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Abstract

JavaScript has become a central technology of the web, but it is also
the source of many security problems, including cross-site scripting
attacks and malicious advertising code. Central to these problems is
the fact that code from untrusted sources runs with full privileges.
We implement information flow controls in Firefox to help prevent
violations of data confidentiality and integrity.

Most previous information flow techniques have primarily re-
lied on either static type systems, which are a poor fit for JavaScript,
or on dynamic analyses that sometimes get stuck due to problem-
atic implicit flows, even in situations where the target web applica-
tion correctly satisfies the desired security policy.

We introduce faceted values, a new mechanism for providing
information flow security in a dynamic manner that overcomes
these limitations. Taking inspiration from secure multi-execution,
we use faceted values to simultaneously and efficiently simulate
multiple executions for different security levels, thus providing
non-interference with minimal overhead, and without the reliance
on the stuck executions of prior dynamic approaches.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.6 [Operating
Systems]: Security and Protection—Information flow controls

General Terms Languages, Security

Keywords Information flow control, dynamic analysis, JavaScript,
web security

1. Introduction

JavaScript has helped to usher in a new age of richly interactive web
applications. Often times, developers build these sites by including
JavaScript code from a number of different sources. With minimal
effort, a web developer can build an impressive site by composing
code from multiple sources.

Unfortunately, there are few restrictions on the included code,
and it operates with the same authority as the web developer’s
own code. Advertising has been a particular source of malicious
JavaScript. There are a wide array of security measures used to de-
fend against these problems, but the bulk of them tend to rely on
competent web developers. Given the mercurial nature of security
challenges, even a conscientious web developer has difficulty keep-
ing up with the latest trends and best practices.
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Another option is to bake security controls into the browser
itself. This strategy has been part of browser design since nearly
the beginning, but the controls have tended to be fairly minimal.

Information flow analysis offers the promise of a systematic
solution to many of these security challenges, but to date it has
not achieved its potential, largely because much research on static
information flow type systems is an awkward fit for dynamically
typed JavaScript code. Additionally, there has been a folklore that
dynamic information flow analysis is not sound in the presence of
implicit flows.

This folklore is not true, however, and proposed mechanisms
for dealing with implicit flows include the no-sensitive-upgrade
semantics [39, 5] and the permissive-upgrade semantics [6]. Both
semantics guarantee the key correctness property of termination-
insensitive non-interference (TINI), which states that private inputs
do not influence public outputs. (Private information can influence
termination, but this channel is limited to a brute force attack [1]).

Despite this correctness guarantee, neither semantics provides
an ideal foundation for JavaScript security since both suffer from
the same weakness: in the presence of subtle implicit flows that are
hard to track, the semantics halts execution in order to avoid any
(potential) information leak. Note that this fail-stop is not caused
by the web application violating a security policy; instead it is a
mechanism failure caused by the inability of the dynamic infor-
mation flow analysis to track implicit flows. Thus, these dynamic
analyses reject valid programs that conform to the security policy.

An interesting solution to these mechanism failures is to si-
multaneously execute two copies of the target program: a high-
confidentiality (H) process that has access to secret data, and a
low-confidentiality (L) process that sees dummy default values in-
stead of the actual secret data [9, 13]. This multi-process execution
cleanly guarantees non-interference since no information flow is
permitted between the two processes, and it also avoids mechanism
failures. Unfortunately, for a web page with n principals (roughly,
URL domains), we may require up to 2™ processes, one for each
element in the powerset lattice for these principals.

In this paper, we combine the benefits of multi-process execu-
tion with the efficiency of single-process execution. The key tech-
nical novelty is the introduction of a faceted value, which is a pair
of two raw values that contain low and high confidentiality infor-
mation, respectively. By appropriately manipulating these faceted
values, a single process can simulate the two processes (L and H) of
the multi-execution approach. The primary benefit of this approach
is that, for most data, the two raw values in a faceted value are iden-
tical, in which case we collapse the two simulated executions on
identical data into a single execution, drastically reducing the over-
head. In the presence of multiple principals and a complex security
lattice, a faceted value can contain many raw values, rather than
just two. In this situation, the semantics of tracking information
flow is a little more complex, costing some run-time performance
overhead. However, our experimental results suggest that faceted



evaluation outperforms multi-process execution as the number of
principals increases.

This paper includes a formal description of the faceted value
approach to dynamic information flow analysis, and a proof that it
achieves termination-insensitive non-interference. We also present
a projection theorem showing that a computation over faceted val-
ues simulates 2™ non-faceted computations, one for each element
in the powerset security lattice. We have implemented this mech-
anism inside the Firefox browser (using the Zaphod plug-in [26])
in order to validate its utility in a web browsing context. Addition-
ally, we have used this implementation to compare the performance
of faceted values against multi-process execution. Finally, we dis-
cuss declassification and how it relates to faceted values, noting
this feature as an additional point of distinction with multi-process
execution.

1.1 Overview of Faceted Evaluation

To motivate the need for faceted values in dynamic information
flow, we start by considering the classic problem of implicit flows,
such as those caused by a conditional assignment:

if (x) y = true

The central insight of this paper is that the correct value for y
after this assignment depends on the authority of the observer. For
example, suppose initially that x = true and y = false, and that
x is secret whereas y is public. Then after this assignment:

® A private observer that can read x should see y = true.

® A public observer that cannot read x should see y = false,
since it should not see any influence from this conditional as-
signment.

Faceted values represent exactly this dual nature of y, which should
simultaneously appear as true and false to different observers.

In more detail, a faceted value is a triple consisting of a principal
k and two values V4 and V, which we write as:

(k?Vi: W)

Intuitively, this faceted value appears as Vy to private observers that
can view k’s private data, and as V. to other public observers. We
refer to Vi and V. as private and public facets, respectively.

This faceted value representation naturally generalizes the tra-
ditional public and private security labels used by prior analyses. A
public value V is represented in our setting simply as V itself, since
V' appears the same to both public and private observers and so no
facets are needed. A private value V' is represented as the faceted
value

(k?V:1)

where only private observers can see V', and where public or unau-
thorized observers instead see L (roughly meaning undefined).

Although the notions of public and private data have been well
explored by earlier dynamic information flow analyses, these two
security labels are insufficient to avoid stuck executions in the pres-
ence of implicit flows. As illustrated by the conditional assignment
considered above, correct handling of implicit flows requires the in-
troduction of more general notion of faceted values (k ? Vi : VL),
in which the public facet V1 is a real value and not simply L. In
particular, the post-assignment value for y is cleanly represented as
the faceted value (k 7 true : false) that captures y’s appearance
to both public and private observers.

Based on this faceted value representation, this paper develops
a dynamic analysis that tracks information flow in a sound manner
at runtime. Our analysis is formulated as an evaluation semantics
for the target program, where the semantics uses faceted values to
track security and dependency information.

This evaluation semantics is designed to avoid leaking infor-
mation between public and private facets. In particular, if Cl[e] is
any program context, then the computation C[(k ? Vi : V.)] ap-
pears to behave exactly like C[V4] from the perspective of a pri-
vate observer, and behaves exactly like C[V;] to a public observer
(under a termination-insensitive notion of equivalence). This pro-
Jjection property means that a single faceted computation simulates
multiple non-faceted computations, one for each element in the se-
curity lattice. This projection property also enables an elegant proof
of termination-insensitive non-interference, shown in Section 3.2.

Faceted values may be nested. Nested faceted values naturally
arise during computations with multiple principals. For example, if
k1 and k2 denote different principals, then the expression

(k1 ?7true: 1) && (k2 7 false: 1)
evaluates to the nested faceted value
(k1?7 {ke ?false: 1) : 1)

since the result false is visible only to observers authorized to see
private data from both k1 and k2; any other observer instead sees
the dummy value L.

As a second example, the expression

<k1?2:0> + <k‘2?1:0>
evaluates to the result
(k1?7 (k273:2):(k2?71:0))

Thus, faceted values form binary trees with principals at interior
nodes and raw (non-faceted) values at the leaves. The part of this
faceted value tree that is actually seen by a particular observer
depends on whose private data the observer can read. In particular,
we define the view of an observer as the set of principals whose
private data that observer can read. Thus, an observer with view
{k1, k2} would see the result of 3 from this addition, whereas an
observer with view {k2} would see the result 1.

When a faceted value influences the control flow, in general we
may need to explore the behavior of the program under both facets’.
For example, the evaluation of the conditional expression:

if ( (k ? true:false) ) then e else e3

evaluates both e; and ez, and carefully tracks the dependency of
these computations on the principal k. In particular, assignments
performed during e; are visible only to views that include &, while
assignments performed during ez are visible to views that exclude
k. After the evaluations of e; and e> complete, their two results
are combined into a single faceted value that is returned to the
continuation of this conditional expression. That is, the execution
is split only for the duration of this conditional expression, rather
than for the remainder of the entire program.

1.2 Handling Implicit Flows

The key challenge in dynamic information flow analysis lies in
handling implicit flows. To illustrate this difficulty, consider the
code in the first column of Figure 1, which is adapted from an
example by Fenton [16]. Here, the function f (x) returns the value
of its boolean argument x, but it first attempts to “launder” this
value by encoding it in the program counter.

We consider the evaluation of £ on the two secret arguments
(k ? false : 1) and (k 7 true : L) (analogous to the more
traditional false and true?) to determine if the argument in
any way influences any public component of the function’s result.

For the argument (k 7 false : L) shown in column 2, the
local variables y and z are initialized to true. The conditional

! The semantics is optimized to avoid such split executions where possible.



Figure 1: A JavaScript Function with Implicit Flows

x=(k7false: l) x=(k?true: 1)
Function £ (x) All strategies Naive NSU Permissive-Upgrade Faceted Evaluation
y = true; y = true y = true y = true y = true y = true
z = true; z = true z = true z = true z = true z = true
if (%) - pc = {k} pc = {k} pc = {k} pc = {k}
y = false; — y= (k7 false: 1) stuck y=(k?false: x) | y= (k7 false: true)
if (y) pc={} - stuck pc = {k}
z = false; z = false — z = (k 7 true : false)
return z; — — —
Return Value: false true (k7 true : false)
L ]
branch on x when x = (k ? false : L) is split into separate Faceted Evaluation As shown in the last column of Figure 1,

branches on false and L. The first test if (false) ... isclearly
a no-op, and so is the second test if (L) ... since if is strict in
. Since y remains true, the branch on y is taken and so z is set
to false. Thus, the function call £((k 7 false : L)) returns
false.

