
1 Introduction

The aim of this paper is to describe the class of models which can be implemented using the R inla

package.
The R inla packages solves models using Integrated nested Laplace approximation (INLA) which

is a new approach to statistical inference for latent Gaussian Markov random field (GMRF) models
described in [Rue et al., 2009].

In short, a latent GMRF model is a hierarchical model where, at the first stage we find a dis-
tributional assumption for the observables y usually assumed to be conditionally independent given
some latent parameters η and, possibly, some additional parameters θ1

π(y|η,θ1) =
∏
j

π(yj |ηj ,θ1).

The third, and last, stage of the model consists of the prior distribution for the hyperparameters
θ = (θ1,θ2). The INLA approach provides a recipe for fast Bayesian inference using accurate
approximations to π(θ|y) and π(xi|y), i = 0, . . . , n − 1, i.e. the marginal posterior density for the
hyperparameters and the posterior marginal densities for the latent variables. Different types of
approximations are available, see [Rue et al., 2009] for details. The approximate posterior marginals
can then be used to compute summary statistics of interest, such as posterior means, variances or
quantiles.

Using the INLA approach it is also possible to challenge the model itself. The model can be
assessed through cross-validation in a reasonable time. Moreover, Bayes factors and deviance infor-
mation criterion (DIC) can be computed in an efficient way providing tools for model comparison.

2 Model description

The R inla library supports hierarchical GMRF models of the following type

yj |ηj ,θ1 ∼ π(yj |ηj ,θ1) j ∈ J (1)

ηi = Offseti +

nf−1∑
k=0

wki fk(cki) + zTi β + εi i = 0, . . . , nη − 1 (2)

where

• J is a subset of {0, 1, . . . , nη − 1}, that is, not necessarily all latent parameters η are observed
through the data y.

• π(yj |ηj ,θ1) is the likelihood of the observed data assumed to be conditional independent given
the latent parameters η, and, possibly, some additional parameters θ1. The latent variable ηi
enters the likelihood through a known link function.

• ε is a vector of unstructured random effects of length nη with i.i.d Gaussian priors with precision
λη:

ε|λη ∼ N (0, ληI) (3)

• η = (η1, η2, . . . ) is a vector of predictors.

• Offset is an a priori known component to be included in the linear predictor during fitting.

• wk known weights defined for each observed data point.
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• fk(cki) is the effect of a generic covariate k which assumes value cki for observation i. The
functions fk, k = 0, . . . , nf − 1 comprise usual nonlinear effect of continuous covariates, time
trends and seasonal effects, two dimensional surfaces, iid random intercepts and slopes and
spatial random effects. The unknown functions, or more exactly the corresponding vector of
function evaluations fk = (f0k, . . . , f(mk−1)k)

T , are modelled as GMRFs given some parameters
θfk , that is

fk|θfk ∼ N (0,Q−1k ) (4)

• zi is a vector of nβ covariates assumed to have a linear effect, and is β the corresponding vector
of unknown parameters with independent zero-mean Gaussian prior with fixed precisions.

The full latent field, of dimension n = nη +
∑nf−1

j=0 mj + nβ, is then

x = (ηT ,fT0 , . . . ,f
T
nf−1,β

T ).

Note that the latent field x is parametrised using the predictors η instead of the unstructured
terms ε.

All elements of vector x are defined as GMRFs, hence x is itself a GMRF with density:

π(x|θ2) =

nη−1∏
i=0

π(ηi|f0, . . . ,fnf−1,β, λη)

nf−1∏
k=0

π(fk|κfk)

nβ−1∏
m=0

π(βm) (5)

where

ηi|f0, . . . ,fnf−1,β ∼ N (

nf−1∑
k=0

fk(cki) + zTi β, λη) (6)

and θ2 = {log λη,θf0 , . . . ,θnf−1} is a vector of unknown hyperparameters.
The last element in the definition of our hierarchical model is a prior distribution for the hyper-

parameters θ = (θ1,θ2).

3 Examples

Many well known models from the literature can be written as special cases of (1) and (2)

• Time series models

Time series models are obtained if ck = t represents time. The functions fk can model nonlinear
trends or seasonal effects

ηt = ftrend(t) + fseasonal(t) + zTt β

• Generalised additive models (GAM)

A GAM model is obtained if π(yi|ηi,θl) belongs to an exponential family, ck are univariate,
continuous covariates and fk are smooth functions.

• Generalised additive mixed models (GAMM) for longitudinal data

Consider longitudinal data for individuals i = 0, . . . , ni − 1, observed at time points t0, t1, . . . .
A GAMM model extends a GAM by introducing individual specific random effects, i.e.

ηit = f0(cit0) + . . . ,+fnf−1(cit(nf−1))) + b0iwit0 + · · ·+ b(nb−1)iwit(nb−1)

where ηit is the predictor for individual i at time t, xitk, k = 0, . . . , nf −1,witq, q = 0, . . . , nb−1
are covariate values for individual i at time t, and b0i, . . . , b(nb−1)i is a vector of nb individual
specific random intercepts (if witq = 1) or slopes. The above model can be written in the general
form in equation (2) by defining r = (i, t), crj = citj for j = 0, . . . , nf −1 and cr,(nf−1)+q = witq,
f(nf−1)+q(cr,(nf−1)+q) = bqiwitq for q = 0, . . . , nb. In the same way GAMM’s for cluster data
can be written in the general form (2).
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• Geoadditive models

If geographical information for the observations in the data set are available, they might be
included in the model as

ηi = f1(c0i) + · · ·+ fnf−1(c(nf−1)i) + fspat(si) + zTi β

where si indicates the location of observation i and fspat is a spatially correlated effect. Models
where one of the covariate represent the spatial effect have recently been coined geoadditive by
[Kammann and Wand, 2003].

• ANOVA type interaction model

The effect of two continuous covariate w and v can be modelled as

ηi = f1(wi) + f2(vi) + f1|2(wi, vi) + . . .

where f1 and f2 are the main effects of the two covariates and f1|2 is a two dimensional
interaction surface. The above model can be written in the general form (2) simply by defining
c1i = wi, c2i = vi, c3i = (wi, vi),

• Univariate stochastic volatility model

Stochastic volatility models are time series models with Gaussian likelihood where it is the
variance, and not the mean of the observed data, to be part of the latent GMRF model. That
is

yi|ηi ∼ N (0, exp(ηi))

The latent field is then typically modelled as a autoregressive model of order 1.
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