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4 Integer-Valued Outcomes

Case Study: Hospital length of stay for birth of premature
babies. As a small part of a study I worked on at the Rand

Corporation in the late 1980s, we obtained data on a random
sample of n = 14 women who came to a hospital in Santa
Monica, CA, in 1988 to give birth to premature babies.

One (integer-valued) outcome of interest was
y = length of hospital stay (LOS).

Here’s a preliminary look at the data in the excellent
freeware statistical package R (see

http://www.r-project.org/ for more details and instructions
on how to download the package).

rosalind 77> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or
‘help.start()’ for a HTML browser interface to help.
Type ‘q()’ to quit R.

[Previously saved workspace restored]

> y

[1] 1 2 1 1 1 2 2 4 3 6 2 1 3 0

> sort( y )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> table( y )

0 1 2 3 4 6
1 5 4 2 1 1
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4.1 Poisson Modeling

> stem( y, scale = 2 )

The decimal point is at the |

0 | 0
1 | 00000
2 | 0000
3 | 00
4 | 0
5 |
6 | 0

> mean( y )

[1] 2.071429

> sqrt( var( y ) )

[1] 1.54244

> q( )

Save workspace image? [y/n/c]: y
rosalind 1777>

One possible model for non-negative integer-valued
outcomes is the Poisson distribution

P (Yi = yi) =

{
λyie−λ

yi!
for yi = 0,1, . . .

0 otherwise

}
, (1)

for some λ > 0.

As usual Maple can be used to work out the mean and
variance of this distribution:

rosalind 78> maple

|\^/| Maple V Release 5 (University of California, Santa Cruz)
._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
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Poisson Modeling (continued)
> assume( lambda > 0 );

> p := ( y, lambda ) -> lambda^y * exp( - lambda ) / y!;

y
lambda exp(-lambda)

p := (y, lambda) -> --------------------
y!

> simplify( sum( p( y, lambda ), y = 0 .. infinity ) );

1

> simplify( sum( y * p( y, lambda ), y = 0 .. infinity ) );

lambda~

> simplify( sum( ( y - lambda )^2 * p( y, lambda ),
y = 0 .. infinity ) );

lambda~

Thus if Y ∼ Poisson(λ), E(Y ) = V (Y ) = λ, which people
sometimes express by saying that the variance-to-mean

ratio (VTMR) for the Poisson is 1.

R can be used to check informally whether the Poisson is a
good fit to the LOS data:

rosalind 77> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> dpois( 0:7, mean( y ) )
[1] 0.126005645 0.261011693 0.270333539 0.186658872 0.096662630
[6] 0.040045947 0.013825386 0.004091186

> print( n <- length( y ) )

[1] 14

> table( y ) / n
0 1 2 3 4 6

0.07142857 0.35714286 0.28571429 0.14285714 0.07142857 0.07142857
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Poisson Modeling (continued)

> cbind( c( dpois( 0:6, mean( y ) ),

1 - sum( dpois( 0:6, mean( y ) ) ) ),

apply( outer( y, 0:7, ’==’ ), 2, sum ) / n )

[,1] [,2]

[1,] 0.126005645 0.07142857

[2,] 0.261011693 0.35714286

[3,] 0.270333539 0.28571429

[4,] 0.186658872 0.14285714

[5,] 0.096662630 0.07142857
[6,] 0.040045947 0.00000000

[7,] 0.013825386 0.07142857

[8,] 0.005456286 0.00000000

The second column in the above table records the values of
the Poisson probabilities for λ = 2.07, the mean of the yi,
and the third column is the empirical relative frequencies;

informally the fit is reasonably good.

Another informal check comes from the fact that the
sample mean and variance are 2.07 and 1.5422 .

= 2.38, which
are reasonably close.