We now consider the evaluation of £({(k 7 true : L)) under
different dynamic information flow semantics. While the prior se-
mantics that we discuss here have no notion of facets, explaining
them in terms of faceted values is illuminating.

Naive An intuitive strategy for handling the assignment y=false
that is conditional on the private input x is to simply set y to
(k 7 false : L) toreflect that this value depends on private inputs.
Unfortunately, this approach is not sound, since it loses the critical
information that a public observer should still see y = true.
The next conditional branch on y exploits this confusion. Since
y is (k 7 false : L), the branch is not executed, so z remains
true, and so £((k 7 true : L)) returns true, as illustrated in
column 3. Thus, this naive strategy fails to ensure TINI, since the
public output of £ leaks the contents of its private input.

Various prior approaches attempt to close this information leak
without introducing full faceted values, with mixed results.

No-Sensitive-Upgrade With the no-sensitive-upgrade check [39,
5], execution halts on any attempt to update public variables in code
conditional on private data. Under this strategy, the assignment to
the public variable y from code conditional on a private variable x
would get stuck, as shown in the N.SU column of Figure 1. This
strategy guarantees TINI, but only at the expense of getting stuck
on some implicit flows.

Permissive-Upgrade A more flexible approach is to permit the
implicit flow caused by the conditional assignment to y, but to
record that the analysis has lost track of the correct (original)
public facet for y. The Permissive-Upgrade represents this lost
information by setting y to the faceted value (k 7 false : x), where
“x denotes that the public facet is an unknown, non-_L value.?

This permissive upgrade strategy accepts strictly more program
executions than the no-sensitive-upgrade approach, but it still re-
sorts to stuck executions in some cases; if the execution ever de-
pends on that missing public facet, then the permissive upgrade
strategy halts execution in order to avoid information leaks. In par-
ticular, when y is used in the second conditional of Figure 1, the
execution gets stuck.

2The original paper [6] used the false? to represent (k ? false : x),
where the superscript P denotes “partially leaked”.

faceted values cleanly handle problematic implicit flows. At the
conditional assignment to y, the faceted value (k ? false : true)
simultaneously represents the dual nature of y, which appears
false to private observers but true to public observers. Thus, the
conditional branch if (y) ... is taken only for public observers,
and we record this information by setting the program counter label
pc to {k}. Consequently, the assignment z=false updates z from
true to (k ? true : false). Critically, this assignment updates
only the public facet of z, not its private facet, which stays as true.
The final result of the function call is then (k ? true : false).

Comparing the behavior of £ on the arguments (k 7 false :
1) and (k ? true : L), we see that, from the perspective of
a public observer, £ always returns false, correctly reflecting
that £ (L) returns false, and so there is no information leak on
this example, despite its problematic implicit flows. Conversely,
from the perspective of a private observer authorized to view f’s
actual output, £ exhibits the correct behavior of returning its private
boolean argument.

2. A Programming Language with Facets

We formalize faceted evaluation for dynamic information flow in
terms of the idealized language X*“’ shown in Figure 2. This lan-
guage extends the A-calculus with mutable reference cells, reactive
I/O, a special value L, and a mechanism for creating faceted val-
ues. Despite its intentional minimality, this language captures the
essential complexities of dynamic information flow in more real-
istic languages, since it includes key challenges such as heap al-
location, mutation, implicit flows, and higher-order function calls.
In particular, conditional tests can be Church-encoded in the usual
fashion.

Expressions in X include the standard features of the -
calculus, namely variables (x), constants (c), functions (Az.e), and
function application (e; e2). The language also supports mutable
reference cells, with operations to create (ref e), dereference (!e),
and update (e;:=e2) a reference cell. To model JavaScript’s in-
teractive nature, X% also supports reading from (read(f)) and
writing to (write(f, e)) external resources such as files.

The expression (k 7 ey : e2) creates a faceted values where the
value of ey is considered secret to principal k; observers that cannot
see k’s private data will instead see the public facet produced by
e2. We initially use the terms label and principals as synonyms
and focus primarily on confidentiality—Section 5 later introduces
integrity labels in the context of robust declassification.

The L value is used to represent ‘“nothing”, mirroring Smalltalk’s
nil and JavaScript’s undefined. It is primarily used as the public
facet in a faceted value (k ? V' : L), which denotes a value V" that
is private to principal k, with no corresponding public value.



Figure 2: The source language Y
I 1

Syntax:
e = Term
T variable
c constant
Ax.e abstraction
e1 ea application
ref e reference allocation
le dereference
e:=e assignment
read(f) file read
write(f,e) file write
(k?7e1:e2) faceted expression
1 bottom
T,Y, % Variable
c Constant
k,l Label (aka Principal)
f File handle

Standard encodings:

true

Az Ay.x
false AT Y.y
(e1 (Md.e2) (Ad.e3)) (A\z.x)

if e; then es else 0

if e; then es else e3
if e then eo
let x=e1 ines (Az.e2) ex

letx =€ ineg, x & FV(e2)

e 18 18 18 18 18
e llg lig lig lig lig

€15 €2

2.1 Standard Semantics of X

As a point of comparison for our later development, we first present
a standard semantics for X that does not handle faceted expres-
sions. In this semantics, values include constants, addresses, clo-
sures, and _L, as shown in Figure 3. A closure (Az.e,0) is a pair
of a A-expression and a substitution 6 that maps variables to val-
ues. Each reference cell is allocated at an address a, and the store
o maps addresses to values. The store also maps each file f to a
sequence of values w. We use the syntax v.w and w.v to indicate a
list of values with v as the first or last value, respectively, and use )
to denote both the empty store and the empty substitution.
We formalize the standard semantics via a big-step relation

0,0,el o’ v

that evaluates an expression e in the context of a store o and a sub-
stitution 0, and which returns the resulting value v and the (possibly
modified) store o’. This relation is defined via the evaluation rules
shown in Figure 3, which are mostly straightforward. For example,
the rule [s-appP] evaluates the body of the called function, where
the notation Oz := v] denotes the substitution that is identical to 6
except that it maps x to v.

The only unusual aspect of this semantics concern the value L,
which essentially means “nothing” or “no information”. Operations
such as function application, dereference, and assignment are strict
in L; if given a L argument they simply return L via the vari-
ous [s-*-BoT] rules. This semantics for L facilitates our later use
of L in faceted values, since, for example, dereferencing a faceted
address (k 7 a : L) operates pointwise on the two facets to return
a faceted result (k ? v : L) where v = o(a).

Figure 3: Standard Semantics

Runtime Syntax

(Address —p value

U File — value™)

a € Address
o S store =
0 S subst =
v S value =
w € value™

Evaluation Rules:

g,0,clo,c

0,0,z ] 0,0(x)

0,0,(Ax.e) | o, (A\z.e,0)

0,0,e1 | o1,(\z.e,0)
0’1,9,62\1(0'2,1)/

0,0'[x :=v"],el o’ ,v
a,0, (61 62) \LO'/,”U

g,0,e1 | o1, L
!
01,0,e2 | o' v

a,0, (61 62) { 0/7 1

0,0,el o’ v
a & dom(o")
0,0, (ref e) | o'la:=v],a

0,0,elda
0,0,'e ] o’,0'(a)

0,0,el o, L
o,0,'el o, L

o,0,e1 lo1,a
01,9762 \LO'Q,'U

0,0,e1:=e2 | o2[a :=v],v

g,0,e1 | o1, L
0170762 J,O'z,’l)
0’,9,61:=62 \LO'Q,'U

o(f) =v.w
0,0, read(f) | o[f = w],v

0,0,el o’ v

o,0,write(f,e) | o'[f := o' (f).v],v

0,0, 1L o, L

Var —, value
cla|(Azx.e,0)| L

[S-CONST]

[S-VAR]

[S-FUN]

[s-APP]

[S-APP-BOT]

[S-REF]

[S-DEREF]

[S-DEREF-BOT]

[S-ASSIGN]

[S-ASSIGN-BOT]

[S-READ]

[S-WRITE]

[s-BOT]




3. Faceted Evaluation

Having defined the standard semantics of the language, we now
extend that semantics with faceted values that dynamically track
information flow and which provide noninterference guarantees.

Figure 4 shows the additional runtime syntax needed to sup-
port faceted values. We use Initial Capitals to distinguish the new
metavariable and domains of the faceted semantics (V' € Value,
Y, € Store, © € Subst) from those of the standard semantics
(v € value, o € store, 0 € subst).

Values V' now contain faceted values of the form

(k?Va: W)

which contain both a private facet V4 and a public facet V;.. For
instance, the value (k ? 42 : 0) indicates that 42 is confidential to
the principal k, and unauthorized viewers instead see the value 0.
Often, the public facet is set to _L to denote that there is no intended
publicly visible facet. Implicit flows introduce public facets other
than L.

We introduce a program counter label called pc that records
when the program counter has been influenced by public or private
facets. For example, consider the conditional test

if ((k 7 true:false)) then e; else e

for which our semantics needs to evaluate both e; and e2. During
the evaluation of e1, we add k to pc to record that this computation
depends on data private to k. Conversely, during the evaluation of
ea, we add % to pc to record that this computation is dependent on
the corresponding public facet. Formalizing this idea, we say that a
branch h is either a principal k or its negation k, and that pc is a set
of branches. Note that pc can never include both & and , since that
would reflect a computation dependent on both private and public
facets.

The following operation ((pc 7 V1 : V2 ) creates new faceted
values, where the resulting value appears like V; to observers that
can see the computation corresponding to pc, and appears like V>
to all other observers.

(02V:V,) oy,
({kYUrest? Vo : Vo)) = (k7 {(rest?Vp: Vo) : Vo)
({kYUrest 2V, : Vo)) (k?Vo:{(rest? Vs Vo))

For example, (({k} ? Vi : V.)) returns (k ? V4 : Vi), and this
operation generalizes to more complex program counter labels. We
sometimes abbreviate (( {k} 7 Vi : VL)) as (k7 Vi : VL )).

