RoboTalk: Controlling Arms, Bases and Androids
through a Single Motion Interface

A.Y. Yang* H. Gonzalez-Banos'
*Coord. Science Lab, U. of Illinois
1308 West Main
Urbana, IL 61801
yangyang@uiuc.edu

Abstract— Despite several successful humanoid robot projects
from both industry and academia, generic motion interfaces
for higher-level applications are still absent. Direct robot driver
access proves to be either very difficult due to the complexity
of humanoid robots, very unstable due to constant robot hard-
ware upgrade and re-design, or inaccessible due to proprietary
software and hardware. Motion interfaces do exist, but these
are either hardware-specific designs, or generic interfaces that
support very simple robots (non-humanoids). Thus, this paper
introduces RoboTalk, a new motion interface for controlling
robots. From the ground up our design model considers three
factors: mechanism-independence to abstract the hardware from
higher-level applications, a versatile network support mechanism
to enable both remote and local motion control, and an easy-to-
manage driver interface to facilitate the incorporation of features
by hardware developers. The interface is based on a motion
specification that supports a wide range of robotic mechanisms,
from mobile bases such as a Pioneer 2 to humanoid robots. The
specification allows us to construct interfaces from basic blocks,
such as wheeled bases, robot arms and legs. We have tested and
implemented our approach on the Honda ASIMO robot and a
Pioneer 2 mobile robot.

I. INTRODUCTION

In the last decade or so, a handful of humanoid robots
have been successfully developed by both industry and
academia. Some of the famous examples include ASIMO
from Honda [1], Qrio from Sony [2], and Open Pino [3]
from Japan Science and Technology Agency. But there is still
a lack of a common control interface for humanoid robots
to interact with higher-level applications. Researchers within
development teams must write their own driver interfaces
to specific robots, modifying these programs repeatedly as
the hardware evolves. This is inefficient because common
algorithms are constantly reimplemented in different hardware.

Android development can greatly benefit from software
development trends in non-humanoid robotics. In fact, general
interfaces for non-humanoid robots do exist. The example of
Player [4], [5] comes to mind. The Player Project supports a
wide range of robotic platforms thanks to the collective effort
of many developers. However, the interfaces found in Player
tend to support very simple mechanisms from the point of view
of motion. Moreover, available interfaces (within or without
Player) are usually direct-drive approaches: a client issues a
command, robot executes command, control is returned to
client, and client issues a new command. Under this approach

V. Ng-Thow-Hing" J.E. Davis'
THonda Research Institute, USA
800 Cadlifornia St. 300
Mountain View, CA 94041
{hhg,victorng,jdavis} @honda-ri.com

motions are executed frame by frame, and the inter-frame
timings are lost. This is often un-desirable in humanoid robots
(e.g., during a dance sequence). Direct-drive is not about
running network communications in blocking vs. non-blocking
mode. It is about the lack of efficient buffering mechanisms
to allow motion playback in the presence of latency and
bandwidth limitations in network communications.

A. Overview

This paper introduces RoboTalk, a novel interface for gen-
eral robot motion control. Our motion interface has the ability
to communicate with a wide range of humanoid or mobile
robots, and provides a unified user interface for higher-level
applications. Our key motivation was to ensure cross-robot,
cross-network, and cross-OS compatibility. To achieve this,
we divided our development cycle into three phases:

The first design phase was to develop a motion specification
to address cross-robot compatibility. This specification is a
collection of descriptors about the robot geometric model,
joint and link configuration, kinematic constraints, motion
states and supported control commands. Although robots have
different mechanical capabilities, the specification is general
enough to describe the motions of a wide variety of robots.

The second design phase dealt with the network commu-
nication model: transmission protocol, client/server interac-
tion mechanisms, support for multi-client connections, reply
caches, etc. RoboTalk is based on the concept of frames, where
a frame is a set of motion descriptors with the same time
stamp. This is akin to a video stream where a frame is a
set of image pixels sampled at the same instant. Buffering
mechanisms in RoboTalk deal with network congestion by
preserving inter-frame timings in the command stream at the
expense of latency.