Exchangeability. As with the AMI mortality case study,

before the data arrive I recognize that my uncertainty about
the Yi is exchangeable, and you would expect from a

generalization of the binary-outcomes version of de Finetti’s
Theorem that the structure of a plausible Bayesian model

for the data might then be

θ ∼ p(θ) (prior) (2)

(Yi|θ) IID∼ F (θ) (likelihood),

where θ is some parameter (vector) and F (θ) is some family
of distributions on the non-negative integers indexed by θ.
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Poisson Modeling (continued)

Thus, in view of the preliminary examination of the data
above, a plausible Bayesian model for these data is

λ ∼ p(λ) (prior) (3)

(Yi|λ) IID∼ Poisson(λ) (likelihood),

where λ is a positive real number.

NB (1) This approach to model-building involves a form of
cheating, because we’ve used the data twice: once to

choose the model, and again to draw conclusions conditional
on the chosen model.

The result is a failure to assess and propagate model
uncertainty (e.g., Draper 1995).

(2) Frequentist modeling often employs this same kind of
cheating in specifying the likelihood function.

(3) There are two Bayesian ways out of this dilemma:
cross-validation and Bayesian

nonparametric/semi-parametric methods (I’ll have more
to say about both in this course).

To get more practice with Bayesian calculations I’m going to
ignore the model uncertainty problem for now and
pretend that somehow we knew that the Poisson was a

good choice.

The likelihood function in model (3) is

l(λ|y) = c pY1,...,Yn
(y1, . . . , yn|λ)

= c

n∏

i=1

pYi
(yi|λ) (4)

= c

n∏

i=1

λyie−λ

yi!

= c λs e−nλ,

6



The Conjugate Prior

where y = (y1, . . . , yn) and s =
∑n

i=1 yi; here
(∏n

i=1 yi!
)−1

can
be ignored because it doesn’t involve λ.

Thus (as was true in the Bernoulli model) s =
∑n

i=1 yi is
sufficient for λ in the Poisson model, and we can write

l(λ|s) instead of l(λ|y) if we want.

If a conjugate prior p(λ) for λ exists it must be such that the
product p(λ) l(λ|s) has the same mathematical form as p(λ).

Examination of (4) reveals that the same trick works here as
with Bernoulli data, namely taking the prior to be of the

same form as the likelihood:

p(λ) = c λα−1e−βλ (5)

for some α > 0, β > 0—this is the Gamma distribution
λ ∼ Γ(α, β) for λ > 0 (see Gelman et al. Appendix A).

As usual Maple can work out the normalizing constant:

rosalind 80> maple

|\^/| Maple V Release 5 (University of California, Santa Cruz)
._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

> assume( lambda > 0, alpha > 0, beta > 0 );

> p1 := ( lambda, alpha, beta ) -> lambda^( alpha - 1 ) *
exp( - beta * lambda );

(alpha - 1)
p1 := (lambda, alpha, beta) -> lambda exp(-beta lambda)

> simplify( integrate( p1( lambda, alpha, beta ),
lambda = 0 .. infinity ) );

(-alpha~)
beta~ GAMMA(alpha~)
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The Gamma Distribution

Thus c−1 = β−αΓ(α) and the
proper definition of the Gamma distribution is

If λ ∼ Γ(α, β) then p(λ) =
βα

Γ(α)
λα−1 e−β λ (6)

for α > 0, β > 0.

As usual Maple can be used to explore the behavior of this
family of distributions as a function of its inputs α and β:

> p := ( lambda, alpha, beta ) -> beta^alpha * lambda^( alpha - 1 ) *
exp( - beta * lambda ) / GAMMA( alpha );

alpha (alpha - 1)
beta lambda exp(-beta lambda)

p := (lambda, alpha, beta) -> ---------------------------------------------
GAMMA(alpha)

> plotsetup( x11 );

> plot( { p( lambda, 1, 1 ), p( lambda, 2, 1 ), p( lambda, 3, 1 ),
p( lambda, 6, 1 ) }, lambda = 0 .. 14, color = black );