We define the faceted value semantics via the big-step evalua-
tion relation:

£,0,¢ e £,V

that evaluates an expression e in the context of a store 3, a sub-
stitution ©, and a program counter label pc, and which returns the
resulting value V' and the (possibly modified) store 33'.

Rule [F-spLIT] shows how evaluation of a faceted expression
(k 7 e1 : e2) evaluates both eq and e to values Vi and Va2, with pc
updated appropriately with k and % during these two evaluations.
The two values are then combined via the operation ((k ? V1 : V2 )).
As an optimization, if the current computation already depends on
k-private data (i.e., £ € pc), then rule [F-LEFT] evaluates only e,
thus preserving the invariant that pc never contains both & and k.
Conversely, if ke pc then [F-RIGHT] evaluates only es.

Function application (e1 e2) is somewhat tricky, since e; may
evaluate to a faceted value tree with closures (or _L) at the leaves.
To handle this situation, the rule [F-APP] evaluates each e; to a value
V; and then delegates to the auxiliary judgement:

27 (V1 ‘/2) \u/pc 2/7 Vl

This auxiliary judgement recursively traverses through any faceted
values in Vi to perform the actual function applications. If V3
is a closure, then rule [FA-FUN] proceeds as normal. If V; is a
facet (k 7 Vi : V1), then the rule [FAa-spLIT] applies both Vi and
VL. to the argument V5, in a manner similar to the rule [F-SPLIT]
discussed above. Rules [FA-LEFT] and [FA-RIGHT] are optimized
versions of [FA-sPLIT] for cases where k or k are already in pc.
Finally, the “undefined” value L can be applied as a function and
returns L via [FA-BoT] (much like the earlier [s-APP-BOT] rule).

As an example, consider the function application (f 4) where
f is a private function represented as (k ? (Az.e) : L). The
rules [F-APP] and [FA-sPLIT] decompose the application (f 4) into
two separate applications: ((Az.e) 4) and (L 4). The first appli-
cation evaluates normally via [FA-FUN] to a result, say V/, and the
second application evaluates to L via [FA-BOT], so the result of the
callis (k 7 V : L), thus marking the result of the call as private.

The operand of a dereference operation ('e) may also be a
faceted value tree. In this case, the rule [F-REF] uses the helper func-
tion deref (X, V4, pc) to decompose V, into appropriate addresses,
retrieve the corresponding values from the store ¥, and to combine
these store values into a new faceted value. As an optimization, any
facets in the address V/, that are not consistent with pc are ignored.

In a similar manner, the rule [F-AsSIGN] uses the helper function
assign(X, pe, Va, V') to decompose V, into appropriate addresses
and to update the store X at those locations with V', while ensuring
that each update is only visible to appropriate principals that are
consistent with pc, to avoid information leaks via implicit flows.

The faceted semantics of I/O operations introduces some addi-
tional complexities since it involves communication with external,
non-faceted files. Each file f has an associated view view(f) =
{k1,...,kn} describing which observers may see the contents of
that file. The following section defines when a computation with
program counter label pc is visible to a view L, and also interprets
L to project a faceted value V' to a non-faceted value v = L(V).
We use these two concepts to map between faceted computations
and external non-faceted values in files.

A read operation read(f) may be executed multiple times with
different pc labels. Of these multiple executions, only the single
execution where pc is visible to view ( f) actually reads from the file
via [F-READ]; all other executions are no-ops via [F-READ-IGNORE].
The non-faceted value v read from the file is converted to a faceted
value {(pc’ ? v : L)) that is only visible to view(f), where pc’ is
the program counter representation of that view.

An output write(f, e) behaves in a similar manner, so only one
execution writes to the file via the rule [F-wRITE]. This rule uses the
projection operation v = L(V') where L = view(f) to project the
faceted value V' produced by e into a corresponding non-faceted
value v that is actually written to the file.

For simplicity, we Church-encode conditional branches as func-
tion calls, and so the implicit flows caused by conditional branches
are a special case of those caused by function calls and are appro-
priately handled by the various rules in Figure 4. To provide help-
ful intuition, however, Figure 5 sketches alternative direct rules for
evaluating a conditional test if e; then e else es. In particular,
if e1 evaluates to a faceted value (k 7 Vg : V1), the if statement is
evaluated potentially twice, using facets Vg and V7, as the condi-
tional test by the [F-1F-spLIT] rule.

3.1 The Projection Property

Recall that a view is a set of principals L = {ki,...,kn}. This
view defines what values a particular observer is authorized to see.
In particular, an observer with view L sees the private facet Vj in
avalue (k 7 Vi : V1) only when k& € L, and sees V; otherwise.
Thus, each view L serves as a projection function that maps each
faceted value V' € Value into a corresponding non-faceted value



Figure 4: Faceted Evaluation Semantics
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Runtime Syntax
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PC
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Evaluation Rules: |X,0,e [}, X',V

3,0,cdpe X, c

3,0,z pe X,0(x)
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31,0,e2 Jpe Lo, Vo
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27 @7 (61 62) \u/PC Zl7 V,
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2,@,<k3?61 : €2> u/pc 22,(<k?V1 : ‘/2»

k € pc ¥,0,e1 Upe X,V
5.0, (k7er:ea) Dpe 5,V

kepe  %,0,e2 e ¥,V
2,0,(k?e1:e2) Ype X,V

Y0, L1, % L

Application Rules ‘ , (Vi Vo) Upe B, V7

%, 0z :=V],e dp. &, V'
T, (00.6,0) V) Iy &,V

E € pc 27 (VH V2) \LJ/ch{k} 217 VI—ll
k & pc T, (VL Ve) uch{E} v
E, (k7 Vi Vi) Vo) dpe B (B 7 Vi - V)

Auxiliary Functions

deref : Store x Value x PC
deref (X, a, pc)
deref (X, L, pc)

deref (5, (k ? Vi : Vi), pc)

assign : Store X PC x Value x Value

assign(X, pc, a, V)
assign(X,pe, L, V)

assign(X, pe, (k7 Vy: Vi), V)

RawValue

Branch

[F-CONST]

[F-VAR]

[F-FUN]

[F-APP]

[F-SPLIT]

[F-LEFT]

[F-RIGHT]

[F-BOT]

[FA-FUN]

[FA-SPLIT]

ol

g

(Address —p Value) U (File — value™)
Var —, Value

cla|(Ax.e,®)| L

R|(k?Vi: Vo)

k|k

2Branch

¥,0,elp X,V
a g dom (%)
V={_pc?V' :L)
3,0, (ref e) Ype X'a:=V],a

2,0e Ype XV V' = deref (X', V, pc)
2.0, 1e . 5,V

27 67 €1 \Li«llc Z:17 ‘/1
217@762 \u/pc 22, Vl
¥ = assign(Xe, pc, Vi, V')
¥,0,e1:=¢e2 Ype XV’

3(f) =vaw L = view(f)
pevisibleto L pd = LU{k |k ¢ L}
3,0, read(f) Wpe B[f == w], {(pc ?v: L)

pc not visible to view(f)
3,0, read(f) dpe X, L

¥,0,e pe X,V pc visible to view(f)
L = view(f) v=L(V)
3,0, urite(f, e) Upe Z'[f := X' (f) 0],V

2,0e dpe XV pc not visible to view(f)
3,0, urite(f,e) dpc X,V

kEpc Z, (‘/;-I ‘/2) u/pc Elvv
S, (k7 Va: Vi) Vo) e B,V

k € pc 3, (Vi Va) dhpe 2,V
S, (k7 Vi Vi) Va) dpe &,V

27 (J- V) \u/pc 27 L

Value

%(a)

L
deref (X, Vy) if k € pc
deref (X, V1) ifk € pc

(k7 deref (X, V) : deref (X, V1)) otherwise

Store
Slai= (pe?V: S(a))]
h

> where 31 = assign(X, pcU{k}, Vi, V)
and X' = assign(X;,pcU{k}, Vi, V)

[F-REF]

[F-DEREF]

[F-ASSIGN]

[F-READ]

[F-READ-IGNORE]

[F-WRITE]

[F-WRITE-IGNORE]

[FA-LEFT]

[FA-RIGHT]

[FA-BOT]




Figure 5: Faceted Evaluation Semantics for Derived Encodings
I 1

2,0,e1 dpe X1,true 31,0, e2 e X,V

F-IF-TRUE
3,0, if e theneg elsees |lpc X',V [ I

3,0, e1 Jpe X1,false 21,0,e3 {pe ¥,V

F-IF-FALSE
3,0, if e theneg elsees |lpc X/, V [ I

%,0,e \U/PC 2/7 1

F-IF-BOT
3,0,if | thenes elsees Jpc X/, L [ I

3,0,e1 dpe 21,(k? Vg : VL)
ey = if Vi then eg else e3
er, = if Vi, then ez else ez
21,0,(k?em rer) dpe T,V
3,0, if e theneg elsees |lpc X/, V

[F-TIF-SPLIT]

of the standard semantics:

L: Value — walue

Lk?Vi:Va)) = { fé“gg ifi;ﬁ
L(c) = ¢
La) = a
L) = L
L((Az.e,0)) = (A\z.L(e), L(O))

We extend L to also project faceted substitutions © € Subst and
stores . € Store into non-faceted substitutions and stores of the
standard semantics. A file f is visible only to view(f), and appears
empty (¢) to all other views.

L: Subst — subst

L(©®) = Xz.L(6(2))
L : Store — store
LX) = Ja. L(X(a))
U Af { S(f) i L = view(s)

We also use a view L to operate on expressions, where this opera-
tion eliminates faceted expressions and also performs access con-
trol on I/O operations by eliminating accesses to files that are not
authorized under that view:

L : Expr (with facets) —  Exzpr (without facets)
L(e ifke L
ko) = { [(e) ihgr

L(read(f)) = j_ead(f) ioftki:rjvils]iewu)

L(write(f.e)) = L(e) otherwise
L(...) = compatible closure

Thus, views naturally serve as a projection from each domain of
the faceted semantics into a corresponding domain of the standard
semantics. We now use these views-as-projections to formalize the
relationship between these two semantics.

