
Pair Programming Improves Student Retention, Confidence, and Program
Quality

Charlie McDowell and Linda Werner

Computer Science Department
University of California, Santa Cruz

{charlie,linda}@cs.ucsc.edu,

Heather E. Bullock and Julian Fernald
Psychology Department

University of California, Santa Cruz
{hbullock,jfernald}@cats.ucsc.edu

In recent years, the growth of extreme programming (XP) has brought considerable attention to collaborative

programming. Developed over a fifteen year period by Kent Beck and his colleagues, Ron Jeffries and Ward
Cunningham[1], XP is a computer software development approach that credits much of its success to the use of pair
programming by all programmers, regardless of experience[2]. The pair programming dimension of XP requires that teams
of two programmers work simultaneously on the same design, algorithm, code, or test. Sitting shoulder to shoulder at one
computer, one member of the pair is the “designated driver,” actively creating code and controlling the keyboard and
mouse. The “non-driver” constantly reviews the keyed data in order to identify tactical and strategic deficiencies,
including erroneous syntax and logic, misspelling, and implementations that don't map to the design. After a designated
period of time, the partners reverse roles. Code produced by only one partner is discarded, or reviewed collaboratively
before it is integrated.

Women and minorities continue to be underrepresented in computer science, and the number of women pursuing
college majors in this area is declining. In 1984, 37% of computer science bachelor's degrees were awarded to women and
in 1998 that percentage was down to 26% [3]. A number of variables have been proposed to account for this gender
difference including: traditional socialization practices that reinforce math and science as male domains; lower confidence
ratings and greater math anxiety among women; and women's tendency to take fewer advanced mathematics courses. The
belief that computer science is a competitive, alienating field may further discourage women from pursuing careers in this
area [4].

Pair programming, when used as a form of collaborative learning, has been shown to increase the number of women
(and men) persisting in their previously stated intent to pursue degrees in computer science. In addition, paired teams have
been found to significantly outperform individual programmers in terms of functionality and readability, to report greater
satisfaction with the problem-solving process, to have greater confidence in their solutions, and to be more likely to
complete a programming assignment [5]. Nevertheless, many instructors continue to require students to complete
programming assignments independently. Presumably, continued reliance on solo programming in academic settings is
rooted in instructor concern that at least one of the partners in a pair will not learn as much as they would if they completed
the assignment alone. In the worst case, one member of the pair might do essentially all of the work. Although this would
not be “pair programming,” it is often difficult, if not impossible, to monitor how students actually spend their
programming time and how closely they are following the pairing protocol.

A Study of Pair Programming in Introductory Computer Science

We investigated the effects of pair programming on student performance and subsequent pursuit of computer science
related degrees among both female and male college students taking an introductory programming course designed for
computer science related majors (computer science, computer engineering, and information systems management). We
collected data on 554 students who attempted the course at the University of California-Santa Cruz [6]. Data was collected
from a total of 4 sections of the course: Fall 2000, Winter 2001 (2 sections), and Spring 2001. One of the principle
investigators of this study, Charlie McDowell, taught the Fall and Spring sections of the course. The Winter 2001 sections
were taught by UCSC faculty members not associated with this project.

Students in the spring section were required to complete programming assignments independently. Students enrolled in
the other sections were required to complete all assignments using pair programming. On the first day of class students in
the pairing sections were given a brief 15 to 20 minute description of pair programming and instructed to read Williams
and Kessler’s paper “All I Really Need to Know About Pair Programming I Learned in Kindergarten [7].” As an incentive
to read the paper they were told that the first quiz might include a question about it.

Students in the pairing sections submitted a list of three names of potential partners, and partners were assigned based
on these preferences. In nearly all instances, students were assigned a partner from their list. Those that stated no
preference were randomly assigned a partner. Whenever possible students remained with the same partner throughout the
quarter, however, due to schedule changes and drops, a small number of partner reassignments were necessary. As a result
of hardships such as heavy work schedules or living far from campus, seventeen students across the three pairing sections
were permitted to program alone for various reasons. Data from these students was combined with the data from the
students in the non-pairing section.

Although each student was assigned to one 90-minute lab time per week, most programming assignments were
completed outside of scheduled lab time. The labs functioned primarily as teaching assistant office hours. There were no
specific in-lab assignments and attendance was not mandatory. Programming assignments were scored for functionality
and readability. Along with each assignment students submitted a log indicating the amount of time they spent on the
assignment (pairing students were asked to differentiate between time spent driving, reviewing, and alone), their level of
confidence in their solution, how much they enjoyed working on the assignment, and how satisfied they were with the
process.

Regardless of whether they completed assignments in pairs, all students took exams independently. The final exam
assessed students’ knowledge of programming concepts and their ability to write new code. We collected information
about students SAT scores, the courses they took over the following year, and their major declarations a year after taking
the class.