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14
lambda~

α evidently controls the shape of the Gamma family.
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Gamma Distribution (continued)

When α = 1 the Gamma distributions have a special form
which you’ll probably recognize—they’re the exponential

distributions E(β): for β > 0

If λ ∼ E(β) then p(λ) =

{
β e−β λ for λ > 0

0 otherwise

}
. (7)

> plot( { p( lambda, 2, 1 ), p( lambda, 2, 2 ), p( lambda, 2, 3 ) },

lambda = 0 .. 7, color = black );

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7
lambda~

In the Gamma family the parameter β controls the spread or
scale of the distribution.

Definition Given a random quantity y whose density p(y|σ)
depends on a parameter σ > 0, if it’s possible to express

p(y|σ) in the form 1
σ
f(y

σ
), where f(·) is a function which does

not depend on y or σ, then σ is called a scale parameter for
the parametric family p.
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Gamma Distribution (continued)

Letting f(t) = e−t and taking σ = 1
β
, you can see that the

Gamma family can be expressed in this way, so 1
β
is a scale

parameter for the Gamma distribution.

As usual Maple can also work out the mean and variance
of this family:

> simplify( integrate( p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

1

> simplify( integrate( lambda * p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

alpha~

------

beta~

> simplify( integrate( ( lambda - alpha / beta )^2 *

p( lambda, alpha, beta ), lambda = 0 .. infinity ) );

alpha~
------

2

beta~

Thus if λ ∼ Γ(α, β) then E(λ) = α
β
and V (λ) = α

β2 .

Conjugate updating is now straightforward: with

y = (y1, . . . , yn) and s =
∑n

i=1 yi, by Bayes’ Theorem

p(λ|y) = c p(λ) l(λ|y)
= c

(
c λα−1 e−βλ

) (
c λs e−nλ

)
(8)

= c λ(α+s)−1 e−(β+n)λ,

and the resulting distribution is just Γ(α+ s, β + n).
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Conjugate Poisson Analysis

This can be summarized as follows:




(λ|α, β) ∼ Γ(α, β)

(Yi|λ) IID∼ Poisson(λ),
i = 1, . . . , n



 → (λ|s) ∼ Γ(α∗, β∗), (9)

where (α∗, β∗) = (α+ s, β + n) and s =
∑n

i=1 yi is a sufficient
statistic for λ in this model.

The posterior mean of λ here is evidently α∗

β∗ =
α+s
β+n

, and the

prior and data means are α
β
and ȳ = s

n
, so (as was the case in

the Bernoulli model) the posterior mean can be written as a
weighted average of the prior and data means:

α+ s

β + n
=

(
β

β + n

)(
α

β

)
+

(
n

β + n

)( s

n

)
. (10)

Thus the prior sample size n0 in this model is just β (which
makes sense given that 1

β
is the scale parameter for the

Gamma distribution), and the prior acts like a dataset
consisting of β observations with mean α

β
.

LOS data analysis. Suppose that, before the current data

set is scheduled to arrive, I know little about the mean
length of hospital stay of women giving birth

to premature babies.

Then for my prior on λ I’d like to specify a member of the
Γ(α, β) family which is relatively flat in the region in which

the likelihood function is appreciable.
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The Γ(ǫ, ǫ) Prior

A convenient and fairly all-purpose default choice of this
type is Γ(ǫ, ǫ) for some small ǫ like 0.001.

When used as a prior this distribution has prior sample size
ǫ; it also has mean 1, but that usually doesn’t matter

when ǫ is tiny.

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, color = black );

0.002

0.004

0.006

0.008

0.01

0 1 2 3 4
lambda~

With the LOS data s = 29 and n = 14, so the likelihood for
λ is like a Γ(30,14) density, which has mean 30

14

.
= 2.14 and

SD
√

30
142

.
= 0.39.

