
ValleyScript: It’s Like Static Typing

Cormac Flanagan

December 20, 2007

Abstract

We formalize the ES4 notion of gradual typing for a small language with functions and objects, and
with like, wrap, and dynamic types. We present a “strict mode” verifier for this language. We also
present a type-based analysis that statically identifies which run-time type checks are redundant, and
prove the soundness of this analysis. This soundness proof provides a crucial sanity check.

1 Language Overview

We consider the implementation of a gradual typed language that supports both typed and untyped terms,
which interoperate in a flexible manner. We begin by defining the syntax of terms and types in the language:
see Figure 1. The language extends the lambda calculus (variables, abstractions, and application) with
object allocation, dereference, and update. It also includes as expressions, which check that a value has a
particular type. Object addresses aT should not occur in source programs.

Some expression forms (variable references, function definitions and applications, and object allocation,
dereference, and update, and cast expressions) are annotated with a check mark c ∈ {◦, •}, where • means
that that expression has been proven safe and that no run-time type check is required. These check marks
are inferred/verified by the analysis of Section 4; for now we mostly ignore these check marks, and omit
them if they are irrelevant.

The type language includes integers, function types, object types, and the type ∗, which indicates that
no static type information is known.

2 Type Relations

The type system is based in part on the usual subtype relation S < T . We write S = T to mean that
S < T and T < S. For technical reasons, function subtyping is invariant in the argument position.

In addition, to support a notion of gradual typing, we also have a compatibility relation S T , which
holds provided that S and T are identical except that T may include ∗ in places where S does not. The
compatibility relation is asymmetric since Int ∗ but ∗ 6 Int, but is transitive.

The compatible-subtyping relation S < T is then the composition of these two relations: S < T holds
if there exists U such that S < U and U T .

Lemma 1 Subtyping is transitive.

Lemma 2 Compatibility is transitive.

Lemma 3 Subtyping and compatibility commute, that is, (< ◦) = (◦ <).

PROVEME.

Lemma 4 Compatible-subtyping is transitive.

1

Figure 1: Syntax

e ::= Terms:
n integer constants
xc variable
λc x :S. e : T abstraction
(e e)c application
{l̄ = ē}c : T object allocation
e.lc member selection
e.lc := e member update
e asc T runtime type check
aT object address

S, T ::= Types:
Int integers
S → T function type
{l̄ : T̄} object types
∗ dynamic type

We have:
(S → T) < (∗ → ∗)
{l : T, . . .} < {l : ∗}

{. . .} < {}

3 Evaluation

We next describe the evaluation semantics of the language. The set of values in the language is given by:

v ::= Values:
n integer constant
λc x :S. e : T abstraction
aT object address with type T

Each object address a is annotated with the type T of the object it points to. A object store σ maps object
addresses aT to object values of the form {l̄ = v̄}. Values and object values in the store are closed in that
they do not contain free program variables x; though they may contain object addresses.

Every value has an allocated type according to the function ty(v):

ty(n) = Int
ty(λc x :S. e : T) = (S → T)

ty(aT) = T

The allocated type of an object is invariant and independent of the store σ. A type tag is a type that can
be returned by ty(v); it includes Int, function, and object types, but excludes ∗. We use the notation T.l to
denote S if T = {l : S, . . .}, and to denote ∗ if T is a different object type; in all other cases T.l is undefined.