The final design stage was the selection of libraries that
could be easily ported across platforms. To achieve cross-OS
portability we avoided the use of proprietary software tools
or libraries. Our choice of programming language was C++,
but RoboTalk’s specification itself is language independent. So
far we have compiled and run RoboTalk clients and servers in
machines running Linux kernels 2.4 and 2.6, Mac OSX, and
Windows XP running Cygwin.

RoboTalk is not a complete robot architecture. For instance,
it does not cover sensor interfaces (except for measurements



of kinodynamic variables), nor does it provide an environment
for implementing real-time controllers (although it can be used
to interface with a controller in real-time). RoboTalk is just a
motion interface, but one designed to easily complement other
robot architectures.

B. Organization

This paper is organized as follows: Section Il surveys
previous work that is related to our research. Section IlI
describes in detail our motion specification and communica-
tion model, while Section 1V describes our implementation.
Section V explains the four command modes supported by
RoboTalk: direct, delay, playback, and broadcast modes. Fi-
nally, Section V1 describes a prototype interface connected to a
Honda humanoid robot and a Pioneer 2 equipped with a Sony
EVI pan-tilt camera. A single client program issues motion
sequences to both devices across the network. The motion
sequence plays back with the same inter-frame timings due to
RoboTalk’s buffering mechanism.

Il. PREVIOUS WORK

RoboTalk serves as a specification for robust communi-
cation of robot configuration information and motion com-
mands between a high-level control application and the robot
hardware. Previous teleoperation systems have been designed
to cope with the problem of scheduling, and sending mo-
tion commands to a robot over a communication link. The
Robonaut [6] architecture allows high-level commands to be
converted by modules called subautonomies into low-level
motor commands. The Athena software development model
[7] for Mars rovers features command sequencing to schedule
and execute commands sent from the control application to
the rover. RoboTalk allows control applications to be written
in a manner that can be easily reused or reconfigured at run-
time for changing robot platforms with a common command
interface. There exist several public and commercial software
projects for interfacing with robots. Some examples are the
following:

ARIA (ActivMedia Robotics Interface Application) is an
application programming interface developed under the object-
oriented model [8]. ARIA communicates with the robot via a
client/server relationship through serial or TCP/IP connections,
but it lacks buffering mechanisms. It is designed to interface
only with ActivMedia’s mobile bases.

OROCOS (formerly Open Robot Control Software, now
Open Real-time Control Software) is a free software project
that focuses in real-time control [9]. It follows a component-
based design, where each component transmits their complete
state in a single call. OROCOS is ideally suited for feed-
back control systems, but it is not an interface for higher-
level descriptions (such as joint and link configuration and
geometry). Neither is OROCOS intended for motion playback
under network limitations.

OAP (Open Automaton Project) focuses on hardware imple-
mentation. The goal of OAP is to provide inexpensive designs
for building robots [10]. The Open Pino Project is a GNU

project designed to control commercial Pino robots [3]. Thus,
it lacks the potential to be a general platform to access other
humanoids, mobile robots or human models.

Open HRP (Open Architecture Humanoid Robotics Plat-
form) provides an abstraction layer between the hardware
details of the robot and its controller systems [11]. The same
controller can be used on both real and simulated versions of
the robot. RoboTalk adopts the same philosophy of hardware
abstraction, but expands the class of robots to non-humanoids
and provides different modes of network communication in-
dependently from the target robot.

A general robot control platform is Player [4], [5]. While it
was designed to provide a control interface for general mobile
robots and sensors, it currently has the following limitations:

1) Player server is designed to directly access the
robot/sensor drivers, which is not a good option for
black-box components or changing hardware.

2) Player lacks the ability to define and access individual
joints, links and control frames on a humanoid or a
kinematics simulator. It can be argued that this capability
can be added to Player, but this is far from a trivial
addition. (In comparison, in our system it is almost
trivial to redefine a pan-tilt camera as a head link on
top a Pioneer 2 mobile robot.)

3) The Player server cannot issue multiple commands to
different motors in a robot at the same time. In androids,
it is important to have the ability to issue simultaneous
commands because it allows the possibility of whole
body coordination.

4) There is no mechanism in Player to customize Panic
responses to prevent disastrous outcomes on different
types of expensive robots. This modification again is
not trivial, because the communication model must un-
derstand (as opposed to just communicate) the concept
of Panic in order to preempt other actions.