Thus by the Empirical Rule the likelihood is appreciable in
the range (mean± 3SD)

.
= (2.14± 1.17)

.
= (1.0,3.3), and

you can see from the plot above that the prior is indeed
relatively flat in this region.

From the Bayesian updating in (9), with a Γ(0.001,0.001)
prior the posterior is Γ(29.001,14.001).
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LOS Data Analysis

It’s useful, in summarizing the updating from prior through
likelihood to posterior, to make a table that records

measures of center and spread at each point along the way.

For example, the Γ(0.001,0.001) prior, when regarded (as
usual) as a density for λ, has mean 1.000 and SD√

1000
.
= 31.6 (i.e., informally, as far as we’re concerned,

before the data arrive λ could be anywhere between 0 and
(say) 100).

And the Γ(29.001,14.001) posterior has mean
29.001
14.001

.
= 2.071 and SD

√
29.001
14.0012

.
= 0.385, so after the data

have arrived we know quite a bit more than before.

There are two main ways to summarize the
likelihood—Fisher’s approach based on maximizing it, and
the Bayesian approach based on regarding it as a density and
integrating it—and it’s instructive to compute them both

and compare.

The likelihood-integrating approach (which is actually
equivalent to another of Fisher’s ideas: fiducial inference)
treats the Γ(30,14) likelihood as a density for λ, with mean

30
14

.
= 2.143 and SD

√
30
142

.
= 0.391.

As for the likelihood-maximizing approach, from (4) the
log likelihood function is

ll(λ|y) = ll(λ|s) = log
(
c λse−nλ

)
= c+ s logλ− nλ, (11)

and this is maximized as usual (check that it’s the max) by
setting the derivative equal to 0 and solving:

∂

∂λ
ll(λ|s) =

s

λ
− n = 0 iff λ = λ̂MLE =

s

n
= ȳ. (12)
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LOS Analysis (continued)

Since the MLE λ̂MLE turns out to be our old friend the
sample mean ȳ, you might be tempted to conclude

immediately that ŜE
(
λ̂MLE

)
= σ̂√

n
, where σ̂ = 1.54 is the

sample SD, and indeed it’s true in repeated sampling that

V
(
Ȳ
)
= V(Y1)

n
; but the Poisson distribution has variance

V (Y1) = λ, so that
√

V
(
Ȳ
)
=

√
λ√
n
, and there’s no guarantee in

the Poisson model that the best way to estimate
√
λ in this

standard error calculation is with the sample SD σ̂ (in fact
we have a strong hint from the above MLE calculation that
the sample variance is irrelevant to the estimation of λ in

the Poisson model).

The right (large-sample) likelihood-based standard error for
λ̂MLE, using the Fisher information logic we examined

earlier, is obtained from the following calculation:

∂2

∂λ2
log l(λ|y) = − s

λ2
, so (13)

Î
(
λ̂MLE

)
=

[
− ∂2

∂λ2
log l(λ|y)

]

λ=λ̂MLE

=
( s

λ2

)
λ=ȳ

=
s

ȳ2
=

n

ȳ
, and

V̂
(
λ̂MLE

)
= Î−1

(
λ̂MLE

)
=

ȳ

n
=

λ̂MLE

n
.

So in this case study Fisher’s likelihood-maximizing
approach would estimate λ by λ̂MLE = ȳ = 29

14

.
= 2.071, with

a give-or-take of ŜE
(
λ̂MLE

)
=

√
λ̂MLE√

n
= 1.44√

14

.
= 0.385.
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LOS Analysis (continued)

All of this may be summarized in the following table:

Likelihood
Prior Maximizing Integrating Posterior

Mean/Estimate 1.00 2.071 2.143 2.071
SD/SE 31.6 0.385 0.391 0.385

The discrepancies between the likelihood-maximizing and
likelihood-integrating columns in this table would be smaller

with a larger sample size and would tend to 0
as n → ∞.