An evaluation context is:

C ::= • | (C t) | (v C) | C as T | {l̄ = v̄, l = C, l̄ = ē} : T | C.l | C.l := e | v.l := C

2

Figure 2: Subtyping and Compatibility

Subtyping S < T

T < T
[Sub-Refl]

S1 = T1 S2 < T2

(S1 → S2) < (T1 → T2)
[Sub-Arrow]

Si = Ti for i ∈ 1..n
{li : Si∈1..n+m

i } < {li : T i∈1..n
i }

[Sub-Obj]

Compatibility S T

T T
[Com-Refl]

T ∗
[Com-Dyn]

S1 T1 S2 T2

(S1 → S2) (T1 → T2)
[Com-Arrow]

Si Ti for i ∈ 1..n
{li : Si∈1..n

i } {li : T i∈1..n
i }

[Com-Obj]

A state is a pair of an object store and a current expression. The evaluation relation on states is defined by
the rules in Figure 3. For now, these rules ignore the check marks, and always perform dynamic type checks
by calling the function convertσ(v, T), which checks if the value v can be converted to the type T .

The notation σ[aT , l := v] denotes the store that is identical to σ, except that the l field of the object at
address aT is updated with the value v.

4 Check Optimization

In a traditional statically typed language, the type system both detects errors and eliminates dynamic checks.
This presentation separates these two components, primarily so that the check elimination phase can be run
even in standard mode.

We first extend the operational semantics to omit convert checks on operations labelled with the check
mark •: see Figure 4. Thus, even though the original rule [E-Beta] can evaluate all applications, [E-Beta-Safe]

provides an optimized evaluation rule for a safe application.
We now sketch a type-based analysis that statically verifies that the check mark • is only used in places

where the corresponding dynamic type check is redundant: see Figure 5. (It is straightforward to rephrase
this process to infer check marks.) These rules rely on the relation S ⇒ T , which is defined to hold if S < T

3

Figure 3: Operational Semantics

Evaluation Rules

σ,C[((λc x :S. t : T) v)d] −→ σ,C[t[x := v′] asc T] if v′ = convertσ(v, S) [E-Beta]

σ,C[v asc T] −→ σ,C[v′] if v′ = convertσ(v, T) [E-As]

σ,C[{li = vi∈1..n
i }c : T] −→ σ[aT := ({li = v′i})], C[aT] if v′i = convertσ(vi, T.li), aT fresh, T = {. . .} [E-Alloc]

σ,C[aT .l
c] −→ σ,C[v] if σ(aT) = {l = v, . . .} [E-Get]

σ,C[aT .l
c := v] −→ σ[aT , l := v′], C[v] if v′ = convertσ(v, T.l) [E-Assign]

Dynamic Type Checks
convertσ(v, T) = v iff ty(v) < T

Figure 4: Extended Operational Semantics

Evaluation Rules (in addition to those of Figure 3)

σ,C[((λc x :S. t : T) v)•] −→ σ,C[t[x := v] asc T] [E-Beta-Safe]

σ,C[v as• T] −→ σ,C[v] [E-As-Safe]

σ,C[{li = vi∈1..n
i }• : T] −→ σ[aT := {li = vi}], C[aT] aT fresh [E-Alloc-Safe]

σ,C[aT .l
• := v] −→ σ[aT , l := v], C[v] [E-Assign-Safe]

and T is ∗-free.
S < T T is ∗-free

S ⇒ T

TODO: example.
The following lemma states that if a value of allocated type V is in a variable of static type S, and is

passed to a context with a static requirement T but underlying dynamic requirement U , then if S ⇒ T then
we know that the value also has type U .

Lemma 5 If V < S and S ⇒ T and U > U ′ and U ′ T then V < U .

Lemma 6 The ⇒ relation is transitive.

Lemma 7 (No Failure) For any term e with no • annotations, there exists T such that ∅ `̀ e : T .

Proof: By induction on the structure of e.

Lemma 8 (Preservation) If `̀ σ, e : ok and σ, e −→ σ′, e′ then `̀ σ′, e′ : ok.

PROVEME
A unsafe operation r is a term of the form:

r ::= x◦ | (v v)◦ | {l̄ = v̄}◦ : T | v.l◦ | v.l◦ := v | v as◦ T

Lemma 9 (Progress) If `̀ σ, e : ok and σ, e 6−→ σ′, e′ for any σ′ and e′ then e = C[r] where r is an unsafe
operation.