5) The communication model between server and client
in Player was designed in blocking mode, meaning the
client cannot process a new command before it receives
an acknowledgment about the previous command. This
is equivalent to direct mode in our system (Section V-A).

6) Finally, there are no command buffers or return caches
built within Player. Thus, a motion sequence sent over
long distances will not replay in the same way when it
is sent locally.

In the following sections, we will explain in detail the design
and implementation of RoboTalk.

I11. ROBOTALK DESIGN

Figure 1 illustrates the structure of the interface architecture,
which adopts a specification-centered design. A general robot
specification standard is at the center of the interface as a
format to describe the configuration of an arbitrary robot
and its control commands. The server and client implement
a mechanism to query and update the specification values
through the execution of remote functions. Also, the server



Configuration Spec|

Humanoid
Library
- Pionesr
Library
Server < >

Communication Spef

B B —

Fig. 1. Interface design model.

has the freedom to link a list of driver modules for different
robots and simulators within the same core implementation.

A. Motion Specification Overview

Having a specification standard at the center of RoboTalk’s
architecture immediately provides four benefits:

1) The client sees and understands a unified set of motion
descriptors. As long as the descriptors can be encoded
and decoded, the client operation is independent from
the server implementation.

2) Likewise, behind the server, the driver has implementa-
tion freedom. This implementation is independent from
the client, and the driver development is free to reinter-
pret the specification for individual robots.

3) The client side avoids the use of proprietary information
about the robot driver. Only the capabilities of the robot
are disclosed by the descriptors.

4) The client and server can use different OS and program-
ming languages, selecting those that better serve their
individual needs.

As an example of the above, consider the operations under-
pinning a GOTO(z, y, §) locomotion command. In a humanoid
robot this is implemented through the leg drivers, which
execute a walking gait preserving the robot’s upright balance.
Yet, in a Pioneer 2 robot the GoTo command is a call to far
simpler wheel drivers since there are no balance issues. And
for a PUMA arm mounted on a table the GoTo command
is non-existent, in which RoboTalk dictates that “N/A” is
returned to the client. Throughout the above range of examples
the client issues the same GoToO function. The result varies
across different robots, but the syntax remains the same.

RoboTalk’s specification consists of three levels. The first
level is the set of robot configuration descriptors. It describes
the kinematics model, the states and constraints of the body,
joints and links of a robot, and the control frames supported
by the robot. The second level defines the set of robot
commands and their arguments. These commands query and
update the configuration descriptors. The third level defines a
communication protocol. This describes the format by which
client and server interact across a network.

B. Robot Configuration Descriptors

When an application written with the RoboTalk specification
establishes communication with an unknown robot, a request
for its physical constraints and kinematic joint configuration
can be made. RoboTalk uses a fixed-length configuration

center of mass
inboard vector

Joint

outboard vector

/ control frame

N

Fig. 2. Robot configuration of links and joints

header containing all global parameters of the robot to load the
header efficiently into pre-defined data structures. The header
contains three sections to register offset indices for joints,
links, and control frames in the robot. Joints are stored in
a single memory block whose size is registered in the header,
and each joint is cross-referenced with the links joined by
it. Links and control frames are also organized in this way.
Queries about the robot’s configuration are made from the
information stored in this header.

Our configuration descriptors assume that the robot can be
represented as a set of rigid links connected by a hierarchical
tree of joints. Each link has a single parent joint and a joint
shared with a child link. There exists at least one single root
link with no parent whose position and orientation are defined
with respect to the world frame of reference. For simple non-
humanoid robots, this may be the only link of the robot.
Similar hierarchical robot representations have been adopted
by the Open HRP humanoid robotics software platforms [11]
and the H-ANIM humanoid model specifications [12]. This
representation is sufficient to describe a wide variety of
branched, articulated chain mechanisms.

Our robot descriptors consist of links, joints and control
frames (see Figure 2). Each of these entities can be referenced
by a name, allowing intuitive labels or common naming
schemes to be used (eg., leftArm, torso, rightLeg, head). Links
contain important parameters such as the mass, center of
mass, and inertia tensors of the body segment. These mass
parameters are required for dynamic simulation and can be
useful for the design of appropriate controllers.