A computation with program counter label pc is considered
visible to a view L only when the principals mentioned in pc are
consistent with L, in the sense that:

Vk € pc,k e L
VEk € pe,k & L

write(f, L(e)) if L = view(f)

We first show that the operation ((pc ? Vi : Va)) has the
expected behavior, in that from the perspective of a view L, it
appears to return V; only when pc is visible to L, and appears to
return V> otherwise.

Lemmal. IfV = (pc? V1 : Va)) then

| Vi ifpcisvisible to L
L(v) = { Vo  otherwise

We next show that the auxiliary functions deref and assign
exhibit the expected behavior when projected under a view L.
First, if deref (X, V) returns V", then the projected result L(V”)
is a non-faceted value that is identical to first projecting the store
L(X), projecting the target address L(V), and then dereferencing
the projected store at the projected address L(X)(L(V)).

Lemma 2. [fV' = deref (X, V, pc) then L(V') = L(XZ)(L(V)).

Next, from the perspective of any view L, if pc is visible to L then
the operation assign (X, pc, Vi, V2) appears to update the address
L(V4) appropriately. Conversely, if pc is not visible to L, then this
operation has no observable effect.

Lemma 3. IfY = assign(X, pc, Vi, Vy) then
L) = L(X)[L(Vy) := L(Va)]  if pc is visible to L
— ] L(®) otherwise

A consequence of Lemma 3 is that evaluation with a pc that is
not visible to a view L produces no observable change in the store.

Lemma 4. Suppose pc is not visible to L and that
2,0,ell, 2,V
Then L(X) = L(X).

Proof. In the auxiliary material for this paper.

We now prove our central projection theorem showing that
an evaluation under the faceted semantics is equivalent to many
evaluations under the standard semantics, one for each possible
view for which pc is visible.

Theorem 1 (Projection Theorem). Suppose
2,0,e e X,V
Then for any view L for which pc is visible,
L(%), L(®), L(e) { L(X'), L(V)

Proof. In the auxiliary material for this paper.

Consequently, if pc is initially empty, then faceted evaluation simu-
lates 2" standard evaluations, where n is the number of principals.

3.2 Termination-Insensitive Non-Interference

The projection property enables a very simple proof of non-
interference; it already captures the idea that information from one
view does not leak into an incompatible view, since the projected
computations are independent. To formalize this argument, we start
by defining two faceted values to be L-equivalent if they have iden-
tical standard values for view L. This notion of L-equivalence natu-
rally extends to substitutions (01 ~r ©2) and stores (X1 ~r X2):

(Vi ~p Vo) iff  L(Vi) = L(V2)
(©1 ~1 ©2) iff L(©:) = L(O2)
(B1 ~1 X2) iff L(Z1) = L(Z2)
Together with the Projection Theorem, this notion of L-equivalence

enables us to conveniently state and prove the standard correctness
property of termination-insensitive non-interference.



Figure 6: Efficient Construction of Faceted Values

(e?e:e): PC x Value x Value —  Value
« 0 ? Vn Vo >> = Vn
({k}Urest? (k?Va: V) : (K?Ve:Vy) ) (k7?7 (rest?Vy:Ve) = \ 7] )
({EYUrest? (k?Va:Vp) : (?2Ve:Vy) ) = (k? Ve s ((rest ? Vi Vg ) )
( pe PRV V) (k?Ve: V) ) = (k7?7 (pc?Va:Ve) :+ (pc?Vp:Vg) ) wherek < head(pc)
({ktUrest? (k?Vq: V) : Vo o= (k7 {rest?Vq: Vo) : Vo ) where k < head (V)
({EYUrest? (k?Vq:Vp) = Vo y = (k7 Vo : (rest? Vi Vo) ) where k < head (V)
({k}Urest? Va (k?Va: V) ) = (k7 ((rest? Vi Vo) : |3 Y  where k < head(Vy)
( {E} U rest ? Vn (k?Va: V) ) = (k7 Va : (rest? Vi i V) ) where k < head(Vy)
({k}Urest? Va Vo o= (k7?7 {rest?Vp: Vo)) : Vo ) where k < head(Vy) and k < head(V5)
{{k}Urest? Va : Vo y = (k7 Vo : (rest?Vy : Vo)) ) where k < head(Vy,) and k < head (V)
( pc ?(k?Va: V) ¢ Vo » = (k7?7 {pc?Va:Vo)) (pc?Vp: Vo) ) wherek < head(V,) and k < head(pc)
( pc ? | (k?Va: V) ) = (k7?7 (pc?Vn:Va) (pc?Vn: V4 ) ) wherek < head(Vy) and k < head(pc)
L ]
Theorem 2 (Termination-Insensitive Non-Interference). Let L be straightforward; it performs a case analysis to identify the smallest
any view. Suppose possible label k£ to put at the root of the newly created value.
Yy ~p s $1,01,e Uy S0, Vi The revised definition still satisfies the specification provided by
O ~; Oy $2.0s,¢ g X0, Va Lemma 1.
Then: ) ) .
Y~ Y Vi ~r Vo 4. Comparison to Prior Semantics
o . Prior work presented the no-sensitive-upgrade (NSU) seman-
Proof. By the Projection Theorem: tics [39, 5] and the permissive-upgrade (PU) semantics [6] for
L(%1),L(©1), L(e) | L(Z1), L(Vh) dynamic information flow. In this section, we adapt both of these
L(32),L(©2), L(e) | L(X%), L(V2) semantics to our notation to illustrate how faceted evaluation ex-
The L-equivalence assumptions imply that L(©1) = L(©2) and tends bott}tll (t)ft}tlhese. prlolr teChmqf es- For. clefr}gty, lg thls‘ts?;:(t)lon we
L(Z1) = L(Ss). Hence L(S}) = L(5) and L(Vi) = L(Va) assume that there is only a single principal k& and omi oper-

since the standard semantics is deterministic. |

This theorem can be generalized to computations with arbitrary
program counter labels, but then non-interference holds only for
views for which that pc is visible.

3.3 Efficient Construction of Faceted Values

The definition of the operation (( pc ? V1 : V2 )) presented above is
optimized for clarity, but may result in a suboptimal representation
for faceted values. For instance, the operation (({k} ? (k?1:0) :
2)) returns the faceted value tree (k ? (k7 1:0) : 2) containing
a dead facet O that is not visible in any view. We now present an
optimized version of this operation that avoids introducing dead
facets.

The essential idea is to introduce a fixed total ordering on
principals and to ensure that in any faceted value tree, the path
from the root to any leaf only mentions principals in a strictly
increasing order. In order to maintain this ordering, we introduce
a head function that returns the lowest label in a value or program
counter, or a result co that is considered higher than any label.

head : Value —  Label U {0}
head((k?Vi:Va)) = k
head(R) = oo
head : PC' —  Label U{oco}
head({k} Urest) = k  ifVk ork’ € rest. k <k

k ifVE or &/ € rest. k < k/
[ee]

head ({k} U rest)
head({})

Figure 6 redefines the facet-construction operation to build values
respecting the ordering of labels. The definition is verbose but

ations, since the two prior semantics were formalized under these
assumptions. Finally, we use the optimized facet-construction op-
eration from Figure 6 in order to avoid reasoning about dead facets.

4.1 Comparison to No-Sensitive-Upgrade Semantics

We formalize the NSU semantics via the evaluation relation
2,0,e . 2,V

defined by the [Nsu-*] rules in Figure 7. These rules are somewhat
analogous to the faceted evaluation rules of Figure 4, but with
some noticeable limitations and restrictions. In particular, the NSU
semantics marks each raw value R as being either public or private:

1% R
| (k?7R: 1)

The NSU semantics cannot record any public facet other than
L. The faceted value (k 7 R : L) is traditionally written sim-
ply as RF in prior semantics, denoting that R is private to prin-
cipal k, with no representation for a corresponding public facet.
This restriction on values means that the NSU semantics never
needs to split the computation in the manner performed by the ear-
lier [F-spLIT] and [FA-spLIT] rules. Instead, applications of a pri-
vate closure (k 7 (Az.e,®") : L) extends the program counter pc
with the label £ during the call, reflecting that this computation is
dependent on k-private data. Thus, under the NSU semantics, the
program counter label is simply a set of principals, and never con-
tains negated principals .

pe c PC = 2Label

After the callee returns a result V, the following operation (k)?“V’
creates a faceted value semantically equivalent to (k7 V : L), with

public values
private values



Figure 7: No Sensitive Upgrade Semantics

Figure 8: Permissive Upgrade Semantics (extends Figure 7)

NSU Evaluation Rules:

2,0,edp XV

3,0,cp X, ¢

27 97 T ‘UPC 27 @(‘T)

2,0, (Az.e) §pe 2, (Az.€,0)

E7®7L‘U’Pc 2:7L

27 @7 € ‘upcu{k} Elv \4
5,0, (k7e: L) Uy 3, (R)°V

3,0, e1 dpe 21, (Az.6,0")
21, @7 €2 Upc 227 V,
2,0z :=V'],edp X,V
27 67 (61 62) ‘upc 2,7 V

27 @,61 l}pc 21, 1
21, @762 Upc 227‘/,
27 97 (61 62) ‘U’PC Elv €L

2,0, 61 §pe 1, (k7 (Az.e,0") : L)
217 97 €2 ‘U’pc 227 V/
2, @'[:c = V/], e l)pcu{k} 2/, 1%

3,0, (e1e2) Upe X', (B)PV

2,0,edp TV’
a g dom(%')
V={pc?V':L1)
%, 0, (ref €) Ypc X'[a:=V],a

27 @7 € ‘U’PC 2/7 Va
V = deref (X', Va, pc)
$.0, el 2,V

27@761 ‘UPC ElyL
E176)762 U’pc 227‘/
E7®,€1i=62 ~U«pc 227V

276761 ‘U’Pc El,@

21, @, (5 l)pc 2/, V

pc = label(¥'(a))

Vi={pc?V:Ll)
%,0e1:=¢€2 Jpe Xa:=V'],V

$,0,e1 Upe S1, (k7a: 1)
21,@,62 l)pc EI,V
pc U{k} C label(X' (a))
V'i={pc?V:L)
%,0e1:=€2 Jpe Xa:=V'],V

[NSU-CONST]

[NSU-VAR]

[NSU-FUN]

[NSU-BOT]

[NSU-LABEL]

[NSU-APP]

[NSU-APP-BOT]

[NSU-APP-K]

[NSU-REF]

[NSU-DEREF]

[NSU-ASSIGN-BOT]

[NSU-ASSIGN]

[NSU-ASSIGN-K]

I
PU Evaluation Rules: ‘ 5,0,elp X,V ‘

279761 ‘U’pc 21,(1

31,0, ez Ype >,V

V'i={pc?V:x)
2,0e1:=e2 |pe X[a:=V'],V

[PU-ASSIGN]

¥, 0,e1 pe X1,(k7a: L)
31,0, e2 Ype >,V
Vi={pc?V:x)

2,0e1:=e2 |pe X[a:=V'],V

[PU-ASSIGN-K]

the optimization that the label £ is unnecessary if it is subsumed by
pe or if it is already in V:

(Bt v =V
(kYO R = (k?R:1)
(kyr* (k?7R:1) = (k?R:1)

(This optimization corresponds to the [FA-LEFT] and [FA-RIGHT]
rules of the faceted semantics.)