4

PROVEME

Lemma 10 (Determinism) If `̀ σ, e : ok and σ, e −→ σ1, e1 and σ, e −→ σ2, e2 then (modulo consistent
address renamings) σ1 = σ2 and e1 = e2.

PROVEME

5 Strict Mode Type System

The strict mode type system is based on a judgement E ` e : T , stating that expression e has type T
in environment E. Note that the type T only indicates that e is intended to produce values of type T ; it
provides no guarantees, and the sole purpose of the strict mode type system is to heuristically detect errors
at verification time.

The type system is based on the convertibility relation S ≺ T (shown in Figure 6) to see if an expression
of static type S can be passed to a context expecting a type T . The relation S ≺ T holds if there exists U
such that S < U and U ∼ T . In turn, the consistency relation U ∼ T checks if types U and T are identical,
where ∗ in either U or T matches any type. Thus, consistency extends the compatibility relation, and it is
symmetric but not transitive.

TODO: When do we have guarantees?

6 Extensions

We now extend the language and type language with like types, wrap types, and implicit int-to-boolean
conversions:

e ::= . . . Terms:
b boolean constants
e wrap T wrap operation

v ::= . . . Values:
b boolean constants
v wrapped T wrapped value

C ::= . . . Evaluation Contexts:
C wrap T wrap operation

S, T ::= . . . Types:
Bool booleans
like T like type
wrap T wrap type

We add the following evaluation rules. Note that when operating on a wrapped value, the check mark c on
the operation is irrelevant and so ignored.

σ,C[v wrap T] −→ σ,C[v wrapped T] (T a fn or obj type) [E-Wrap]

σ,C[((w wrapped (S → T)) v)c] −→ σ,C[(w (v wrap S))◦ wrap T] [E-Beta-w]

σ,C[(w wrapped {l : T, . . .}).lc] −→ σ,C[(w.l◦) wrap T] [E-Get-w]

σ,C[(w wrapped {l : T, . . .}).lc := v] −→ σ,C[w.l◦ := (v wrap T)] [E-Assign-w]

The allocated types of the additional values is given by:

ty(b) = Bool
ty(v wrapped T) = T

5

Figure 5: Type Rules for Optimization

Optimization rules for expressions E `̀ e : T

(x : T) ∈ E
E `̀ x• : T

[O-Var-Safe]

E `̀ x◦ : ∗
[O-Var-Unsafe]

E `̀ n : Int
[O-Int]

E, x : S `̀ e : T ′ T ′ ⇒ T

E `̀ (λ• x :S. e : T) : (S → T)
[O-Fun-Safe]

E, x : S `̀ e : T ′

E `̀ (λ◦ x :S. e : T) : (S → T)
[O-Fun-Unsafe]

E `̀ t1 : (S → T) E `̀ t2 : S′ S′ ⇒ S

E `̀ (t1 t2)• : T
[O-App-Safe]

E `̀ t1 : S E `̀ t2 : S′

E `̀ (t1 t2)◦ : ∗
[O-App-Unsafe]

E `̀ t : S S ⇒ T

E `̀ t as• T : T
[O-As-safe]

E `̀ t : S

E `̀ t as◦ T : T
[O-As-Unsafe]

T = {li : T i∈1..n
i } E `̀ ti : Si Si ⇒ Ti

E `̀ ({li = ti∈1..n
i }• : T) : T

[O-Alloc-Safe]

E `̀ ti : Si

E `̀ ({li = ti∈1..n
i }◦ : T) : T

[O-Alloc-Unsafe]

E `̀ e : {l : T, . . .}
E `̀ e.l• : T

[O-Get-Safe]

E `̀ e : S

E `̀ e.l◦ : ∗
[O-Get-Unsafe]

E `̀ e1 : {l : T, . . .} E `̀ e2 : S S ⇒ T

E `̀ (e1.l• := e2) : S
[O-Set-Safe]