A joint stores the local rigid body transformation of a link
with respect to its parent. The transformation is defined by a
combination of constant parameters and variable degrees of
freedom (dofs) of the joint. The constant portion consists of
the joint’s position described in both the parent’s (inboard) and
child’s (outboard) body-fixed coordinate system with respect
to each link’s center of mass (refer to Figure 2). In addition,
we specify a constant rest matrix representing the joint’s local
transformation when all its dofs are zero. This defines the robot
configuration in its rest (or home) state.



The dofs of the joint make up the kinematic state of the
robot’s configuration with a maximum of six dofs per joint
for a fully unconstrained rigid transformation on a link. Each
degree of freedom is specified as being either prismatic or
revolute with a related axis vector, allowing any combination
of up to six of these transformations to produce the most
common robotic joint types such as pin, universal, gimbal and
prismatic joints. Joint limits defined for each dof can further
constrain movement.

The last descriptor is the control frame which has a position
and orientation in the local frame of its parent link. In contrast
to joints, a control frame is fixed to the link and does not
exhibit independent motions from the link. The primary use of
control frames is to specify the location and orientation of end-
effectors or task frames used for manipulation. Control frames
provide an important interface between the robot’s generalized
coordinates and the task at hand.

C. Robot Commands and Communication Protocol

The command specification defines the format of robot
commands and their arguments. Command arguments are
always expressed in MKS units when they represent physical
quantities. Controlling a robot joint depends (of course) on
whether an actuator is present at the joint, and the type of servo
command (set-point, speed or force) accepted by an actuator is
a function of its implementation. RoboTalk associates a servo-
command type to every joint and control frame to indicate the
motion commands supported. A joint or control-frame may
support more than one type of servo command.

We defined seven types of signals to return function com-
mand status. There are three types of error signals: PANIC,
ERROR and INTERRUPTED. The signal INTERRUPTED
occurs when a legitimate action is halted prematurely due
to an error. The other four signals are: BUSY, SUCCESS,
MODIFIED and NA. Signal BUSY is returned if the robot
is yet to finish a previous request that cannot be interrupted.
SUCCESS is returned to indicate successful completion. If
the driver has limited support of a command, it will return
MODIFIED (e.g., a holonomic command executing in a non-
holonomic robot). However, signal NA is returned if the robot
does not support this command type (e.g., leg commands sent
to a Pioneer 2 robot).

The communication protocol describes the format to send
multiple commands in one network package. This protocol
sits above conventional network protocols, such as TCP,
UDP, DDS (data-distribution service), etc. RoboTalk’s protocol
supports four command modes: direct, delay, playback, and
broadcast. Each package contains a fixed-length header and
a payload. The header contains a panic flag, the type of the
payload, and the size of the payload.

When the panic flag is set the server automatically puts the
robot in panic condition (if supported by the hardware). Panic
conditions are set by the package header, not its payload. The
reason behind this will be clear in the next section.

Network packages contains one of two types of payload.
These are either queries about the robot’s status, or commands

~¢—— Server Daemon

Read and write
CClientConnection

TCP/IP sockets
.

CClientConnection

Class
Interface

Issue robot driver calls

‘ Robot Daemon  ——pm

CRobotDriva"

Fig. 3. CServer class structure.

to move the robot. We restrict payloads to be either type, but
not both: i.e., payload types cannot be mixed. This allows us
to easily distinguish “read” from “write” packages.

The values within a package payload must be stored in
network-byte-order integer format to ensure compatibility
across systems. This is to deal with byte ordering differ-
ences among little-endian and big-endian processors. Thus,
command parameters and other configuration descriptors are
expressed in integers. Our client and server libraries convert
the MKS units into integer representations.

IV. ROBOTALK IMPLEMENTATION

Our first implementation for both the server and client
followed the object-oriented paradigm and was written in C++
language. Thus, we use C++ examples during our discussion.
Nevertheless, RoboTalk has no language requirement. Yet, the
implementation must follow the specs and support RoboTalk’s
command modes (explained in the next section).

A. Server Implementation

Figure 3 illustrates the structure of the basic C++
server class: CServer. Within CServer, a second class —
CClientConnection— manages the services to individual client
connections, such as network 1/O buffering, command mode
scheduling, panic detection, etc.