The prior-likelihood-posterior plot comes out like this:

> plot( { p( lambda, 0.001, 0.001 ), p( lambda, 30, 14 ),

p( lambda, 29.001, 14.001 ) }, lambda = 0 .. 5, color = black );

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
lambda~
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LOS Analysis (continued)

For interval estimation in the maximum-likelihood
approach the best we could do, using the technology I’ve
described to you so far, would be to appeal to the CLT

(even though n is only 14) and use λ̂MLE ± 1.96 ŜE(λ̂MLE)
.
=

2.071± (1.96)(0.385)
.
= (1.316,2.826) as an approximate

95% confidence interval for λ.

You can see from the previous plot that the likelihood
function is skewed, so a more careful method (e.g., the

bootstrap; Efron 1979) would be needed to create a better
interval estimate from the likelihood point of view.

Some trial and error with Maple can be used to find the lower
and upper limits of the central 95% posterior interval

for λ:

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.316 ) );

.01365067305

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.4 ) );

.02764660367

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.387 ) );

.02495470339

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 2.826 .. infinity ) );

.03403487851

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 2.890 .. 5 ) );

.02505306648

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 2.890 .. infinity ) );

.02505307631
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LOS Analysis (continued)

Thus a 95% (central) posterior interval for λ, given a
diffuse prior, runs from 1.387 to 2.890, and is (correctly)

asymmetric around the posterior mean of 2.071.

R can be used to work out the limits of this interval even
more readily:

> help( qgamma )

GammaDist package:base R Documentation

The Gamma Distribution

Description:

Density, distribution function, quantile function and random

generation for the Gamma distribution with parameters ‘shape’ and
‘scale’.

Usage:

dgamma(x, shape, scale=1, log = FALSE)

pgamma(q, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, scale=1, lower.tail = TRUE, log.p = FALSE)

rgamma(n, shape, scale=1)

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations.

shape, scale: shape and scale parameters.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],

otherwise, P[X > x].
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LOS Analysis (continued)

Details:

If ‘scale’ is omitted, it assumes the default value of ‘1’.

The Gamma distribution with parameters ‘shape’ = a and ‘scale’ = s

has density

f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)

for x > 0, a > 0 and s > 0. The mean and variance are E(X) = a*s

and Var(X) = a*s^2.

Value:

‘dgamma’ gives the density, ‘pgamma’ gives the distribution

function ‘qgamma’ gives the quantile function, and ‘rgamma’

generates random deviates.

Note:

The cumulative hazard H(t) = - log(1 - F(t)) is ‘-pgamma(t, ...,

lower = FALSE, log = TRUE)’.

See Also:

‘gamma’ for the Gamma function, ‘dbeta’ for the Beta distribution

and ‘dchisq’ for the chi-squared distribution which is a special

case of the Gamma distribution.

Examples:

-log(dgamma(1:4, shape=1))

p <- (1:9)/10

pgamma(qgamma(p,shape=2), shape=2)

1 - 1/exp(qgamma(p, shape=1))

> qgamma( 0.025, 29.001, 1 / 14.001 )

[1] 1.387228

> qgamma( 0.975, 29.001, 1 / 14.001 )

[1] 2.890435
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LOS Analysis (continued)

Maple or R can also be used to obtain the probability
content, according to the posterior distribution, of the

approximate 95% (large-sample) likelihood-based interval:

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 1.316 .. 2.826 ) );

.9523144484

So the maximization approach has led to decent
approximations here (later I’ll give examples where

maximum likelihood doesn’t do so well in small samples).

Predictive distributions in this model can be computed by
Maple in the usual way: for instance, to compute p(yn+1|y)

for y = (y1, . . . , yn) we want to evaluate

p(yn+1|y) =

∫ ∞

0

p(yn+1, λ|y) dλ

=

∫ ∞

0

p(yn+1|λ, y) p(λ|y) dλ (14)

=

∫ ∞

0

p(yn+1|λ) p(λ|y) dλ

=

∫ ∞

0

λyn+1e−λ

yn+1!

