable—so

the best we can do is to lump all of these other

unobserved predictor variables together into a

kind of “error” term e.

This amounts to expanding the second Poisson

model (11) above: for i = 1, . . . , n = 572

the new model is

(yi |λi)
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi + ei (43)

ei
IID∼ N

(
0, σ2e

)

(
γ0, γ1, σ

2
e

)
∼ diffuse.
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Random-
Effects Poisson Regression

The Gaussian choice for the error distribution is

conventional, not dictated by the science of the

problem (although if there were a lot of

unobserved predictors hidden inside the ei their

weighted sum would be close to normal by the

Central Limit Theorem).

Model (16) is an expansion of the earlier model

(11) because you can obtain model (11) from (16)

by setting σ2
e = 0, whereas with (16) we’re letting

σ2e vary and learning about it from the data.

The addition of the random effects ei to the

model is one way to address the extra-Poisson

variability: this model would be called a lognormal

mixture of Poisson distributions (or a random

effects Poisson regression (REPR) model)

because it’s as if each person’s λ is drawn from a

lognormal distribution and then his/her number of

hospitalizations y is drawn from a Poisson

distribution with his/her λ, and this mixing process

will make the variance of y

bigger than its mean.
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WinBUGS Implementation

The new WinBUGS model is

{

gamma.0 ~ dnorm( 0.0, 1.0E-4 )
gamma.1 ~ dnorm( 0.0, 1.0E-4 )
tau.e ~ dgamma( 0.001, 0.001 )

for ( i in 1:n ) {

e[ i ] ~ dnorm( 0.0, tau.e )
log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ] +
e[ i ]

y[ i ] ~ dpois( lambda[ i ] )

}

lambda.C <- exp( gamma.0 )
lambda.E <- exp( gamma.0 + gamma.1 )
mult.effect <- exp( gamma.1 )
sigma.e <- 1.0 / sqrt( tau.e )

}

I again use a diffuse Γ (ε, ε) prior (with ε = 0.001)

for the precision τe of the random effects.
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WinBUGS Implementation (continued)

With a model like that in equation (16), there are n random
effects ei that need to be sampled as nodes in the graph (the
ei play the role of auxiliary variables in the MCMC) along
with the fixed effects (γ0, γ1) and the variance parameter σ2

e .

In earlier releases of the software, at least, this made it more
crucial to give WinBUGS good starting values.

Here WinBUGS release 1.3 has figured out that random draws

like 1.66 · 10−316 result from the generic (and quite poor)
initial values (γ0, γ1, τe) = (0.0,0.0,1.0) and has refused to

continue sampling.
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Sensitivity to Initial Values

Warning WinBUGS can fail, particularly in

random-effects models, when you give it initial

values that are not very close to the final posterior

means; an example in release 1.3 is the REPR

model (16) on the IHGA data with the “generic”

starting values (γ0, γ1, τe) = (0.0,0.0,1.0).

When this problem arises there are two ways out in

WinBUGS: trial and error, or a calculation

(see below).

NB MLwiN does not have this problem—it gets its starting
values from maximum likelihood (the mode of the

likelihood function is often a decent approximation to the
mean or mode of the posterior).

Technical note. To get a decent starting value for τe in
model (16) you can calculate as follows: renaming the
random effects ηi to avoid confusion with the number e,

(1) V (yi) = V [E(yi |ηi)] + E[V (yi |ηi)], where
(2) (yi |ηi) ∼ Poisson

(
eγ0+γ1xi+ηi

)
, so

E(yi |ηi) = V (yi |ηi) = eγ0+γ1xi+ηi. Then (3)