CClientConnection class provides methods to buffer and
encode/decode the packages for one client connection. A
CClientConnection array extends these methods to multiple
clients. Two independent threads encode/decode packages and
process the buffers in round robin over all client instances: the
ServerDaemon thread and the RobotDaemon thread.

ServerDaemon is responsible for adding/deleting client in-
stances. It calls the ::Read() function to read a package sent by
a client, and parses the commands contained in the payload.
These commands are then processed by RobotDaemon.

Commands are not executed in their arrival order: instead,
commands are stored in a command queue and scheduled
according to their starting time. Thus, a STop command sched-
uled to start in 40 sec. will be executed by the RobotDaemon
after a Goto command scheduled to start in 20 sec., even if
the sTOP message arrives before the GoTo. That is, the starting
time of a command constitutes its reverse priority. A command
with priority of 0 will be executed immediately. Commands
with same priority are executed in their arrival order.

Query commands always have priority 0, but motion com-
mands usually do not. A set of motion commands can be



Server Daemon ‘

Command Queue —
Input /

commands
- Read Robot

Daemon
Playback Queue
Feedback

«—WH Return Queue ‘<

Fig. 4. CClientConnection class structure.

Function

cdls Class
—» Interface

Commands to the server
(blocking or nonbyl ocki @

Broadcast ‘ ‘ Return ‘

cache cache
Feedback
nonblockin
Read Daemon 4_ 9
Fig. 5. CRobotClient class structure.

queued, resulting in better motion execution in the presence
of network delays. PANIC signals, however, are never stored
in the command queue, and are instead executed immediately
by ServerDaemon. Commands from other clients are blocked
until the panic signal is reset.

Return signals generated by robot commands are placed in
a return queue by the RobotDaemon, and scheduled accord-
ing to their issuance time. This queue is processed by the
ServerDaemon in the same way the RobotDaemon processes
the command queue, calling the ::Write() function to send
replies back to the client. A third queue, the playback queue,
is used to play a motion sequence of finite duration. This will
be explained in Section V.

There is one CClientConnection instance for each client
connection. Therefore, each a client has its own set of com-
mand, playback and return queues.

B. Client Implementation

The structure for a client is relatively simple. Figure 5 shows
our implementation of the CRobotClient class.

CRobotClient sends network packages to the server in either
blocking or non-blocking mode depending on the command
mode selected (see next section). In blocking mode, the client
execution stops when a command is issued to the server, and
execution resumes when the client receives an acknowledg-
ment. Execution is not interrupted in non-blocking mode.

Motion commands are executed by the server based on
their priority, and commands in turn have different completion
spans. Therefore, in non-blocking operation, we cannot assume
that the server replies to the client in the same order as the
original motion commands were sent. To address this problem,
an independent thread —ReadDaemon- stores server replies in
a return cache implemented as a hash map.

The hash map behaves as a dictionary data structure. The
element keys are the original command ID’s for which the
server generated a response. Thus, in non-blocking mode, the

client can periodically query the return cache to verify if the
response to a particular command has arrived. The hash map
is implemented with the hash multi-map defined in the C++
Standard Template Library.

V. COMMAND MODES

In this section, we describe the four command modes
supported by RoboTalk. These modes are implemented by
the three priority queues on the server’s end for each client
connection, and the hash map on the client’s end.

A. Direct Mode

Direct mode operates as follows: 1) The network communi-
cation between a client and a server runs on blocking mode; 2)
if the robot is not in Panic state, the server processes all control
and query commands immediately after these are received; and
3) a client function call returns only after the client receives
an execution acknowledgement. A command may optionally
delay its execution with a non-zero starting time.

As shown in Figure 6, the first step is to synchronize the
clock between the client and the server. This synchronization
occurs immediately after the connection between client and
server is first established.

Afterward, the client starts to accept calls to control the
robot. When a function is called, the client creates a network
package containing (possibly) multiple commands to be ex-
ecuted by the robot. Commands are tagged, and the whole
package is time-stamped and sent to the server. The client
execution halts inside the function call until a result package
for this function arrives to client’s return cache.*

On the server side, the package is placed into the com-
mand cache. The RobotDaemon thread continuously checks
if the timestamp of the command with highest priority has
expired. Moreover, all control commands with priority 0 will
be executed by the RobotDaemon immediately after they are
received by the server. Thus, the transmission and execution
of queries and other priority-0 commands follow a hand-shake
model while in direct mode.