(β∗)α
∗

Γ(α∗)
λα∗−1 e−β∗λ dλ,

=
(β∗)α

∗

Γ(α∗) yn+1!

∫ ∞

0

λ(α∗+yn+1)−1 e−(β∗+1)λ dλ,

where α∗ = α+ s and β∗ = β + n; in these expressions yn+1 is
a non-negative integer.

> assume( astar > 0, bstar > 0, yf > 0 );

> simplify( bstar^astar * int( lambda^( astar + yf - 1 ) *
exp( - ( bstar + 1 ) * lambda ), lambda = 0 .. infinity ) /
( GAMMA( astar ) * yf! ) );

astar~ (-astar~ - yf~)
bstar~ (bstar~ + 1) GAMMA(astar~ + yf~)
------------------------------------------------------------

GAMMA(astar~) GAMMA(yf~ + 1)
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Predictive Distributions

A bit of rearranging then gives that for yn+1 = 0,1, . . .,

p(yn+1|y) =
Γ(α∗ + yn+1)

Γ(α∗)Γ(yn+1 +1)

(
β∗

β∗ + 1

)α∗ (
1

β∗ + 1

)yn+1

. (15)

This is called the Poisson-Gamma distribution, because
(14) is asking us to take a mixture (weighted average) of
Poisson distributions, using probabilities from a Gamma

distribution as the mixing weights.

(15) is a generalization of the negative binomial
distribution (e.g., Johnson and Kotz 1994), which you’ve
probably encountered in your earlier study of probability

and/or statistics.

Maple can try to get simple expressions for the mean and
variance of this distribution:

> pg := ( y, alpha, beta ) -> GAMMA( alpha + y ) *

( beta / ( beta + 1 ) )^alpha * ( 1 / ( beta + 1 ) )^y /
( GAMMA( alpha ) * GAMMA( y + 1 ) );

/ beta \alpha / 1 \y

GAMMA(alpha + y) |--------| |--------|

\beta + 1/ \beta + 1/

pg := (y, alpha, beta) -> --------------------------------------------
GAMMA(alpha) GAMMA(y + 1)

> simplify( sum( pg( y, alpha, beta ), y = 0 .. infinity ) );

1

> simplify( sum( y * pg( y, alpha, beta ), y = 0 .. infinity ) );

alpha

-----

beta

So the mean of the distribution in (15) is E(yn+1|y) = α∗

β∗ .
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Inference and Prediction
> simplify( sum( ( y - alpha / beta )^2 * pg( y, alpha, beta ),

y = 0 .. infinity ) );

2 / beta \alpha alpha - beta alpha - beta
alpha |--------| hypergeom([alpha, - ------------, - ------------],

\beta + 1/ beta beta

alpha alpha 1 / 2
[- -----, - -----], --------) / beta

beta beta beta + 1 /

Maple has failed to realize that this expression may be
considerably simplified: Bernardo and Smith (1994) note

that the variance of the distribution in (15) is just

V (yn+1|y) =
α∗

β∗

(
1+

1

β∗

)
. (16)

This provides an interesting contrast between inference and
prediction: we’ve already seen in this model that the
posterior mean and variance of λ are α∗

β∗ =
α+s
β+n

and
α∗

(β∗)
2 =

α+s
(β+n)2

, respectively.

Posterior
Quantity Mean Variance

λ α+s
β+n

α+s
(β+n)2

= α+s
β+n

(
0+ 1

β+n

)

yn+1
α+s
β+n

α+s
β+n

(
1+ 1

β+n

)

Thus λ (the inferential objective) and yn+1 (the predictive
objective) have the same posterior mean, but the posterior

variance of yn+1 is much larger, as can be seen by the
following argument.