In order to preserve the NSU restriction on values, the NSU
semantics needs to carefully restrict assignment statements. Es-
sentially, the NSU evaluation rules for assignment statements halt
execution in exactly those situations where the faceted semantics
would introduce a non-trivial public facet. These rules use the fol-
lowing function to extract the principals in a value:

label : Value - PC
label((k?R: 1)) = {k}
label(R) = 0

The rule [Nsu-assIGN] checks that pc is equal to the label on the
original value 3’ (a) of the target location a. If this condition holds,
then the value ((pc 7 V' : L)) stored by [NSU-ASSIGN] is actually
equal to the value ((pc ? V : ¥'(a))) that the faceted semantics
would store. Thus, this no-sensitive-upgrade check detects situa-
tions where the NSU semantics can avoid information leaks without
introducing non-_L public facets. The rule [NSU-ASSIGN-K] handles
assignments where the target address is private (k 7 a : L) ina
similar manner to [NSU-ASSIGN].

Because of these no-sensitive-upgrade checks, the NSU seman-
tics will get stuck at precisely the points where the faceted value
semantics will create non-_L public facets. An example of this stuck
execution is shown in the NSU column of Figure 1. When the value
for y is updated in a context dependent on the confidential value of
x, execution gets stuck to prevent loss of information.

If the NSU semantics runs to completion on a given program,
then the faceted semantics will produce the same results.

Theorem 3 (Faceted evaluation generalizes NSU evaluation).
IfY,0,elpe X,V then$,0,e |, X, V.

Proof. In the auxiliary material for this paper.

4.2 Permissive Upgrades

The limitations of the NSU semantics motivated the development
of a more expressive permissive upgrade (PU) semantics, which
reduced (but did not eliminate) stuck executions [6]. Essentially,
the PU semantics works by tracking partially leaked data, which



Figure 9: Declassification of Faceted Values

I
Declassification Rule
¥,0,ellp X,V
Uuf & pe
V'’ = downgrade (V)
¥, 0,declassifyp e Jpe X, V'

[F-DECLASSIFY]

Downgrade Function

Value

R

Ul 2P 21 : W) : 1)
{uf ? V4 : downgrade p(V2) )

downgrade p : Value

downgrade p(R)

downgrade p((ST ? V1 : V)

downgrade p ((UF ? V1 : Vo)) =

downgrade p((I 7 V1 : Va)) =
(I ? downgrade p (V1) : downgrade p(V2))

o

we represent here as a faceted value (k ? R : ).}

Vo ou= R public values
| (k?7R:1) private values
|

(k7R : %) partially leaked values

Since the public facet is not actually stored, the PU semantics can
never use partially leaked values in situations where the public facet
is needed, and so partially leaked values cannot be assigned, in-
voked, or used as a conditional test. In particular, PU computations
never need to “split” executions, and so avoid the complexities and
expressiveness of faceted evaluation.

We formalize the PU semantics by extending the NSU evalua-
tion relation X, O, e . X/, V with the two additional rules shown
in Figure 8. The new assignment rules leverage faceted values to
handle the complexity involved in tracking partially leaked data.
Specifically, if values are stored to a public reference cell in a high-
security context, the data is partially leaked, and a new faceted
value with a non-_L public facet is created.

Critically, there are no rules for applying partially leaked func-
tions or assigning to partially leaked addresses, and consequently
execution gets stuck at these points, corresponding to the explicit
checks for partially leaked labels in the original PU semantics [6].

Faceted values subsume the permissive upgrade strategy. The
permissive upgrade strategy gets stuck at the points where a faceted
value with a non-_L facet is either applied or used in assignment.

Theorem 4 (Faceted evaluation generalizes PU evaluation).
IfY,0,elpe X', V, then T, 0, e Ly X', V.

Proof. In the auxiliary material for this paper.

Again, the converse to this theorem does not hold, since Figure 1
shows an execution that gets stuck under the permissive upgrade
semantics but not under the faceted semantics.

5. Facet Declassification

For many real systems, non-interference is too strong of a restric-
tion. Often a certain amount of information leakage is acceptable,
and even desirable. Password checking is the canonical example;
while one bit of information about the password may leak, the sys-
tem may still be deemed secure. Declassification is this process of
making confidential data public in a controlled manner.

3In [6], these partially leaked values were represented as RE, with a
superscript P denoting partially leaked.

In the context of multi-process execution [13], declassification
is rather challenging. The L and H processes must be coordinated
in a careful manner, with all of the attendant problems involved
in sharing data between multiple processes. Additionally, allow-
ing declassification may re-introduce timing channels and the ter-
mination channel, losing major benefits of the multi-execution ap-
proach. In contrast, faceted evaluation makes declassification fairly
straightforward. The public and confidential facets are tied together
in a single faceted value during execution, so declassification sim-
ply requires restructuring the faceted value to migrate information
from one facet to another.

Providing a declassification operation with no restrictions in-
validates most security guarantees. For instance, an attacker could
declassify a user’s password, or overwrite data that would be de-
classified later by legitimate code. In this manner, valid code in-
tending to declassify the result of a password check might instead
be duped into declassifying the password itself.

To provide more reliable security guarantees in the presence of
declassification with faceted values, we show how to perform ro-
bust declassification [40], which guarantees that an active attacker,
able to introduce code, is no more powerful than a passive attacker,
who can only observe the results. (We use robust declassification as
an illustrative example, but faceted values could also support other
approaches to declassification.)

Robust declassification depends on a notion of integrity, which
in turn requires that we distinguish between the terms label and
principal. In particular, we introduce a separate notion of principals
(P) into our formalism. A label k then marks data as being secret
(8Y) or as being low-integrity or untrusted (U?), both from the
perspective of a particular principal P *.

P € Principal
k € Label n= gP secret to P
| u”f untrusted by P

In the context of a principal P, we now have four possible views or
projections of a computation, ordered by the subset relation.

5,0}
& (U7}

To help reason about multiple principals, we introduce the notation
Lp to abbreviate LN {s”,U"}, so that Lp is one of the four views
from the above combined confidentiality/integrity lattice. Note that
in the absence of declassification, the projection theorem guaran-
tees that each of these views of the computation are independent;
there is no way for values produced in one view’s computation to
influence another view’s computation.

We introduce an additional expression form declassify, e
for declassifying values with respect to a principal P. The rule
[F-DECLASSIFY] in Figure 9 performs the appropriate robust declas-
sification. Declassification cannot be performed by arbitrary unau-
thorized code, or else attackers could declassify all confidential
data. Moreover, it is insufficient to allow code “owned” by P to
perform declassification, since attackers could leverage that code
to declassify data on their behalf. Hence, the rule [F-DECLASSIFY]
checks that the control path to this declassification operation has
not been influenced by untrusted data, via the check U” ¢ pc.

Robust declassification allows data to move from the {S*'} view
to the {} view, but never from the {S¥, U”'} view to the {UF} view.

4 This security lattice could be further refined to indicate which other prin-
cipal was distrusted by P, which would permit more fine-grained decisions.



That is, secret data can be declassified only if it is trusted. The
downgrade , function shown in Figure 9 performs the appropriate
manipulation to declassify values. The following lemma clarifies
that this function migrates values from the trusted secret view {S%'}
to the trusted public view {}, but not into any other view.

Lemma 5. For any value V' and view L:

L(V) ifLp #{}

L(downgrade ,(V)) = { L'(V)ifLp = {}, where L' = LU {s¥}

Proof. In the auxiliary material for this paper.

In the presence of declassification, the projection theorem does
not hold for the public trusted view {} since that view’s computa-
tion may be influenced by declassified data. However, the projec-
tion theorem still holds for other views. To prove this relaxed ver-
sion of the projection theorem, we extend the standard semantics to
treat declassification as the identity operation:

[S-DECLASSIFY]
o,0,eld,V
0,0,declassifyp el o',V

Theorem 5 (Projection Theorem with Declassification). Suppose
2,0,e Ype XV

For any view L for which pc is visible, and where Lp # {} for
each P used in a declassification operation, we have:

L(2), L(©), L(e) | L(Z'), L(V)

Proof. In the auxiliary material for this paper.

As a result, non-interference also holds for these same views.

Theorem 6 (Termination Insensitive Non-Interference with De-
classification). Suppose Lp # {} for each P used in a declas-
sification operation and

31 ~r 2o ¥1,01,e llp 31, W1

C'_')1 ~L @2 227@2&@@ 2/27‘/2
Then:

i~ X5 Vi ~p Va

Proof. Follows from Theorem 5 via a proof similar to Theorem 2.

6. JavaScript Implementation in Firefox

We incorporate our ideas for faceted evaluation into Firefox
through the Narcissus [15] JavaScript engine and the Zaphod [26]
Firefox plugin. The ZaphodFacets implementation [4] extends
the faceted semantics to handle the additional complexities of
JavaScript. Exceptions are particularly tricky, and we halt execu-
tion if an exception may leak information.

We added two new primitives to the language. The makePrivate
function turns a value into a faceted value with a public facet of
undefined °. This approach allows developers to specify a differ-
ent public value through the JavaScript idiom for specifying default
values. The following code sets x to a faceted value of (k 7 42 : 0).