For Panic signals, a special flag is set in the network package
header. This flag indicates that the command is not to be
stored in the command cache. Instead, the robot panic state is
activated as soon as the package header is parsed. All caches
are flushed, and the server rejects any new commands until
the panic flag is reset.

B. Delay Mode

Delay mode specifies that: 1) The network communication
runs on TCP non-blocking mode; 2) function calls return
immediately after a command package is sent; 3) the server
uses buffering to compensate possible network congestion; and
4) the amount of buffering is specified by the client as a time
delay in the execution of commands.

Figure 7 shows the implementation diagram of delay mode.
This diagram is similar to the one describing direct mode,

1A time-out mechanism can be added to deal with communication break-
downs or server crashes.



Client clod Syne
Function call v
— . = | Command cache
Client

Robot
Daemon
Return

= [
Fig. 6. Direct mode diagram.
Delay

Function call
Client

Robot
Daemon

Error signal
e T

Fig. 7.

Delay mode diagram.

except for an additional mechanism that shifts the client’s
clock forward. That is, the client synchronizes its clock to the
server’s local time plus the specified time delay. The delay is
henceforth included in all packages.

On the server side, the contents of the command cache
have a time offset with respect to the server’s clock. The
RobotDaemon will not execute the client commands until
the time delay elapses, and these are instead queued in the
command cache. The client can thus specify a long delay in
order to play a difficult motion sequence through a congested
network connection. The sequence is delayed, but its inter-
frame timings are preserved because the command cache is
acting a buffer.

It is possible to run delay mode with a time delay of 0. This
looks similar to direct mode, but client-server transactions do
not obey the hand-shake model.

C. Playback Mode

Playback mode is an improvement over delay mode when a
motion sequence is finite. The server automatically decides
how much to delay the sequence based on the observed
network congestion.

It is not necessary to synchronize the server and client
clocks because only the inter-frame timings are important in
this mode. Instead, playback mode requires that the duration
of the motion sequence is known to the client, and that motion
frames are (roughly) evenly-spaced in time.

The server stores the received packages into the playback
cache (another priority queue). The server calculates the ratio
of the average time between commands to the average time
between package arrivals after enough packages are stored in
the playback cache. This ratio is used to estimate the time
delay required by the playback sequence.

Delay

@
Playback cache

Daemon

Function call
Return

al

Error sign:

Fig. 8. Playback mode diagram.
T
Function call
Client

Robot
Daemon

Data
=2

Fig. 9.

Broadcast mode diagram.

After the server estimates the necessary time delay, it adds
this value to the package timestamps, and shifts all stored
packages and future packages back into the command cache.
The motion sequence is thus delayed and buffered by the
server. Meanwhile, the client runs in non-blocking mode.

D. Broadcast Mode

Broadcast mode is designed to periodically query the robot
state with a single request. The server handles broadcasting
commands with a special query that periodically re-inserts a
delayed copy of itself into the command cache.

Figure 9 illustrates the mechanism behind broadcast mode.
The client issues a broadcast request with a specified sampling
time. A query about the robot state is inserted into the com-
mand cache. Once this query is executed the state information
is sent to the client’s return cache. However, a copy of the
query is created and reinserted into the command cache with
the sampling time added to its priority. Thus, the query com-
mand regenerates itself for future execution by RobotDaemon
without the client repeating the query. This regeneration stops
once the client issues a broadcast cancellation. The client, of
course, runs in non-blocking mode.

Table I shows the summary of the four command modes.

VI.

This section explains our experiments using RoboTalk with
a Pioneer 2 robot and a Honda ASIMO humanoid. Sev-
eral video demo sequences are available to our readers at
http://perception.csl.uiuc.edu/demos/RoboTalk/ .

A Sony EVI camera was mounted on top the Pioneer to
act as a head. This camera has motorized pan and tilt actions.
The Pioneer base became link 0 in our specification, while the
camera became link 1. The links are connected with a single
2-dof revolute (actuated) joint.