E `̀ e1 : S E `̀ e2 : T

E `̀ (e1.l◦ := e2) : T
[O-Set-Unsafe]

Optimization rules for states E `̀ σ, e : ok

if σ(aT) = {li = vi∈1..m
i } and T = {li : T i∈1..n

i }
then n ≤ m and ∀i ∈ 1..n. ∅ `̀ vi : Si and Si < Ti

∅ `̀ e : S

`̀ σ, e : ok
[O-State]

6

Figure 6: Convertibility and Consistency

Convertibility S ≺ T

S < U U ∼ T
S ≺ T

[Con-Refl]

Consistency S ∼ T

T ∼ T
[Con-Refl]

T ∼ ∗
[Con-Dyn]

∗ ∼ T
[Con-Dyn]

S1 ∼ T1 S2 ∼ T2

(S1 → S2) ∼ (T1 → T2)
[Con-Arrow]

Si ∼ Ti for i ∈ 1..n
{li : Si∈1..n

i } ∼ {li : T i∈1..n
i }

[Con-Obj]

For subtyping, like S is a supertype of S (describes more values) and is covariant. wrap T is a subtype of
T , since it describes certain kinds of T values.

S < T

S < like T
[Sub-Like-Inc]

S < T

like S < like T
[Sub-Like-Cov]

S < T

wrap S < T
[Sub-Wrap]

7

Figure 7: Type Rules for Strict Mode

Type rules E ` t : T

(x : T) ∈ E
E ` x : T

[T-Var]

E ` n : Int
[T-Int]

E, x : S ` e : T ′ T ′ ≺ T
E ` (λx :S. e : T) : (S → T)

[T-Fun]

E ` t1 : (S → T) E ` t2 : S′ S′ ≺ S
E ` ((t1 t2)) : T

[T-App1]

E ` t1 : ∗ E ` t2 : S′

E ` ((t1 t2)) : ∗
[T-App2]

E ` t : S
E ` t as T : T

[T-As]

E ` ti : Si Si ≺ Ti T = {li : T i∈1..n
i }

E ` ({li = ti∈1..n
i } : T) : T

[T-Alloc]

E ` e : {l : T, . . .}
E ` e.l : T

[T-Get1]

E ` e : ∗
E ` e.l : ∗

[T-Get2]

E ` e1 : {l : T, . . .} E ` e2 : S S ≺ T
E ` e1.l := e2 : S

[T-Set1]

E ` e1 : ∗ E ` e2 : S
E ` e1.l := e2 : S

[T-Set2]

8

We extend compatibility and consistency to like and wrap types.

S T

like S like T
[Com-Like]

S T

wrap S wrap T
[Com-Like]

S ∼ T
like S ∼ like T

[Con-Like]

S ∼ T
wrap S ∼ wrap T

[Con-Like]

We extend the convertibility relation to allow int-to-boolean conversions:

Int ≺ Bool
[Conv-Int-Bool]

We extend convert as follows:
convertσ(v, T) = v if v isσ T

convertσ(0, Bool) = false
convertσ(n, Bool) = true n 6= 0

convertσ(v, wrap T) = v if v isσ T
convertσ(v, wrap T) = v wrap T if v isσ like T

The new relation v isσ T checks if the value v matches the type T :

ty(v) < T

v isσ T
[Is-Ok]

σ(aS) = {li = vi∈1..n+m
i }

vi isσ like Ti for i ∈ 1..n
aS isσ like {li : T i∈1..n

i }
[Is-Like]

We add the type checking and optimization rules for the wrap operation and boolean constants:

E `̀ b : Bool
[O-Bool]

E `̀ t : S
E `̀ t wrap T : T

[O-Wrap]

E ` b : Bool
[T-Bool]

E ` t : S
E ` t wrap T : T

[T-Wrap]

We conjecture (but have not proved!) that the resulting system then behaves as intended.

9