The high value of x is set to 42, since (42 || 0) === 42;the low
value will be 0, since (undefined || 0) ===
var x = makePrivate(42) || 0;

The second primitive is a getPublic function that extracts the
public value of its input. For example, with the above code defining
X, getPublic(x) would return 0. Generally, the browser’s security

3 A string specifying the principal can be given as the second argument if
multiple principals are required.

policy should use these two functions (or variants) on all input/out-
put boundaries of the system in order to appropriately label data as
it comes in and to appropriately monitor data as it goes out.

To track information flow through the Document Object Model
(DOM), our implementation uses the dom. js DOM implementa-
tion written in JavaScript [17], to preventing the attacker from san-
itizing data by writing it to the DOM and later rereading it. Our im-
plementation is available online with some examples [4], including
the code from Figure 1.

6.1 Cross-Site Scripting (XSS) Example

To illustrate how our controls can be useful for enforcing practical
defenses, we consider an example of a webpage with an XSS
vulnerability. Our controls do not prevent XSS attacks. Rather, they
provide an additional layer of defense, reducing an attack’s power.

We specify a simple policy that the value of all password ele-
ments should be treated as confidential. Furthermore, any attempts
to load files from a different origin should use the public facet; the
server hosting the website, however, should see the true value.

In our example, the web developer is making use of a library
for hashing passwords on the client side. The library is benign,
but an attacker uses an XSS vulnerability in the page to wrap the
hashing library and export the password to evil. com, a site under
the attacker’s control. The injected code is given below:

var oldHex = hex_md5;
hex_md5 = function(secret) {
var baseURL = "http://evil.com/";
var img = document.getElementById ("spock");
var titlel = document.getElementById("titlel");
titlel.setAttribute("class", secret);
var newVal = document.getElementsByTagName ("h1") [0]
.getAttribute ("class");
img.setAttribute ("src", baseURL + newVal + ".jpg");
return oldHex(secret);

}

The attack attempts to leak the password by loading an image
from evil.com, incorporating the password into the name of the
requested image. However, in an attempt to evade our controls,
it first writes the password to the class attribute of the titlel
element and then rereads it from the first h1 element. Without
knowledge of the DOM structure of the page, it is not possible to
know whether this code leaks information. However, with dom.js
we persist the different facets of secret to the DOM so that no
security information is lost. While the page can only render a single
facet, it is critical that we maintain other views of the document.

With this example, evil.com sees only the public facet of
secret, not the true password. Trusted same-origin sources do see
the true value, and therefore work correctly with the page.

While our example policy is far from complete, we use it to
illustrate how our mechanism can enforce different information
flow policies. A richer policy could specify a variety of fields and
potential output channels. Furthermore, we imagine that browsers
would wish to allow web developers to specify application-specific
sensitive fields, such as credit card numbers, and allow users to
protect information that they considered confidential (for instance,
restricting the release of geolocation information).

6.2 Performance Results

Our approach is similar to Devriese and Piessens’s work on secure
multi-execution [13]. To understand the performance tradeoff be-
tween these two approaches we also implemented both sequential
and concurrent versions of secure multi-execution in Narcissus, and
compared their performance to faceted execution.

Our tests were performed on a MacBook Pro running OS X ver-
sion 10.6.8. The machine had a 2.3 GHz Intel Core i7 processor
with 4 cores and 8 GB of memory. For our benchmark, we used



Figure 10: Faceted Evaluation vs. Secure Multi-Execution
I 1

Times in ms

Secure multi-execution Faceted

# principals sequential concurrent | execution
0 273,774 283, 450 310, 561
1 513, 561 283, 503 348,725
2 961, 357 332,303 387,121
3 1,783,609 597,595 421, 566
4 3,324,480 1,093, 951 461, 543
5 * 1,981,927 503, 364
6 * * 540, 618
7 * * 575,100
8 * * 614, 150

A result of “*” indicates a test that ran for more than one hour.

the crypto-md5 test from the SunSpider [38] benchmark suite. We
modified this program to include 8 hashing operations with some
inputs marked as confidential. Our test cases involve O through 8
principals. In each case, every principal marks one element as pri-
vate; additional hash inputs are public. For example, test 1 hashes 1
confidential input and 7 public inputs. Test 8 hashes 8 confidential
inputs, each marked as confidential by a distinct principal, and has
no public hash inputs. Our results are summarized in Figure 10.

Our results highlight the tradeoffs between the different ap-
proaches. The sequential variant of secure multi-execution had the
most lightweight infrastructure of the three approaches, reflected in
its good performance when there are O principals. However, it can
neither take advantage of multiple processors nor avoid unneces-
sary work. As a result, once even a single principal was involved,
it was the worst performer. The time required roughly doubles with
each additional principal.

Concurrent secure multi-execution outperforms our faceted
evaluation implementation when the number of principals is small.
However, as the number of principals increases, faceted evalua-
tion quickly becomes the more efficient approach, since under se-
cure multi-execution the number of processes increases exponen-
tially compared to the number of principals. With three principals,
faceted evaluation outperforms concurrent secure multi-execution
in our tests. Beyond this point execution time for concurrent secure
multi-execution roughly doubles with each added principal, as the
elements in the lattice now outnumber the available cores.

7. Related Work

A few publications have discussed performing multiple executions
to guarantee security properties. Capizzi et al.’s shadow execu-
tions [9] develop an approach similar to faceted values for use in
securing information for desktop applications; they run both a pub-
lic and a private copy of the application. The public copy can com-
municate with the outside world, but has no access to private data.
The private copy has access to all private information but does not
transmit any information over the network. With this elegant solu-
tion, confidentiality is maintained. Devriese and Piessens [13] ex-
tend this idea to JavaScript code with their secure multi-execution
strategy, using a high and a low process to protect confidentiality in
a similar manner. Our approach is similar in spirit, though we avoid
overhead when code does not depend on confidential data. Kashyap
et al. [23] clarify some properties of secure multi-execution.

Our semantics are closely related to work by Pottier and Si-
monet [28]. While they prove non-interference statically for Core
ML, their proof approach involves a Core ML? language that has
expression pairs and value pairs, analogous to our faceted expres-
sions and faceted values. Our work departs from theirs in that we

evaluate labeled expressions and values to dynamically guarantee
non-interference, rather than using them to make static guarantees.

Kolbitsch et al. [25] use a similar technique in Rozzle, a
JavaScript virtual machine for symbolic execution designed to
detect malware. Rozzle uses multi-execution (not to be confused
with secure multi-execution) to explore multiple paths in a sin-
gle execution, similar to faceted evaluation. Their technique treats
environment-specific data as symbolic, and explores both paths
whenever a value branches on a symbolic value. The principal dif-
ference, besides the application, is that faceted values represent a
lattice of different views of data, while Rozzle’s symbolic heap val-
ues represent a range of possible values for different environments.

Other research has previously studied information-flow anal-
ysis for JavaScript. Vogt et al. [36] track information flow in
Firefox to defend against XSS attacks. Russo and Sabelfeld [30]
study timeout mechanisms. Russo et al. [32] discuss dynamic tree
structures, with obvious applications to the DOM. Bohannon et
al. [8] consider non-interference in JavaScript’s reactive environ-
ment. Chugh et al. [11] create a framework for information flow
analysis with “holes” for analyzing dynamically evaluated code.
Dhawan and Ganapathy [14] discuss JavaScript-based browser ex-
tensions (JSEs). Jang et al. [21] give an excellent overview of how
JavaScript is used to circumvent privacy defenses.

Information flow analysis largely traces its roots back to Den-
ning [12]. Volpano et al. [37] codify Denning’s approach as a
type system, and also offer a proof of its soundness. Heintze and
Riecke [19] design a type system for their purely functional SLam
Calculus, which they extend to include mutable reference cells,
concurrency, and integrity guarantees. Sabelfeld and Myers [33]
offer an extensive survey of other research on information flow.

Myers [27] discusses JFlow, a variant of Java with security types
to provide strong information flow guarantees. JFlow was the basis
for Jif [22], a production-worthy language with information flow
controls. Birgisson et al. [7] show how capabilities can guarantee
information flow policies. Hunt and Sands [20] describe a flow-
sensitive type system. Russo and Sabelfeld [31] discuss the trade-
offs between static and dynamic analyses in some depth. Le Guer-
nic et al. [18] examine code from branches not taken, increasing
precision at the expense of run-time performance overhead. Shroff
et al. [34] use a purely-dynamic analysis to track variable depen-
dencies and reject more insecure programs over time.

Zdancewic [40] uses integrity labels to provide robust declassi-
fication. Askarov and Myers [2] consider checked endorsements.
Chong and Myers [10] use a framework for application-specific
declassification policies. Askarov and Sabelfeld [3] study a declas-
sification framework specifying what and where data is released.
Vaughan and Chong [35] infer declassification policies for Java
programs. Askarov et al. [1] highlight complications of interme-
diary output channels. Rafnnson et al. [29] buffer output to reduce
data lost from intermediary output channels and termination behav-
ior. King et al. [24] study false alarms caused by implicit flows.

8. Discussion

Information flow non-interference is a tricky security property to
enforce via dynamic monitoring, since it is a 2-safety property:
non-interference can be refuted only by observing two executions
(cmp. Theorem 2). Conversely, a I-safety property can be refuted
by observing a single execution, and so 1-safety properties are
more amenable to dynamic enforcement. From this perspective,
various prior techniques dynamically enforce a 1-safety property
that conservatively approximates the desired 2-safety property of
non-interference, but this conservative approximation introduces
false alarms on implicit flows. Interestingly, our projection property
(Theorem 1) is a 1-safety property that suffices to prove non-
interference (Theorem 2) without introducing false alarms.
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A. Proofs

Lemma 4. Suppose pc is not visible to L and that
2,0,ell, X,V

Then L(X) = L(X').

Proof. We prove a stronger inductive hypothesis, namely that if pc
is not visible to L and

1. 3,0,e e X, Vor
2.5, (Vi Vo) hpe X,V

then L(Z) = L(X').

The proof is by induction on the derivation of 3, 0, e {,. X',V
and the derivation of 33, (V4 V2) J,c ¥/, V, and by case analysis
on the final rule used in that derivation.

e For cases [F-CONST], [F-VAR], [F-FUN], [F-BOT], [F-READ-IGNORE],

and [FA-BOT], & = X', Therefore, L(2) = L(X').

o Cases [F-DEREF], [F-APP], [F-LEFT], [F-RIGHT], [F-WRITE-IGNORE],

[FA-FUN], [FA-LEFT], and [FA-RIGHT] hold by induction.

For cases [F-spPLIT] and [FA-SPLIT], we note that since pc is not
visible to L, neither pc U {k} nor pc U {k} are visible to L.
Therefore these cases also hold by induction.

For case [F-REF], e = ref ¢’. By the antecedents of this rule:

$,0,¢ Uy S,V
a & dom(X")
V"={pc?V':L1)
E/ — Z//[a = V//]

By induction, L(X) = L(X"). Therefore, Va’' where a’ # a,
L(Z)(a’) = L(¥X')(a’). By Lemma 1, ¥'(a) = L. Since
a & dom(X), X(a) = L. Therefore L(X) = L(¥').

For case [F-ASSIGN], e = eq:=¢p. By the antecedents of the
[F-ASSIGN] rule:

2,0,eq Upe X1, V1
217 67 €p \u/pc 227 1%
¥ = assign(Xz, pc, Vi, V)
By induction, L(¥) = L(31) = L(X2). Therefore by
Lemma 3, L(X) = L(X').
For case [F-READ], e = read(f). By the antecedents of this
rule:

3(f) =vw
pc visible to view(f)
Y =3[f = w]

Since pc is not visible to L, L # wiew(f). Therefore,
L(E)(f) = L(E)(f) =«

For case [F-WRITE], e = write(f,e’). By the antecedents of
this rule:

3,0, Jpe X,V
pe visible to view(f)
L' = view(f)
v=L'"(V)
=X =20

By induction, L(X')(f) = L(XZ")(f). Since pc is not visible to
L, L # L'. Therefore, L(X)(f) = L(Z")(f) = L(Z)(f) =

€.

|

Theorem 1. Suppose
2,0,e Uy X,V
Then for any view L for which pc is visible,
L(%), (), L(e) L L(X'), L(V)

Proof. We prove a stronger inductive hypothesis, namely that for
any view L for which pc is visible:

LIS, 0, ¢ pe &,V then L(E), L(O), L(e) | L(Z'), L(V )
2165, (ViVe) U 3,V then L(),00 := L(V2)), ¢
L(Z"), L(V') where L(Vl) (Az.€',0).

The proof is by induction on the derivation of 33, @, e |, %',V
and the derivation of 3, (V1 V2) Jpc ¥/, V, and by case analysis
on the final rule used in that derivation.

e For case [F-CONST], e = c. Since 3,0,¢c |lpc X,c and
L(X),L(©),c ] L(X), ¢, this case holds.
e For case [F-VAR], e = z. This case then holds since 3,0,z |
bye ,0(x) and L(S), L(©), 2 | L(X), L(O(x)).
o For case [F-REF], e = ref e’. Then by the antecedents of the
[F-REF] rule:
2,0,¢ Lp TV’

a & dom(X")
V"={pc?V' :L1)
E/ — E//[a = V//]
V=a

By induction, L(X),L(©),L(e) | L(X"),L(V'). Since
a & dom(X"), a & dom(L(X")). By Lemma 1, L(V") =
L(V"). Since &' = ¥'a := V", L(X) = L(X)[a =
L(V")]. Therefore, by the [s-REF] rule, L(X), L(©),ref e’ |
LX), L(V).

For case [F-DEREF], ¢ = !e’. Then by the antecedents of the
[F-DEREF] rule:

3,0 Jpe X,V
V = deref (X', V', pc)

By induction, L(X), L(©), L(e') | L(X), L(V’). Since V'
must be an address, the bottom value, or a faceted value where
all the nodes are addresses or the bottom value, it must be the
case that L(V") is an address or the bottom value.

*If a = L(V'), then by Lemma 2 L(V) = L(X')(a).
Therefore, by the [s-DEREF] rule, L(X), L(©),L('e") |
L(¥'), L(V).

= If L = L(V’), then by Lemma 2 L(V') = L. Therefore, by
the [s-DEREF] rule, L(X), L(©), L(te’) L L(X'), L(V).

For case [F-ASSIGN], e = (eq:=e¢p). By the antecedents of the
[F-ASSIGN] rule:

27 @7 €a u«pc 217 Vi
21, @7 €y \LJ/PC 227 Vv
' = assign(Xs, pe, Vi, V)

By induction

L(X),L(0©), L(eq) 4 L(21), L(VAh)
L(21)7 L(@)7 L(eb) 4 L(22)7 L(V)

Since V1 must either be an address or a faceted value where all
the nodes are addresses, it must be the case that L(V1) is an
address. Let a = L(V1). By Lemma 3, Va' # a, L(X')(a’) =
L(32)(a’). Also by Lemma 3, L(X')(a) = L(V). Therefore,
by the [s-assiGNTrule, L(X), L(©), L(ea:=¢s) } L(Z'), L(V).



e Forcase [F-FUN], € = Azx.e’. Then 2, ©, Ax.€’ |pc 3, (Az.€’, O) e For [F-WRITE], ¢ = write(f,
and L(X), L(©), L(A\z.e') | L(X), L((Az.€’,©)). This case rule,
holds since L((Az.€¢’, ©)) = (Az.L(e"), L(O)).

e For case [F-APP], e = (eq €p). By the antecedents of the [F-APP]

e’). By the antecedents of this

27 67 el u«pc E”7 Vv
pe visible to view(f)

rule: L' = view(f)
%,0,eq dpe L1, V1 ’U:LI(V)
51,0, e dpe B2, V2 ¥ =Xf = 20(f)0]
Yo, (Vi Va) dpe ',V By induction, L(X), L(©), ¢’ | L(Z"), L(V).
By induction o If L”: L', then L(V) = wv. Since L(X') = L(E”[f
L), L(©), L(ea) | L(%1), L(VA) éég/)(fL)(z‘J)%) it follows that L(X), L(©),write(f,e’) |
L(31), L(©), L(es) | L(%2), L(V2) ’

* Otherwise, L # L'. Therefore L(X') = L(X"), since
L(Z"(f)) = e. Also, it must be the case that L(write(f,e')) =

V1 must be a function, the bottom value (L), or a faceted value
€. Therefore this case holds, since by induction L(X), L(©), ¢’ |

where all the nodes are functions or .

*If (Az.¢’,0) = L(V4), then it holds by induction that
L(32),0[z := L(V2)],e¢’ | L(X'),L(V). Therefore, by
the [s-app]rule, L(X), L(O), L(eq ) 4 L(X"), L(V).

» Otherwise, L = L(V4). By Lemma 4 and the [F-APP-BOT]
rule, it follows that L(X') = L(X2) and L(V) = L.
Therefore L(X2), L(0©), L(eq eb) | L(X'), L(V) by the
[s-aPP-BOT] rule.

e For case [F-LEFT, e = (k 7 eq : €
rule

»). By the antecedents of this

k € pc
27 67611 \u/PC Z:/7 V

Therefore L((k 7 eq : ey)) = L(ea), and this case holds by
induction.

e Case [F-RIGHT] holds by a similar argument as [F-LEFT].

e For case [F-sPLIT], e = (k 7 e, : €p). By the antecedents of the
[F-sPLIT] rule:

E @ €a urpcu{k} Z:17‘/1
2176 €p ii,pcu{k} E VQ
V=_(k?Vi: V2>

» Suppose k € L. Then pc U {k} is visible to L and
VL where L is consistent with , we know that L(e) =
L(eq) and L(V1) = L(V). By induction we know that
L(X),L(©),L(es) 4 L(X1),L(V). Therefore Lemma 4
implies L(31) = L(X'),

= Conversely suppose k& ¢ L. Then pc U {k} is visi-
ble to L and L(e) = L(ep) and L(V2) = L(V). By
Lemma 4 we know that L(X) = L(31). Therefore,
L(21), L(©), L(es) 4 L(X'), L(V) by induction.

e For case [F-BOT], e = L. Since ¥,0, 1L ||, 3,1 and
L(%),L(©), L | L(X), L, this case holds.
e For [F-READ], e = read(f). By the antecedents of this rule,

3(f) =vaw
L' = view(f)
pe visible to L'
pd =L U{k|k¢gL'}
S = S[f = )
V={pd?v:L1)

» If L = wview(f), then L(V) = v. This case holds since
L(%), L(©), read(f) | L(X),v
= Otherwise, L # view(f). Therefore L(X) = L(X') since
L(X(f)) = €. Also, L(e) = L and L(V') = L. Therefore,
this case holds since L(X), L(©), L | L(X), L.
¢ For [F-READ-IGNORE], ¢ = read(f). By the antecedent of this
rule, pc not visible to view(f). Therefore, L(e) = L. Since
3,0, read(f) dpe B, L and L(X), L(O), L | L(X), L, this
case holds.

L(Z"), L(V).
For [F-WRITE-IGNORE], ¢ = write(f,
of this rule,

e’). By the antecedents

2,0¢ Jpe X,V
pc not visible to view(f)

Therefore, L(e) = L(e’) By induction, L(X), L(0),¢" |
LX), L(V).
e Both cases [FA-LEFT] and [FA-RIGHT] hold by induction.
For case [FA-FUN], we have (by the antecedent of this rule)
3,0z := Vo], e’ Ype X', V. Therefore, it holds by induction
that L(X), L(O[z := L(V2)]), L(e') | L(Z"), L(V).
For case [Fa-sPLIT], we know that Vi = (k 7 V, : V4). By the
antecedents of the rule:

k & pe,k & pe
27 (Va V2) u«pcu{k} E17 Va,
E17 (Vb ‘/2) ufpcu{E} El7 Vb/

As in the [F-SPLIT] case, we consider two separate cases.
= Suppose k € L. Then pc U {k} is visible to L and L(V')
L(V)). Then L(X),0[z := L(Va2)],e’ | L(Z1),L(V)
by induction where L(V,) = (Az.¢’,0). By Lemma 4,
L(Z1) = L(X).
= Suppose k& ¢ L. Then pc U {k} is visible to L and
L(V) = L(V}). By Lemma 4, L(X) = L(X:). By in-
duction, L(%1),0[z := L(Va)],e’ | L(X'), L(V) where
L(V,) = (\z.€,0).
For case [Fa-BOT], V1 = L. Since L(L) # (Az.¢’,0), this case
vacuously holds.

|

Theorem 3. If%,0,¢e |pc &',V then 3,0, e [,c X', V.

Proof. The proof is by induction on the derivation of 3,0, e |,
¥,V and by case analysis on the final rule used in that derivation.

e For case [Nsu-coNST], e = c. This case then holds since
3,0,c{p X,cand ¥,0, ¢ Y, X, c

e For case [NSU-VAR], ¢ = x. This case then holds since
3,0,z pe 2,0(x) and 2,0,z o T, O(z).

e For case [NSU-FUN], e = Az.e’. This case then holds since
3,0,z Ipe 2, (Az.e’,0)and 2,0,z ||,c T, (Az.€’, O).

e For case [NSU-BOT], ¢ = _. This case then holds since

3,0, 1L {pc X, Land 3, G) L lpe X, L.
e case [NSU-APP]. Then e = (eq €p). By the antecedents of this
rule:
3,0, eq Upe X1, (Az.¢’,0")
217 97 €b ‘U’PC 227 V/
30,0 [z :=V'],e Jpc X,V



By induction:

3,0, eq Ype X1, (Az.¢",0")
217 @7 €p \u/pc 227 %

Therefore, by the [F-APP] rule it is sufficient to show that
Yo, (Az.e’,0) V') Upe X', V. Since ¥2,0" €’ {pe X',V
by induction, this case holds by the [FA-FUN] rule.
e case [NSU-APP-BOT]. Then e = (e, ep). By the antecedents of

this rule:

¥,0,¢eq Upe 21, L

31,0, e dpe T,V

V=1

By induction:

3,0, eq dhpe X1, L

217 @7 €p u«pc 2/7 V,
Therefore, by the [F-apPP] rule it is sufficient to show that
(L V") dhpe X, L, which holds by the [Fa-BOT] rule.

e case [NSU-APP-K]. Then e = (eq ep). By the antecedents of this
rule:
2,00 Upe T1, (k7 Qz.e’,0') 1 L)
217 97 €p ‘U’PC 227 V/
22, @,[1’ = V/], 6, l)pcu{k} Z/, V”
V — <k>]}CVU

By induction:

5,0, 0 Upe S1, (k7 (Mae’, ©') : L)
217 97 €p ~u/PC 227 V/

Therefore, by the [F-app] rule it will suffice to show that
Yo, ((k? (Az.e’,©") : L) V') Ype X/, V.
* If k € pc,then o, ((k ? (Az.e’,0") : L) V') Lpe =", V"
by the [Fa-LEFT] rule. By the [Fa-FUN]rule, 3o, O'[z := V'], €’ |
dIpe ", V" By induction, ¥ = ¥" and V' = V"”. Since
V =(k)?(k?V":1)=V" itholds that V"' = V.
= Otherwise, by the [FA-sPLIT] rule:

Yo, (Az.e’,0) V') Ype T3, V3
237 (J- V/) ~u/PC 247 ‘/21
Va= (K27Vs: Vi)

By induction, X3 = ¥’ and V3 = V. By the [Fa-BOT] rule,
¥4 =" and V4 = L. Therefore, Vs = {(k?V" : L) =
(k)PV" =V,
e case [NSU-LABEL]. Then e = (k 7 ¢’ : L). By the antecedent of
this rule:
27 @7 e ‘uku{pc} El7 Vv’
V = (k)*V'
By induction, 2, ©, ¢’ | ,cuqry X, V.
» If k € pc, then pc U {k} = pc and V = V. Therefore, by
the [F-LEFT] rule, 32,0, (k7€' : L) |, X', V.
= Otherwise, k & pc and k & pc. Therefore V = (K ? V' :
1). By the [F-BoT] rule, 3,0, L Hpeu 5y Y, L. There-
fore,¥,0, (k7 e’ : L) lpeugry X', V by the [E-spLiT] rule.
e case [NSU-REF]. Then e = ref ¢’. By the antecedents of this
rule:
3,0¢ Ype X1, V'
a & dom(X1)
Y =%a:={pc? V' : L)
By induction, ¥, 0,¢" ||, ¥1,a. Without loss of generality,
we assume that both executions allocate the same address a.
Therefore, 3, ©, ref €’ ||, X', a by the [F-REF] Tule.
e Case [NsU-DEREF]. Then e = !¢’. By the antecedents of this
rule:
2,0¢ Jpe XV,
V = deref (X', a,pc) = X'(a)

By induction, 2, 0,¢’ |{pc X', a. Therefore 3,0, e’ [|p
¥,V by the [DEREF] rule.
® case [NSU-ASSIGN]. Then e = e, :=¢p. By the antecedents of
this rule:
3,0,eq dpe 21,0
Z:17 67617 ‘U’Pc Z:27 |4
pc = label(X2(a))
Vi={pc?V:L1)
Y =%sa:=V]
By induction:
3,0,eq dpe 1,0
217 67 €p u«pc 227 1%
» If pc = {}, then since assign(Xz,{},a, V) = Xsla =
V]itfollows that 3, ©, e, :=ep {pc X', V by the [F-ASSIGN]
rule.
= Otherwise, pc = {k} and Z2(a) = (k ? V" : 1).
Since assign(Xs,{k}, a, V) = Xz[a := V'], it holds that
¥,0,eq:=€p Ypc X,V by the [F-ASSIGN] rule.
® case [NSU-ASSIGN-BOT]. Then e = e, : = ep. By the antecedents
of this rule:
3,0,eq dpe X1, L
21, @, €p l)pc E/, V
By induction:
27 @7 €a inc 217 L
217 @7 €p ~u/PC 2/7 Vv
Since &' = assign(X’, pc, L, V), this case holds by the
[F-ASSIGN] rule.
case [NSU-ASSIGN-K]. Then e = e, : = €. By the antecedents of
this rule:

3,0,eq Ype 1, {(k7a: L)
21, @, €p l)pc 22, |4
pc U {k} = label(X2(a))
Vi={pcU{k}?V:L)
E/ = Ez[a = V’]
By induction:

3,0,eq Ybpe X1,(k?7a: L)
z:17@7617 \LJ/PC EQ,V

Let =" = assign(Xe,pc,(k?a: L), V) = Xsla := V"]
where V' = {({k} 7V : X2(a))). Since it must be the case
that ¥a(a) = (k ? Voua : L), V" = (k? V : L). Therefore,
3,0, eq:=¢p Ype X, V by the [F-assiGN] rule.

|

Theorem 4. IfX, 0, ¢ |yc X', V, then $,0, € e X, V.

Proof. The proof is by induction on the derivation of 3,0, e {p¢
%',V and by case analysis on the final rule used in that derivation.

e Cases [NSU-CONST], [NSU-VAR], [NSU-FUN], [NSU-BOT], [NSU-APP],
[NSU-APP-BOT], [NSU-APP-K], [NSU-LABEL], [NSU-REF], and [NSU-DEREF],
hold by the same argument as in the proof for Theorem 3.

e Case [PU-ASSIGN]. Then e = e, :=eyp. By the antecedents of
this rule:

3,0,eq dpe 21,0

217 67 €p l}pc 227 1%

V'={pc?V :32(a)))

E/ = Ez[a = V’]
By induction:

27 67 €a inc 217 a

217 97 €b \LJ/PC 227 v
Since assign(Xz,pc,a, V) = Xola := V"] where V"' =
{(pc?V : 3a(a)) = V', it follows that =, 0, eq:=e€p Jpe
Y,V by the [F-ASSIGN] rule.



e case [PU-ASSIGN-K]. Then e = e, :=¢p. By the antecedents of
this rule:
3,0,eq Ype 1, {(k7a: L)
21, @,eb l)pc 22, V
V' ={pc?V : Sigmaz(a)))
¥ =Ysfa:=V]
By induction:
2,0, €0 bpe S0, (k?a: L)
217 67 €p \u/pc 227 1%
Since assign(Xz, pc,(k? a: L), V) = Xs[a := V"] where
V" = {pc?V :Xz(a)), it follows that =, 0, eq:=€p Hpe
Y.V by the [F-AssIGN] rule.

|

Lemma 5. For any value V' and view L:

L(V) ifLp #{}
L(downgrade,(V)) = { L'(V)if Lp = {}, where L' = L U {sF'}

Proof. The proof is by induction and case analysis on V.

e Case V = r holds since downgrade () = r.
eCase V= (s”?2Vi : Vo). Let V/ = downgrade,(V) =
P2 P21 R) A,
2 Ifs¥ € L, then L(V) = L(V1) = L(V').
» IfUP € Land S¥ ¢ L, then L(V) = L(V2) = L(V").
= Otherwise UT ¢ L and S¥ ¢ L. Then L' (V) = L(V1) =
L(V").
e Case V= (U7 ?V; : V). Let V/ = downgrade (V) =
(U® ? V4 : downgrade »(V2) ).
2 If U7 € L, then L(V) = L(V4) = L(V').
= Otherwise, L(V') = L(V2). Then this case holds by induc-
tion.

e Case V = (I 7 V1 : V2) holds by induction.

Theorem 5. Suppose

%,0,e Ype X,V
For any view L for which pc is visible, and where Lp # {} for
each P used in a declassification operation, we have:

L(%), L(©), L(e) L L(X'), L(V)

Proof. The proof is by induction on the derivation of ¥, ©,e ¢
%',V and case analysis on the last rule used in that derivation.

e Cases [F-CONST], [F-VAR], [F-REF], [F-DEREF], [F-ASSIGN], [F-FUN],
[F-APP], [F-LEFT], [F-RIGHT], [F-SPLIT], [F-READ], [F-READ-IGNORE],
[F-WRITE], [F-WRITE-IGNORE], and [F-BOT] hold by a similar ar-
gument as in the proof for Theorem 1.

e For case [DECLASSIFY], ¢ = declassify, e’. Then by the
antecedents of this rule:

3,0 Jpe X,V
" & pe
V = downgrade (V")
By induction:
L(%), L(©), L(e") L LX), L(V")

By Lemma 5, L(downgrade (V') = L(V') = L(V).