We implemented CServer for the Pioneer 2 and ASIMO
using POSIX threads and socket protocols under Linux and

EXPERIMENTS



TABLE |

| Mode || Communications | Syncronization | Returns | Advantages | Limits
Direct blocking necessary acknowledge good for does not preserve
every commands debugging inter-frame dynamics
Delay nonblocking necessary error signals preserve sequence not adaptive to
within a time frame the channel condition
Playback nonblocking unnecessary error signals preserve the whole need to know the
sequence sequence length in advance.
Broadcast nonblocking or unnecessary broadcasted for repeated N/A
broadcasting data data query

Cygwin for Windows XP. In the Pioneer 2 case, the server in-
terfaces with the motors using Player’s P20s position driver. 2
The camera is likewise controlled through Player’s pTz driver.
In other words, CServer was compiled to use Player as the
robot driver. It is important to note that RoboTalk’s uses no
other feature from Player other than the P20s and PTZz drivers.
This shows how RoboTalk can be integrated with an existing
robot architecture.

Both ASIMO and the Pioneer robot are equipped with
wireless network connectivity (802.11b). In the former case,
CServer resides in a computer connected to the robot on an
exclusive wireless channel. In the latter case, CServer and
Player are installed in a laptop on board the Pioneer 2, and
connected to the motors through its serial ports.

A. Network and Robot Compatibility

Clients were written for Linux, Mac OSX, and Cygwin for
Windows XP. This OS mixture allowed us to verify network
compatibility between architectures with different byte orders.
For example, a PowerPC CPU has big-endian byte order, while
an Intel CPU follows little-endian byte ordering.

To verify robot compatibility, we developed a GUI-driven
test application using the Qt API. The test consisted of
transmitting an identical motion sequence to both ASIMO and
the Pioneer 2 robot using the same client. Only the server
network address changes. In other words, the robots’ internals
are completely abstracted from the client.

The sequence is a series of forward/backward and turning
motions for the main body, coupled with panning motions for
the head. Both ASIMO and the Pioneer® are mechanically
capable to reproduce this sequence, although ASIMO follows
the motion by walking. The test sequence executes correctly in
both robots (Figure 10). Videos are available on our website.

B. Network Robustness

To test RoboTalk’s network robustness, we simulated the
effect of traffic congestion. We first connected our Pioneer
CServer to Stage, the companion simulator to Player. Next,
we designed a velocity profile using SETSPEED instructions

2We modified this driver to accept position commands in addition to speed
control.

3The reader may observe in the video that the Pioneer 2 appears to move
abruptly. This is because the motor speeds and accelerations are set very high.
The robot position control is acting as a bang-bang controller.

generated every 0.1s by the client. The resulting path consists
of a sequence of four small half circles, followed by a large
half circle, such that the robot returns to the starting point after
the motion. Under perfect timing, the simulator on the server
side should generate the following path:

The shape of the generated path will look very different if the
timings are not preserved. Thus, we can judge the robustness
of RoboTalk’s four different command modes from the overall
distortion of their paths.

Random network congestion is simulated by adding a SLEEP
subroutine in the ServerDaemon thread on the server side.
This does not change the timestamps of the commands in the
sequence (as these are generated by the client). But SLEEP
halts ServerDaemon for a random duration of [0, 0.1]s after the
TCP poLL signal is detected. This delay occurs before the TCP
package is cached to the corresponding CClientConnection
instance. Since the command modes are implemented in
separate CClientConnection instances, this add-in delay affects
the communication channel to that client only.

The test results show the advantages of the command
mode design. The effect of congestion is shown in Figure 11
for different command modes (videos are available on our
website). Without congestion, direct mode replays the ground
truth exactly, as shown in (a). Delay and playback modes
also replay the path exactly under this condition, and are thus
omitted from the figure. With simulated congestion, however,
the path generated by direct mode is severely distorted (b),
while delay mode with a 10s buffer only partially preserves
the shape of the path (¢) —just the first 10 seconds of motion
are replayed correctly. Yet playback mode executes the path
correctly, regardless of congestion (d). But with a cost: the
motion will not start playing immediately. Delay and playback
modes add latency to the overall sequence, direct mode does
not (which is why direct mode cannot be replaced in every
application). This effect is demonstrated in our video files.



Fig. 10.