V [E(yi |ηi)] = V
(
eγ0+γ1xi+ηi

)
= e2(γ0+γ1xi)V (eηi) and

E[V (yi |ηi)] = E
(
eγ0+γ1xi+ηi

)
= eγ0+γ1xiE(eηi). Now (4) eηi is

lognormal with mean 0 and variance σ2
e on the log scale, so

E(eηi) = e
1

2
σ2

e and V (eηi) = eσ
2
e

(
eσ

2
e − 1

)
, yielding finally

V (yi) = e2(γ0+γ1xi)+
1

2
σ2

e + eγ0+γ1xi+σ2
e

(
eσ

2
e − 1

)
. (5) Plugging in

xi = 0 for the C group, whose sample variance is 1.54, and
using the value γ0 = −0.29 from runs with previous models,

gives an equation for σ2
e that can be solved numerically,

yielding σ2
e

.
= 0.5 and τe

.
= 2.
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WinBUGS Implementation (continued)

Interestingly, WinBUGS release 1.4 is able to sample

successfully with the generic starting values

(γ0, γ1, τe) = (0.0,0.0,1.0), although of course a

longer burn-in period would be needed when

they’re used; you have to try truly absurd initial

values to get it to fall over, and when it does so

the error message (“Rejection1”) in the lower left

corner is more discreet.
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WinBUGS Implementation (continued)

With a better set of initial
values—(γ0, γ1, τe) = (−0.058,−0.21,2.0), obtained from (a)

the earlier Poisson models (in the case of the regression
parameters γj) and (b) either a calculation like the one on
the bottom of page 29 or trial and error—WinBUGS is able to
make progress, although this model takes a fairly long time
to fit in release 1.4: a burn-in of 1,000 takes 11 seconds at
1.0 PC GHz (the code runs about twice as fast in release 1.3

for some reason).

A monitoring run of 5,000 iterations reveals that the random
effects make everything mix more slowly: λC (this page)
and λE and the multiplicative effect (next page) all behave
like AR1 series with ρ̂1

.
= 0.7, 0.5, and 0.6, respectively.

74



WinBUGS Implementation (continued)
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WinBUGS Implementation (continued)

Learning about σe in this model is slow: its autocorrelation
function is that of an AR1 with a high value of ρ̂1 (equation

(55) on page 76 of part 3 of the lecture notes gives
ρ̂1

.
= 0.92).

The MCSE of the posterior mean for σe based on 5,000
draws is 0.005182—to get this down to (say) 0.001 I need
to increase the length of the monitoring run by a factor of(

0.005182
0.001

)2 .
= 26.9, meaning a total run of about

(26.9)(5,000)
.
= 134,000 iterations (this takes about half an

hour at 1 PC GHz).
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WinBUGS Implementation (continued)

There is clear evidence that σe is far from 0—its

posterior mean and SD are estimated as 0.675

(with an MCSE of about 0.001 after 134,000

iterations) and 0.074, respectively—meaning that

the model expansion from (11) to (16) was

amply justified.
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REPR Model Results

(Another way to achieve the goal of describing the

extra-Poisson variability would be to fit different

negative binomial distributions to the observed

counts in the C and E groups—the negative

binomial is a gamma mixture of Poissons, and

the gamma and lognormal distributions often fit

long-tailed data about equally well, so you would

not be surprised to find that the two approaches

give similar results.)

Table 4.5. Comparison of inferential conclusions about the
multiplicative effect parameter eγ1 from the fixed-effects and

random-effects Poisson regression models.

Posterior Posterior Central 95%
Model Mean SD Interval
FEPR 0.816 0.0735 (0.683,0.969)
REPR 0.830 0.0921 (0.665,1.02)

Table 4.5 compares the REPR model inferential results with
those from model (11), which could also be called a
fixed-effects Poisson regression (FEPR) model.

The “error” SD σe has posterior mean 0.68, give or take
about 0.07 (on the log(λ) scale), corresponding to

substantial extra-Poisson variability, which translates into
increased uncertainty about the multiplicative effect

parameter eγ1.

I’ll argue later that the REPR model fits the data well, so
the conclusion I’d publish from these data is that IHGA

reduces the average number of hospitalizations per two years

by about 100 (1− 0.083)% = 17% give or take about 9%

(ironically this conclusion is similar to that from the Gaussian
model, but this is coincidence).
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