(1) Denoting by µ the mean of the population from which
the Yi are thought of as (like) a random sample, when n is

large α and β will be small in relation to s and n,
respectively, and the ratio ȳ = s

n
should more and more

closely approach µ—thus for large n,

E(λ|y) = E(yn+1|y)
.
= µ. (17)
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Inference and Prediction

(2) For the Poisson distribution the (population) mean µ and
variance σ2 are equal, meaning that for large n the ratio α+s

β+n

will be close both to µ and to σ2.

Thus for large n,

V (λ|y) .
=

σ2

n
but V (yn+1|y)

.
= σ2. (18)

An informal way to restate (18) is to say that accurate
prediction of new data is an order of magnitude harder

(in powers of n) than accurate inference about
population parameters.

4.2 Bayesian model-checking with predictive distributions.

One way to check a model like (1) is as follows.

for ( i in 1:n ) {

Temporarily set aside observation yi, obtaining a new
dataset y−i = (y1, . . . , yi−1, yi+1, . . . , yn) with (n− 1)

observations.

Use the current Bayesian model applied to y−i to predict yi,
and summarize the extent to which the actual value of yi is

surprising in view of this predictive distribution.

}

One possible measure of surprise is predictive z–scores:

zi =
yi − E[yi|y−i]√

V [yi|y−i]
. (19)

Compare the surprise measure with its expected behavior if
the model had been “correct” (e.g., z = (z1, . . . , zn) should

have mean 0 and SD 1).
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Predictive Model-Checking

Example: the LOS data. Here’s some R code to carry out
this program on the LOS data.

rosalind 25> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> poisson.gamma <- function( y, alpha, beta ) {

log.density <- lgamma( alpha + y ) + alpha *
log( beta / ( beta + 1 ) ) + y * log( 1 / ( beta + 1 ) ) -
lgamma( alpha ) - lgamma( y + 1 )

return( exp( log.density ) )

}

> print( y <- sort( y ) )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( y.current <- y[ -1 ] )

[1] 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( n.current <- length( y.current ) )

[1] 13

> alpha <- beta <- 0.001

> print( s.current <- sum( y.current ) )

[1] 29

> print( alpha.star <- alpha + s.current )

[1] 29.001

> print( beta.star <- beta + n.current )

[1] 13.001
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Predictive Model-Checking

> print( pg.current <- poisson.gamma( 0:9, alpha.star, beta.star ) )

[1] 0.1165953406 0.2415099974 0.2587508547 0.1909752933 0.1091243547

[6] 0.0514422231 0.0208209774 0.0074357447 0.0023899565 0.0007017815

> postscript( "pg1.ps" )

> plot( 0:9, pg.current, type = ’n’, xlab = ’y’, ylab = ’Density’ )

> for ( i in 0:9 ) {

segments( i, 0, i, pg.current[ i + 1 ] )

}

> dev.off( )
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The omitted observed value of 0 is not too unusual in this
predictive distribution.
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Predictive Model-Checking

The following R code loops through the whole dataset to get
the predictive z–scores.

alpha <- beta <- 0.001

z <- rep( 0, n )

for ( i in 1:n ) {

y.current <- y[ -i ]

n.current <- length( y.current )

s.current <- sum( y.current )

alpha.star <- alpha + s.current

beta.star <- beta + n.current

predictive.mean.current <- alpha.star / beta.star

predictive.SD.current <- sqrt( ( alpha.star / beta.star ) *

( 1 + 1 / beta.star ) )

z[ i ] <- ( y[ i ] - predictive.mean.current ) /

predictive.SD.current

}

> z

[1] -1.43921925 -0.75757382 -0.75757382 -0.75757382 -0.75757382
[6] -0.75757382 -0.05138023 -0.05138023 -0.05138023 -0.05138023

[11] 0.68145253 0.68145253 1.44329065 3.06513271

> mean( z )

[1] 0.03133708

> sqrt( var( z ) )

[1] 1.155077
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Predictive Model-Checking
> postscript( "pg2.ps" )

> qqnorm( z )

> abline( 0, 1 )
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The 14 predictive z–scores have mean 0.03 (about right)
and SD 1.16 (close enough to 1 when sampling variability is
considered?), and the normal qqplot above shows that the
only really surprising observation in the data, as far as the

Poisson model was concerned, is the value of 6, which has a
z–score of 3.07.