Snapshots of a motion sequence using GOTO commands, executed on a Pioneer 2 (top row) and Honda’s ASIMO (bottom row). The target path

is shown on the left. The motion was coupled with pan and tilt actions for joint #1 (the head). We intentionally defined the pin-tilt joint of the camera on
Pioneer 2 as joint #1. The client sent the same sequence without knowing the driver implementation.

(a) (b)

Fig. 11.
mode with network congestion. (d) Playback mode with network congestion.

VI1I. FINAL DISCUSSION

RoboTalk provides an abstraction layer that allows develop-
ers to develop systems for motion planning and control without
knowledge about the robot’s internals. This minimizes the
amount of information to be disseminated over a development
group. RoboTalk also allows distributed operations, where
an assortment of remote processes operate different robot
subsystems. This suggests the creation of new types of robots
whose physical parts are geographically dispersed.

An important contribution of our work is the provision of
four communication modes that acknowledge the presence of
network traffic congestion. The use of buffering and monitor-
ing of timestamps allow motions to be enacted in the correct
sequence with smooth performance playback. Provisions are
made for assigning higher priority to different messages, such
as the pPANIC signal.

Except for kinodynamic variables, RoboTalk does not ad-
dress the issue of sensing. Sensing remains beyond the scope
of the original RoboTalk’s specification. In future work, we
will deal with sensors with a parallel interface specifically
designed for sensors.

We are currently developing RoboTalk servers to work
with a human kinodynamic simulator produced at Honda. In
particular, the control frame specification in Section I11-B will
be used to carryout end-effector position tasks in a virtual
environment. These simulators typically have more dofs than
current humanoid robots, but otherwise use similar hierarchical
models. The motion interface will be used to connect an

[
[2]

[3]

[4]

[5]

(6]

[71

(8]

(9]

[10]

[11]

[12]

(¢) (d)

Four trajectories from the original sequence. (a) Direct mode without network congestion. (b) Direct mode with network congestion. (c) Delay

application to different simulators for testing, and seamlessly
switch devices during operation.

REFERENCES

R. Hirose and T. Takenaka, “Development of the humanoid robot
ASIMO,” Honda R&D Technical Review, vol. 13, no. 1, April 2001.
M. Fujita, Y. Kuroki, T. Ishida, and T. Doi, “A small humanoid robot
sdr-4x for entertainment applications,” in International Conference on
Advanced Intelligent Mechatronics, vol. 2, July 2003, pp. 938-943.

F. Yamasaki, T. Matsui, T. Miyashita, and H. Kitano, “Pino the hu-
manoid: A basic architecture,” in Proc. of the Fourth International
Workshop on RoboCup, August 31, Melbourne, Australia 2000.

B. Gerkey, R. Vaughan, K. Stgy, A. Howard, G. Sukhatme, and
M. Matarié, “Most valuable player: A robot device server for distributed
control,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2001), 2001, pp. 1226-1231.

R. V. B. Gerkey and A. Howard, “The player/stage project: Tools for
multi-robot and distributed sensor systems,” in Proceedings of |IEEE Int.
Conference on Advanced Robotics, 2003, pp. 317-323.

H. Aldridge, W. Bluethmann, R. Ambrose, and M. Diftler, “Control
architecture for the robonaut space humanoid,” in |EEE-RAS Humanoids
2000 Conference, September 2000, boston, MA.

J. Biesiadecki, M. Maimone, and J. Morrison, “The athena sdm rover:
a testbed for mars rover mobility,” in 6th International Symposium on
Al, Robotics and Automation in Space (ISAIRAS-01), 2001, montreal,
Canada.

ActivMedia Robotics.
activmedia.com/ARIA/
The OROCOS Project. Open real-time control software. [Online].
Available: http://www.orocos.org/index.php
The Open Automation Project. OAP.
/loap.sourceforge.net/

F. Kanehiro, H. Hirukawa, and S. Kajita, “Openhrp: Open architecture
humanoid robotics platform,” The International Journal of Robotics
Research, vol. 23, no. 2, pp. 155-165, 2004.

Humanoid Animation Working Group, “H-anim 1.1 specification for a
standard humanoid,” www.h-anim.org, 1999.

ARIA. [Online]. Available: http://robots.

[Online]. Available: http:



