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Abstract. General refinement types allow types to be refined by pred-
icates written in a general-purpose programming language, and can ex-
press function pre- and postconditions and data structure invariants.
In this setting, with expressive and possibly verbose types, type recon-
struction is particularly valuable, yet typeability is undecidable because
it subsumes type checking. Using a generalized notion of type recon-
struction, we present the first type reconstruction algorithm for a type
system with base types refined by abitrary program terms. Our algorithm
is a typeability-preserving transformation and defers type checking to a
subsequent phase. The algorithm generates and solves a collection of
implication constraints over refinement predicates, inferring maximally
precise refinement predicates in a largely syntactic manner that is remi-
niscent of strongest postcondition calculation. Perhaps surprisingly, our
notion of type reconstruction is decidable even though type checking is
not.

1 Introduction

A refinement type, such as {z:Int |z > 0}, describes the set of terms of type Int
satisfying the refinement predicate x > 0. Refinement types [13] significantly ex-
tend the expressive power of traditional type systems and, when combined with
dependent function types, can document expressive function pre- and postcon-
ditions, as well as data structure invariants.

In the language A7 [10], refinement predicates are unrestricted boolean ex-
pressions, and so, for example, any computable set of integers can be described by
a M type. Type checking requires proving implications between refinement pred-
icates, such as that the postcondition of one function implies the precondition
of another. Since the language of refinement predicates is A itself, implication
is undecidable, and hence so is type checking.

Hybrid type checking [10] circumvents this decidability limitation by passing
each implication to a theorem prover that tries to prove or refute the implica-
tion, but also may give up and return “maybe,” resulting in an inserted run-time
check. The SAGE language implementation demonstrates that hybrid type check-
ing interacts comfortably with a variety of typing constructs, including first-class
types, polymorphism, recursive data structures, as well as the type Dynamic, and
that the number of inserted casts for some example programs is low or none [15].



But even for small examples, writing explicitly typed terms can be tedious,
and would become truly onerous for larger programs. To reduce the annota-
tion burden, many typed languages — such as ML, Haskell, and their variants —
perform type reconstruction, often stated as: Given a program containing type
variables, find a replacement for those variables such that the resulting program is
well-typed. If there exists such a replacement, the program is said to be typeable.
Under this definition, type reconstruction subsumes type checking. Hence, for
expressive and undecidable type systems, such as that of \¥, type reconstruction
is clearly undecidable.

Instead of surrendering to undecidability, we separate type reconstruction
from type checking, and define the type reconstruction problem as: Given a pro-
gram containing type variables, find a replacement for those variables such that
typeability is preserved. In a decidable type system, this definition coincides with
the previous one, since the type checker can decide if the resulting explicitly-
typed program is well-typed. The generalized definition also extends to unde-
cidable type systems, since alternative techniques, such as hybrid type checking,
can be applied to the resulting program. In particular, type reconstruction for
M is now decidable!

Our approach to inferring refinement predicates is inspired by techniques
from axiomatic semantics, most notably the strongest postcondition (SP) trans-
formation [2]. This transformation supports arbitrary predicates in some spec-
ification logic, and computes the most precise correctness predicate for each
program point. It is essentially syntactic in nature, deferring all semantic rea-
soning to a subsequent theorem-proving phase. For example, looping constructs
in the program are expressed simply as fixpoint operations in the specification
logic.

In the richer setting of A¥, which includes higher-order functions with de-
pendent types, we must infer both the structural shape of types and also any
refinement predicates they contain. We solve the former using traditional type
reconstruction techniques, and the latter using a syntactic, SP-like, transforma-
tion. Like SP; our algorithm infers the most precise predicates possible.

The resulting, explicitly-typed program can then be checked by the A com-
pilation algorithm [10], which reasons about local implications between refine-
ment predicates. If the compilation algorithm cannot prove or refute a particular
implication, it dynamically enforces the desired property via a run-time check.
These dynamic checks are only ever necessary for user-specified predicates; in-
ferred predicates (which may include existential quantification and fixpoint op-
erations) are correct by construction.

The following section reviews the syntax, semantics, and type system of A7
Section 3 formalizes and discusses the type reconstruction problem, which we
reduce to satisfiability of a set of subtyping constraints in Section 4. Sections
5 and 6 then explain how we solve these constraints via shape reconstruction
followed by predicate inference. Section 7 states and proves correctness of the
reconstruction algorithm. The remaining sections are dedicated to related work
and concluding remarks.



Figure 1: Syntax and Semantics
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2 A Review of \H

The language A\ [10] is an extension of the lambda-calculus with dependent
function types and refined base types; see Figure 1 for the complete syntax and
operational semantics. In the dependent function type x:S — T, the argument
x is bound in the return type T. (This notation is preferred to the equivalent
IIz : S.T). In a refined base type {z: B |t}, B is a base type such as Int or Bool,
and ¢ is a boolean predicate over z. Informally, {z: B|t} is the subset of B for
which the predicate ¢ holds

Types have an operational interpretation via run-time casts: The term (S >
T) t attempts to cast ¢ from type S to type T. A cast to a refined base type is
checked by evaluating the refinement predicate, while a cast to a function type
is split into a delayed cast on the function’s input and another on the function’s
output.

We assume some countable alphabet of constants ¢, each with an associated
semantic function [¢] that is applied when ¢ is in the function position of an
application. These constants include, for each type T, a fixpoint operator fixyp
that computes the least fixed point of a function ¢ : T'— T, enabling unrestricted
recursion:

[fixr](t) = t (fixp t)



Figure 2: Type Rules
I
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The typing rules for A\ are reproduced in Figure 2. Each constant ¢ is as-
signed a type ty(c) by rule [T-Const]; the axioms on constants, recalled in Ap-
pendix A, ensure that ty(c) and [c] uphold type soundness. The type of a
variable is extracted from the environment by rule [T-Var] and functions are
assigned dependent function types by rule [T-Fun]. For an application t; t9, the
rule [T-AppP] checks that ¢; has a dependent function type z:S — T and that
to has type S. The application is then assigned the type T'[x := to : S], which is
T with the concrete argument t, substituted for the argument variable z. The
substitution is annotated with the argument type S to aid type reconstruction.

Typing of A" is based on subtyping, which utilizes an implication judgement
between refinement predicates, rendering subtyping undecidable. The implica-
tion judgement E F s = ¢ is defined by rule [Imp], which reads: term s implies



term ¢ in environment F if, for any substitution o on the variables bound in F
that is consistent with the types of those variables in E, o(p) —™* true implies
o(q) —™ true. For example, = : Int F (z > 1) = (z > 0), because for any
integer 4 chosen to substitute for x, whenever (i > 1) evaluates to true, so does
(i > 0).

3 Type Reconstruction

For the type reconstruction problem, we extend the type language with type
variables o € TyVar. Type reconstruction yields a function 7 : TyVar —
Type, here called a type replacement. Application of a type replacement is lifted
compatibly to all syntactic sorts, and is not capture avoiding.

The three phases of type reconstruction proceed as follows:

1. The input program is processed to yield a set C' of subtyping constraints of
the form E + S <: T (the same as the subtyping judgement).

2. The shape reconstruction phase then reduces C into a set P of implica-
tion constraints, each of the form F + p = ¢ (the same as the implication
judgement).

3. The last phase of type reconstruction solves P.

3.1 Delayed Substitutions

To facilitate our development, we require that the language be closed under sub-
stitution. But a substitution cannot immediately be applied to a type variable,
so each type variable o has an associated delayed substitution 6 (which may be
empty).
T 2= -+ | 0-«
0 == []]| [z:=t:T]6

The usual definition of capture-avoiding substitution is extended to type vari-
ables, which simply delay that substitution:

O-a)r:=s:T) = ([x:=5:T),0) -«

When a type replacement is applied to a type variable o with a delayed
substitution 6, the substitution 7 () is immediately applied to 7(«):

7(0-a) = m(0)(r(a))

4 Constraint Generation

The constraint generation judgement E ¢ : T & C is defined in Figure 3 and
reads: term ¢ has type T in environment F, subject to the constraint set C. Each
rule is derived from the corresponding type rule, with subsumption distributed
throughout the derivation to make the rules syntax-directed.



Figure 3: Constraint Generation Rules
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For a type replacement m, if 7(C') contains only valid subtyping relationships,
then 7 satisfies C. When applied to a typeable A\ program, the constraint
generation rules emit a satisfiable constraint set. Conversely, if the constraint
set derived from a program is satisfiable, then that program is typeable.

Lemma 1. For any environment E and term t:

EFt:S5&C

. /
In, T. n(E) - w(t) : n(T) = dn’, S, C. {ﬂ, satisfies C

Proof outline: Each direction proceeds by induction on the respective derivation.
(All complete proofs are included in Appendix C.) O

Consider the following A term t (the expression let z : T = s in t is
syntactic sugar for (Az:T.t) s).

let id: (z:ap — a2) = Az:ag.x in
let w:{n:Int|n=0}=01in
let y: {n:Int|n >w}=31in
id (id y)
Eliding some generated type variables for clarity, the corresponding con-
straint generation judgement is

ght:z:=>Gdy): 0] az & C



where C' contains the following constraints, in which T;y = (x: a1 — a2) and
T, ={n:Int|n > w}:

g F T:o3 — Q3

id:Tyq F {n:Int|n =0}

id: Tigy, w:{n:Int|n=0} F {n:Int|n =3}
id:Tyq, w:{n:Int|n=0},y: T, F {n:Int|n>w}
id:Tyg, w:{n:Int|n=0}y: Ty F [z:=y:ai1]

Tio — Qg
{n:Int|n =0}
{n:Int|n > w}
a1
a1

NNNDNDND

5 Shape Reconstruction

The second step of reconstruction is to infer a type’s basic shape, ignoring re-
finement predicates. To defer reconstruction of refinements, we introduce place-
holders v € Placeholder to represent unknown refinement predicates (in the
same way that type variables represent unknown types) Like type variables,
each placeholder has an associated delayed substitution.

t = |0y

A placeholder replacement is a function p : Placeholder — Term and is lifted
compatibly to all syntactic structures. As with type replacements, applying
placeholder replacement allows any delayed substitutions also to be applied.

[z:=t:T)(0-v)=([x:=t:T],0) -~
p(0-7) = p(0)(p(7))

The shape reconstruction algorithm, detailed in figure 4 takes as input a sub-
typing constraint set C' and processes the constraints in C' nondeterministically
according to the rules in Figure 4. When the conditions on the left-hand side of
a rule are satisfied, the updates described on the right-hand side are performed.
The set P of implication constraints, each of the form E F p = ¢, and the type
replacement 7 are outputs of the algorithm. For a placeholder replacement p, if
p(P) contains only valid implications, then p satisfies P.

Each rule in Figure 4 resembles a step of traditional type reconstruction.
When a type variable o must have the shape of a function type, it is replaced by
T:aq — g, where ap and as are fresh type variables. The function occurs checks
that o has a finite solution, since A¥ does not have recursive types. Occurences of
« which appear in refinement predicates or in the range of a delayed substitution
are ignored — these occurences do not require a solution involving recursive types.

occurs(a, {x:B|t}) = false
occurs(a, 0 - o) = false (a# o)
occurs(a, 0 - a) = true
)

occurs(a,z:S — T) = occurs(a, S) V occurs(o, T)

When a type variable must be a refinement of a base type B, the type variable
is replaced by {z:B|~} where « is a fresh placeholder. A subtyping constraint



Figure 4: Shape Reconstruction Algorithm
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between two function types induces additional constraints between the domains
and codomains of the function types. When two refined base types are con-
strained to be subtypes, a corresponding implication constraint between their
refinements is added to P.

The algorithm terminates once no more progress can be made. At this stage,
any type variables remaining in 7 (C) are not constrained to be subtypes of any
concrete type but may be subtypes of each other. We set these type variables
equal to an arbitrary concrete type to eliminate them (the resulting subtyping
judgements are trivial by reflexivity).

Lemma 2. For a set of subtyping constraints C, one of the following occurs:

1. Shape reconstruction fails, in which case C is unsatisfiable, or
2. Shape reconstruction succeeds, yielding m and P. Then P is satisfiable if and
only if C' is satisfiable. Furthermore, if p satisfies P then p or satisfies C.

Proof outline: Each step maintains the invariant that C is satisfiable if and only
if 37, p such that p satisfies P and p o #’ o 7 satisfies C. O
Returning to our example, shape reconstruction returns the type replacement

m=[ar:={n:Int|n}, as:={n:Int|y}, as:={n:Int|y3}]

and the following implication constraint set P, in which T;y = :{n:Int |y} —
{n:Int|vs} and T, = {n:Int|n > w}:



n:Int F Y1 = V3
z:{n:Int |y}, n:Int F Y3 = Y2
id:Tig, n:Int F (n=0) = (n=0)
id:Tig, w:{n:Int|n=0}, n:Int - (n=3) = (n>w)
id:Tig,w:{n:Int [ n=0}, y: Ty, n:Int - (n>w) = m
id: Tig,w : {n:Int [n =0}, y: Ty, n:Int F [z:=y:{n:Int|n}]-y2=m

6 Satisfiability

The final phase of type reconstruction solves the residual implication constraint
set P by finding a placeholder replacement that preserves satisfiability.

Our approach is based on the intuition that implications are essentially data-
flow paths that carry the specifications of data sources (constants and function
post-conditions) to the requirements of data sinks (function pre-conditions), with
placeholders functioning as intermediate nodes in the data-flow graph. Thus, if
a placeholder v appears on the right-hand side of two implication constraints
EtFp= ~and FF q =, then our replacement for - is simply the disjunction
p V q (the strongest consequence) of these two lower bounds. Our algorithm
repeatedly applies this transformation until no placeholders remain, but several
difficulties arise:

1. p or ¢ may contain variables that cannot appear in a solution for ~y
2. v may have a delayed substitution
3. 7 may appear in p or q

To help resolve these issues, we extend the language with the following terms.
s,t€Term w= -+ | tVE | tAt | Jz:T. ¢t

The parallel disjunction t; V to (respectively conjunction ¢; A t2) evaluates
t1 and t2 nondeterministically, reducing to true (resp. false) if either of them
reduces to true (resp. false). The existential term 3z : T. ¢ binds z in ¢, and
evaluates by nondeterministically replacing x with a closed term of type T'. The
evaluation rules are summarized in Figure 5.