NB The figure above is only a crude approximation to the
right qqplot, which would have to be created by simulation;

even so it’s enough to suggest how the model
might be improved.

I would conclude informally (a) that the Poisson is a decent
model for these data, but (b) if you wanted to expand the
model in a direction suggested by this diagnostic you should
look for a model with extra-Poisson variation: the sample

VTMR in this dataset was about 1.15.
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4.3 Diffuse Priors
in the LOS Case Study

In specifying a diffuse prior for λ in the LOS case study,
several alternatives to Γ(ǫ, ǫ) might occur to you, including
Γ(1, ǫ),Γ(α, β) for some large α (like 20, to get a roughly
normal prior) and small β (like 1, to have a small prior

sample size), and U(0, C) for some cutoff C (like 4) chosen
to avoid truncation of the likelihood function, where U(a, b)

denotes the uniform distribution on (a, b).
> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );
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> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, color = black );

0.000996

0.000997

0.000998

0.000999

0.001

0 1 2 3 4

lambda~
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Diffuse Priors (continued)

Γ(1, ǫ) doesn’t look promising initially as a flat prior, but
that’s a consequence of Maple’s default choice of

vertical axis.

> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );
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> plot( p( lambda, 20, 1 ), lambda = 0 .. 4, color = black );
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Diffuse Priors (continued)

> plot( p( lambda, 20, 1 ), lambda = 0 .. 40, color = black );
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Γ(20,1) does indeed look not far from Gaussian, and at
first it may appear that it is indeed relatively flat in the

region where the likelihood is appreciable (λ ∈ (1.0,3.3)), but
we’ll see below that it’s actually rather more informative

than we intend.

Recalling that the mean and SD of a Γ(α, β) random

quantity are α
β
and

√
α
β2 , respectively, and that when used as

a prior with the Poisson likelihood the Γ(α, β) distribution
acts like a dataset with prior sample size β, you can

construct the following table:

Prior Posterior
β =

α Sample Size Mean SD α∗ β∗ Mean SD
0.001 0.001 1 31.6 29.001 14.001 2.071 0.385

1 0.001 1000 1000 30 14.001 2.143 0.391
20 1 20 4.47 49 15 3.267 0.467
20 0.001 20000 4472 49 14.001 3.500 0.500

U(0, C) for C > 4 C
2

C√
12

30 14 2.143 0.391
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Diffuse Priors (continued)

The Γ(1, ǫ) prior leads to an analysis that’s essentially
equivalent to the integrated likelihood (fiducial) approach
back on p. 13, and the U(0, C) prior for C > 4 (say) produces

similar results: U(0, C) yields the Γ(s+1, n) posterior
truncated to the right of C (and this truncation has no

effect if you choose C big enough).

You might say that the U(0, C) distribution has a prior
sample size of 0 in this analysis, and its prior mean C

2
and

SD C√
12

(both of which can be made arbitrarily large by

letting C grow without bound) are irrelevant (this is an
example of how intuition can change when you depart from

the class of conjugate priors).

> plot( { p( lambda, 29.001, 14.001 ), p( lambda, 30, 14.001 ),
p( lambda, 49, 15 ), p( lambda, 49, 14.001 ) }, lambda = 0 .. 6,
color = black );
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The moral is that with only n = 14 observations, some care
is needed (e.g., through pre-posterior analysis) to achieve a

prior that doesn’t affect the posterior very much, if
that’s your goal.
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