6.1 Free Variable Elimination

In our example program, the type variable a; appeared in the empty environ-
ment and m(a;) = {n:Int |71}, so the solution for v; should be a well-formed
boolean expression in the environment n : Int. The only variable that can ap-
pear in a solution for 7y; is therefore n. But consider the following constraint
over 7:

id:Tyg, w:{n:Int|n =0}, y: Ty, n:Int - (n>w)=m



Figure 5: Additional Evaluation Rules

trueV¢ — true [E-OR-L] false A\t — false [E-AND-L]
tVtrue — true [E-ORr-R] t Nfalse — false [E-AND-R]
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E = - |tVe| eVi| oAt |LNe

Since id, w, and y cannot appear in a solution for -1, we rewrite this constraint
as
n:Inth (Jid:Tig. Jw:{n:Int|n =0} Jy: Ty. n>w) =

In general, each placeholder ~ introduced by shape reconstruction has an
associated environment E. in which it must have type Bool. This gives us a
reasonable definition for the free variables of a placeholder (with its associated
delayed subtitution):

fo(@-v) = (dom(E,) \ dom(0)) U fo(rng(0))

We then rewrite each implication constraint E,y : T F p = ¢ where y € fv(q)
into the constraint £ + (Jy : T. p) = ¢. This transformation is semantics-
preserving:

Lemma 3. Fory ¢ fuv(q), E,y:Ttp=qifand onlyif E- (Jy:T. p) = ¢

Proof outline: 'The single-step evaluations of the existential term are in one-to-
one correspondence with the possible values of y : T"in a closing substitution. O

Repeatedly applying this transformation, we rewrite each implication con-
straint until the domain of the environment (and hence the free variables of the
left-hand side) is a subset of the free variables of the right-hand side.

6.2 Delayed Substitution Elimination

The next issue is the presence of delayed substitutions in constraints of the form
EF p= 0-~. To eliminate the delayed substitution 6 we first split it into an
environment env(#) and a term [6]:

env([]) = @ [[]
env([z :=t:T)],0) =z :T,env(d) [[x:=t:T)],0

I
= (af—t)/\[[Q]]
)

The environment env(#) binds all the variables in dom(#) while the term [6]
represents the semantic content of 6.

We then transform the constraint E - p = 0 -+ into E,env(0) - [0] Ap = ~.
But we can rewrite the constraint even more cleanly: F must be some prefix of
E., since by the previous transformation dom(E) C fv(6 -v) C dom(E,). Any

10



x € dom(0) such that = ¢ dom(E,) can be dropped from 6 and we see that
E,env(0) is then exactly E,. So our constraint is

E,F[0]Ap=~

To prove this transformation correct, we use the following well-formedness
judgement FE ¢ 6 which distinguishes those delayed substitutions that may
actually occur in context FE.

[WF-Ewmpy] [WP-ExT]
E-t: T Ex:Thyt
E byt [] Etwlz:=t:T),0

Lemma 4. Suppose p is a placeholder replacement such that p(E) byt p(6).
Then p satisfies E'+p = 0 -~ if and only if p satisfies E,env(0) - [0] Ap =~

Proof outline: The evaluations of the antecedents of each judgement can be
mapped into the evaluations of the other. [J

6.3 Placeholder Solution

After the previous transformations, all lower bounds of a placeholder v appear
in constraints of the form
Ev F pi =7

for i € {1..n}, assuming 7 has n lower bounds. We want to set v equal to the
parallel disjunction p; V pa V ---V p, of all its lower bounds (the disjunction
must be parallel because some subterms may be nonterminating). However,
may appear in some p; due to recursion or self-composition of a function. In this
case we use a least fixed point operator, conveniently already available in our
language, to find a solution to the equation vy =p; V-V p,.

More formally, suppose E, = x1 : 11, - -, xp : T. Then v is a predicate over
x1---x; and we can interpret it as a function F, : 77 — --- — T}, — Bool. We
use the following notation for clarity:

T —-Bool=T), —»Tp — --- — T} — Bool
MNe:T.t= ey :Ty Aea: Ty - AT t

fe=faray - ap

The function F, can then be defined as the following least fixed point compu-
tation:

Fy = fixp_poor (Af:T — Bool. AZ:T.(p1 V-V pu)ly = f )
Our solution for v is LB(y) = F, Z. This is the strongest consequence that

is implied by all lower bounds of v and is in some sense canonical, analogously
to the strongest postcondition of a code block.

11



Lemma 5. If a placeholder replacement p satisfies P, then p satisfies E,
LB(v) = 7.

Proof outline: For any o such that p(E,) = o, the lemma follows by induction
on the length of the reduction sequence of o(p(LB(Y))) —* true. O

The result of equisatisfiability follows from the fact that we have chosen the
strongest possible solution for ~.

Lemma 6. P is satisfiable if and only if P|y:= LB(7)] is satisfiable.

Proof outline: (=-): Consider any p : PlaceHolders — Terms that satisfies
P. By Lemma 5 if p(y) = p occurs in P, then LB(y) = p(v) = p; covariant
occurences of v in environments are analogous. If p = p(v) occurs in P, then
p = LB(y) by construction of LB(7y); contravariant occurences of types in
environments do not affect satisfiability. [J

In our example, the only lower bound of 3 is 7; and the only lower bound
of 2 is 73, so let us set 3 := 1 and 72 := 73 in order to discuss the more
interesting solution for ~;. The resulting unsatisfied constraints (simplified for
clarity) are:

n:Int b Jw:{n:Int|n=0} (n>w) = 7
n:Int b Jw:{n:Int|n=0}. Jy: {n:Int|n>wh [z =y - 1=

The exact text of LB(y1) is too large to print here, but it is equivalent to

Jw : {n:Int|n =0}. (n >w) and thus equivalent to (n > 0). The resulting
explicitly-typed program (simplified according to the previous sentence’s discus-
sion) is:

let id: (z:{n:Int|n >0} — {n:Int|n >0}) = Az:{n:Int|n > 0}.z in
let w:{n:Int|n =0} =0 in

let y: {n:Int|n >w} =3 in

id (id y)

7 Correctness

The output of our algorithm is the composition of the type replacement returned
by shape reconstruction and the placeholder replacement returned by the sat-
isfiability routine. Application of this composed replacement is a typeability-
preserving transformation. Moreover, for any typeable program, the algorithm
succeeds in producing such a replacement.

Theorem 1. For any A\ program t, one of the following occurs:

1. Type reconstruction fails, in which case t is untypeable, or
2. Type reconstruction returns a type replacement m such that t is typeable if
and only if w(t) is well-typed.

Proof.

12



Case 1: Only shape reconstruction can fail. If it does, then by Lemma 2 the
subtyping constraints are unsatisfiable. Then by Lemma 1, ¢ is not typeable.
Case 2: Type reconstruction solved constraints that were faithful, by Lemma 1.
Thus by Lemma 2 we have m and by Lemma 6 we have p such that (po)(t)

is typeable (well-typed) if and only if ¢ is typeable. O

8 Related Work

Freeman and Pfenning introduced datasort refinements, which express restric-
tions on the recursive structure of algebraic datatypes [13]. Type reconstruction
for the finite set of programmer-specified datasort refinements is decided by
abstract interpretation. Hayashi [16] and Denney [6] explored various logics for
refinement predicates, while Davies and Pfenning [5], and Mandelbaum et al [21]
combined refinements with computational effects. All of these systems require
type annotations, though many perform some manner of local type inference [26].

Xi and Pfenning [28] developed Dependent ML, which uses dependent types
along with indezx types to express invariants for complex data structures such
as red-black trees. Dependent ML solves systems of linear inequalities to infer a
restricted class of type indices. Dunfield [8] combined index types and datasort
refinements in a system with decidable type checking, but the programmer is
required to provide sufficient type annotations to guide the type checking process.

Recently, Ou et al [25] developed a system with dependent types and refine-
ment types where a section of code may be dynamically typed in order to reduce
the annotation burden. For the static dependently-typed portion of a program,
they forbid recursive functions in refinement predicates to ensure decidability of
type checking, and perform no type reconstruction.

Constraint-based type reconstruction for systems with subtyping is a tremen-
dously broad topic, and we cannot fully review it here. The problem is studied in
some generality by Mitchell [22], Fuh and Mishra [14], Lincoln and Mitchell [20],
Aiken and Wimmers [1], and Hoang and Mitchell [18]. Type inference systems
parameterized by a subtyping constraint system are developed by Pottier [27]
and Odersky et al [24]. This paper is complimentary to generalized systems in
that it focuses on the solution of our particular instantiation of subtyping con-
straints; we also do not investigate parametric polymorphism, which is included
in the mentioned frameworks. Set-based analysis presents many similar ideas,
and we draw inspiration from the works of Heintze [17], Cousot and Cousot [4],
Féhndrich and Aiken [9], and Flanagan and Felleisen [11].

The precondition/postcondition discipline for imperative programs dates back
to the work of Floyd [12], Hoare [3], and Dijkstra [7]. General refinement types
apply similar ideas to functional, higher-order, programs. Our transformation of
predicates to infer refinements resembles and is inspired by Dijkstra’s weakest
precondition calculation but is most closely related to the related strongest post-
condition defined by Back [2]. Nanevski et al [23] have introduced another rela-
tionship between axiomatic semantics and type systems with their Hoare Type
Theory, which adds pre- and postconditions to the types of effectful monadic
computation.
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9 Conclusions and Future Work

Refinement type systems are a promising method for expressing precise program
specifications, but many such specifications are not decidable at compile time.
Hybrid type checking offers a practical strategy to enforce undecidable refine-
ment types. This work demonstrates that while typeability for such systems is
undecidable, a generalized notion of type reconstruction is decidable and resem-
bles a natural application of specification techniques for imperative programs in
a declarative context.

The connection with predicate transformations used in the analysis of imper-
ative programs deserves further attention, and one clear avenue of future work is
propagating information “backwards” as in a weakest precondition calculation,
and combining this information with the information we propagate “forwards”,
in order to infer the least type for any term. We infer the strongest possible re-
finement predicates, but in the most precise type for a function, the contravariant
domain has the weakest possible refinement.

Inferred refinement predicates may be large and unsuitable for use in error
messages, much like the verification conditions of axiomatic semantics. Instead
of simply presenting the user with a counterexample to the verification con-
dition, ESC/Java illustrates each warning message with a partial trace of the
program [19]; it may be possible to present similar traces for untypable programs.
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A Semantics of Constants

Assumption 1 (Types of Constants)

1. For all ¢ € Constant, O F ty(c).
2. If Ex-ct : T then §(c,t) is defined and E'+ §(c,t) : T.

3. For all c.c’ € Constant, if ty(c) = {x: B|t} then ¢ = ¢ if and only if
tlz := ] —* true.

4. If ty(c) = {x:Bool |t}, then c € {true, false}.

B Compilation Rules

Subtyping Algorithm + JE <8
[SA-BASE}
x & dom(E) a}—fﬁgE,x:B#tl a€{\,x,?}

a I—g;‘BltZ}) E <: ({z:B|t1})

[SA-ABS]
bl—asllgE<: Sy cl—fng,x:bE <: T x & dom(E) a=b®c

a I—((I?;QHT” E < (z:8 —T)

Compilation of types EFS —>T

[C-BASE}
x & dom(E) E,x:Brt — t : ({y:Bool|s})
Er{z:B|t} — {z:B|t'}

[C—ABST]
x & dom(FE) ErS—S Exz:S+T T
Etr(z:S—T) — (:8 —>T")

Compilation of terms ’E Fs—t:T
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[C—VAR]
(ZIJ . T) cFE [C—CONST]
Etz - ax:T EFc— c: tylc)

[C—ABS}
x & dom(FE) ErS—S Ez:Srt—t:T
EF (Az:S.t) — Ax:5".t) : (z:8 —=1T)

[C-1¥]
Etrty = t;: T, T, = {x:Bool |t}
EF (if ty to t3) — (if t] th th) : (TaUT3)

[C-Cast]
Ert—=t:S Er-T — T
EE(T>t) — (T'>t) : T

[C-APP-OK]
Ebty —t): (:S—T) Ertp—th:8 Jr,E<S
EF (t1 ta) — (t) th) : Tlx = t}]

[C-APP-CHK}
Ebty—t): (2:85—>T) Ebto—th:5 5, E<S
EF(tita) — (8, ((S>t3))) : Tl = t5)]
Join and Meet of types ’Tl Ty, Ty Ny

{z:B|t1}) U ({z:B|te}) ={z:B|(t1 Vta2)}
({m:B\tl})l_l ({ZL’B“ZQ}) = {$B|(t1 /\tg)}
(16251 —>T1)|_|($ZSQ —>T2) :SUZ(Sl HSQ) — (T1 UTQ)
(.1'151 —>T1)|_|(l‘132 —>T2) :.’L‘Z(Sl USQ) — (Tl HTQ)

C Proofs

C.1 Lemmas from [10]

These lemmas are referred to by name.

— Lemma 17: Subtyping is reflexively transitively closed.

— Lemma 18: Substitution:
Suppose E = Ey,x:S,E; and - E and F1 - s : S and 6 is the substitution
[z =s] and E' = Ey,0E,. Then:

17



If EFt: T then B0t : 0T.

If E+T then E' - 0T.

If E+1T1 <:T5 then E' 0T, <: 0T>.

If E+t; = ty then E' F 0t; = 6ts.

If E = (01,2 = s,09) then E' |= (01, 003).

ANl

C.2 Proof of Lemma 1

Both directions of the equivalence are proved by induction on the given deriva-
tion.

Case (=): Suppose 7E + wt : #«T. then 7', S,C.EF t : S & C and 7'w
satisfies C' and 7E + n'nS <: «T.
By induction on the derivation of nE + wt : «T, with this strengthened
hypothesis.

Case [T-APP]:
t=11 ta given
TEFaty Ty — 7l
TEF 7Tt2 : 7TT1

T = TQ[x = tg : Tl]
mE b wty wty 2 (7Ts)[x := wie : T

Ett : 51 & C induction
w7 satisfies C

TE b mnS) < x:nly — 7lh

FE+ tg : SQ & 02

o satisfies Cy

wE b monSy <: w1y

Ebtyty: afz:i=ty: 5] &C [CG-APP]
where C = C1UC,U{EF 51 <: x:52 — a}

« fresh

dom(my) Ndom(my) =0 freshness

dom(m) N{a} =10
dom(me) N{a} =10
let 7' () = [ := 7(T)] o T2

7' (C) = (mnCy) U (mamCs) disjointness
U{rE F mnSy <: x:memSy — 7Tz}

B bzl — 7wy <: x:memSy — wly [S-ArrRow] and reflexivity

TE - mwS] <: x:momSy — wlh transitivity

18



thus /7 satisfies C

m'r(afz =ty : S2]) = w(Ta]x :=t2 : S1])
7EF n'n(afr = t2: S2]) < w(Talx :=ta : T1))

The remaining cases and reverse direction are straightforward. [

C.3 Proof of Lemma 2

Case 1: By inversion of subtyping and lack of recursive types, C' is unsatisfiable.
Case 2: Each step of the algorithm maintains the invariant that C' is satisfiable
if and only if there exists some 7’ and p such that pr’wC contains only valid
subtyping relationships.
When shape reconstruction terminates, 7’ is necessarily empty since all type
variables are eliminated. The aforementioned p also satisfies P by inversion
of [S-Bask].
Then for any other p’ which satisfies P, see that all constraints involving
implication that were satisfied by p are also satisfied by p’ thus p'w satisfies

c.g

C.4 Proof of Lemma 3
Lemma 7. If E,y: S |= o then E = 0|qom(E)-
Proof. By induction on the length of E
Case E = @: By [CS-EmPTY], E = 0.
Case E=x:T,F:

The rule applied is [CS-EXT]

o= (x:=t,0) inversion
gt T
(x:=t)Fy: (z:=t)S o’

(v :=t)F = 0'|gom(p) induction
z:T,FFE (x:=t,0|domr)) [CS-ExT)
which is

E ': U|dom(E) U

Main proof:

Case (=)
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Ey:TFp=q. given
y & fo(q)

Counsider 0 s.t. E =0
and o(Jy : T. p) —* true

For some t s.t. ot : T

o(Jy:T.p) — [x:=t:T]p —" true inversion of —
Let o/ = (o,y :=1)
Ey:TkEd substitution lemma

E-3y:T. p=gq [Imp]

EF3dy:T.p=gq. given
y & fu(a)

Consider o s.t. E,y: T |= o and o(p) —* true
Let o' = J|dom(E)

EkEo Lemma 7
y:T.p—[y:=0c(y)lp [E-EXISTS]
o'(Jy:T. p) — o(p) —" true

o(q) —* true inversion

EFp=gq [Imp] O

C.5 Proof of Lemma 4
Lemma 8. If El=op and ogF = op then E,F = og,0p
Proof. By induction on E:

Case E=@: opF =F Eop
Case E=x:S,E":

og = (x:=s,0) given
ks S
(x:=s)E o
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(x:=s,0)F Eop

0w = 5)F = op v & fo(o')

(x:=98)FE,(v:=s)F =0',0p induction

E,F|=o0c,0p [CS-ExT] O
Lemma 9. If E =0 and E by 0 then o(env(9)) = o(0)

Proof. By induction on 8:

Case 0 =1]: env([])

=0k
Case 0 =[x :=1t:T],0"

Ex:Thyd given
Er-t:T

kot ol subst lemma
Ex:TEoxz:=o0t 8

(0,2 := ot)(env(#)) E (0,2 := at)(') induction
(2= at)(o(env(8)))) = (0,2 == ot)(¢') v ¢ folo)

x0T, (c(env(0")) E (z := ot, 0,2z := ot)(0) [CS-EXT]

which is

o(env(d)) E o(6) O
Main proof:
Case (=):
p satisfies EF-p=0-v given
pE & pp = p0(pv)
pE i pt

Consider any o s.t. pE,env(pd) = o
and o(p([0] Ap)) —* true

o(pp) —* true inversion of [E-TRUEAND]
o([pf]) —* true
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E ': U|d0m(E) Lemma 7
7l gom(r)(pp) = o(pp) —* true

laom(E)(PO(py)) —* true inversion of [IMP]
For z € dom(0),0(x) = (pd)(z) intensional equality
a(py) =o(pf(py)) —" true

pE, env(pf = p([0] A p) = py [Imp]
thus p satisfies E,env(0) F [0] Ap =~

Case (<=):

p satisfies E,env(0) - [0] Ap = v given

pE, env(pd) = p([0] Ap) = py
pE Fwi p

Consider any o s.t. pE E o
and o(pp) —* true
Let o' = (o, pb)

pE, env(pf) = o’ Lemma 8, Lemma 9, and pE Fys pf

o'([0]) —* true intensional equality o’(pp) = o(pp) —* true
o' ([p0] A pp) —* true [E-ANDTRUE]

o'(py) —* true inversion of [IMP]

a(pb(py)) = o'(py) —" true

pE = pp = pd(p) [Tmp]
thus p satisfies EFp=60-~v 0O

C.6 Proof of Lemma 5

We prove the stronger statement: For any p satisfying P and natural number £,
if pE, |= o and op(LB(y)) —* true then o(p(y)) —* true.
Consider all constraints lower-bounding ~:

E,y [ Di =
pEy & ppi = py
Now suppose pE, | o and op(LB(y)) —* true. By induction on k, for

any shorter reduction sequence, the lemma is assumed to hold. In reduction
sequences, type annotations are omitted for brevity.
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Case ~ does not appear in p; (WLOG) and op(p;) —* true:

ap(LB(7))
=fix (\f:= A= p(prly = f) V -++) o(2))

=fix A\f: = AZ:—.pp1 V) o(Z))

—* op(p1)) V- —* true

p(y) —* true known implication

Case No p; such as the above case exists; rather, v appears in p; (WLOG) and

o(pp1ly := LB(y)]) —" true
We know the few forms p; can have, by the way we introduce ~. and we

induct on the structure of p;

Case py =60 -~: Then

a(pp1ly == LB(v)]

= a(p(0)pLB(7))

=o(pf(LB(7y))) —™ true for m < k

Note E byt p(6)

o(pLB(y)) —™ true for m < k substitution lemma
compressing eval of rng(o(6))

a(p(y)) —* true induction

Case py = pj A~: Then again there is a smaller subreduction.

Case p1 = pj V~y: Then either the rhs is a smaller subreduction or by induc-
tion on pj

Case p; = 3z : T. p}: Then by induction on pj O

C.7 Proof of Lemma 6
Lemma 10. For any two predicates s and t, let S and T be the types {z:B| s}
and {x: B |t}, respectively.

Let E=G,f:(x:S—U),H and E' =G, f: (x:T —-U),H

Then E+p=q if and only if E' = p = q

Proof. For any closing substitution o where E |= o, there exists a ¢’ such that
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o' (f)(a) =o(f)(a) whenever @+ a : S
= nontermination otherwise

And E’' = o'. Since each of p and ¢ must be typeable to Bool in either
environment, f can only be applied to values that can have either refinement,
so o(f) and o'(f) have identical behavior in p and ¢q. O

Lemma 11. If p satisfies P and ~ appears in p then pE & pp[y :== LB(vy)] = pp

Proof. Assume that v appears in p, and F = o.
By induction on the structure of how v might appear in p:

Case p=0-~:
pE, - p(LB(v)) = py Lemma 5

pEF 0p(LB(vy) = Opy substitution lemma

Case otherwise: induction I

Lemma 12. If p satisfies P and (E F p = q) € P where v does not appear in
q, then pE'+ p(p[y := LB(v)] = pq

Proof. By monotonicity, Lemma 11 pE + pp[y := LB(7)] = pp.
By transitivity pE & p(ply := LB(v)] = pq

Lemma 13. If p satisfies P and (E,x : {x : B|t},F + p = ¢q) € P then
p(E,x:{x:B|t[y:= LB(Y)|},F)t pp = pq
(covariant function codomains are analogous)

Proof. Note: p(E,z : {z:B|t},F)F pp = pq

p(E,z:{z:B|tl]y:=LB)]},F) o assume
o(p) —* true
0= (O-Evm = saUF)

@k s {z:Blogp(tly:=LB()))} inversion of [CS-*]
@+ ogp(tly := LB(Y)]) = ogpt Lemma 11
@ts:{x:Blogpt} [T-SuB] with [S-BAsE]

p(E,z:{z:B|t},F) = (op,x :=s,0F)
o(pq) —* true O

24



Main proof: By examination of each constraint.

Case EyFp=

pEy E o assume
o(p(ply := LB(v)])) —" true

o(pLB(7))

—* (a(p(ply :== LB(M)]) V-

—* true

Case E p = q where vy does not appear in g:

pE F pp = py given
p(Ely :== LB()]) - pp = py Lemma 13 and Lemma 10

p(Ely = LB(M)]) F p(ply == LB(7)]) = py  Lemma 120
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