 An important assumption of this study was that all four of the sections of the course were similar in terms of students’
academic preparation to succeed. We found no difference in the SAT math scores among the four sections. We did find
that the average SAT verbal score for one of the three pairing sections was lower than the score for the other two pairing
sections. However, the difference was not significant when compared to the non-pairing section nor was there a significant
difference between the pairing sections as a group and the non-pairing section. Because the difference was only between
pairing sections it seemed acceptable.

Persistence in computer science

One of the key hypotheses that was being tested by our study was the following:

Women who program in pairs will have higher retention rates than women who program independently.

Specifically we wanted to know if using pairing as a learning tool for beginning programmers would influence course
completion rates and subsequent computer programming course taking behavior, both in terms of attempts and pass rates,
and students’ decisions to major in computer science related fields.

A comparison of students who used pair programming with those who didn’t indicated that pairers were significantly
more likely to remain in the course through the final exam (90.8%) than were non-pairers. Among just those who took the
final exam, the difference in pass rates between pairing (79.6%) and non-pairing students (78.2%) was not statistically
significant. Williams and Kessler have proposed “pair pressure” as a possible explanation for higher completion rates
among paired versus unpaired students [8]. According to Williams and Kessler, students who work in pairs may be more
likely to complete programming courses because of the shared responsibility that results from collaborative partnerships.
As a consequence, paired students may remain in the class for the sake of their partner. Although this is a plausible
explanation, it is not supported by these data. The fact that in our study there was no difference in pass rates between
pairers who completed the course and non-pairers who completed the course suggests that it was not simply the case that
pairers were more likely to “stick it out,” but rather that a larger proportion of paired students were able to master enough
of the course material to pass.

For those students that passed the introductory programming course we followed them for one full academic year
beyond the intro course. Consequently this analysis was limited to the 321 students who were still enrolled at UCSC three
quarters after taking and passing the intro course.

Among the students who were intending to pursue a computer science related major at the start of the introductory
programming class, successfully passed the class with a “C” or better, and were still enrolled at UCSC a full year later

(N=238; 187 men and 51 women), a significantly higher percentage of the students who had paired had gone on to attempt
the subsequent programming course (Introduction to Data Structures) within a year (84.9%), than had the non-pairing
students (66.7%). Separate analyses by gender of the effect of pairing on whether the subsequent course was attempted
within a year revealed about an 18% difference between pairers and non-pairers for both women and men (73.8% of paired
women vs. 55.6% of non-paired women, and 88.0% of paired men vs. 69.4% of unpaired men). The pairing effect was
statistically significant for men but not for women. The increase in the percentage of students associated with pairing
appears to be quite similar for men and women. The fact that this difference was statistically significant for men but not
women is most likely attributable to the relatively small number of women (51 compared to 186 men) in this study.

Among students that attempted the Data Structures course, the students from the pairing sections were more likely to
pass the Data Structures course on the first attempt (65.5% vs. 40.0%). That is, students who paired in the introductory
programming course were more likely to attempt the subsequent programming class and more likely to pass it than those
who learned to program independently. This is particularly significant because students in the Data Structures course were
required to complete all programming assignment individually. This indicates that there is not a problem with a significant
number of weak students passing the intro course with the help of their partner, only to fail in the next course where they
must program alone. The difference in pass rates between pair and non-pair students was similar for men (64.6% vs.
37.5%) and women (68.3% vs. 44.4%), although for the women the difference was not statistically significant.

Among the students initially intending a computer science major, and who passed the introductory course and remained
at UCSC for at least a year, the pairing students were also more likely to have declared a computer science related major 1
year after completing the introductory programming class. This was the case for both women and men. Women who paired
were more likely than women who worked independently to be in a computer science related major (59.5% vs. 22.2%).
Similarly pairing men were also more likely to have declared a computer science related major 1 year later than men who
worked alone (74% vs. 47.2%).

Interestingly, the same pattern of results was observed among all students who successfully completed the introductory
programming course and were still enrolled at UCSC a year later, regardless of whether they had initially been planning to
major in one of the computer science related majors. Pairers were significantly more likely to have declared a computer
science related major than non-pairers (56.9% vs. 33.8%), and that was the case for both men (59.5% vs. 41.1%), and
women (46.3% vs. 11.1%).

Table 1: Comparison of completion rates, pass rates, and persistence in the major. Numbers in bold indicate
statistically significant differences.

Female Male All
 Pair Solo Pair Solo Pair Solo
% that persisted in the course and took the final 88.

1
79.5 91.

7
81.5 90.

8
80.4

% of students taking the final that passed the class with C or better 74.
2

74.2 81.
3

79.5 79.
6

78.2

% of passers that took the 2nd programming course within 1 year 61.
1

50.0 81.
2

66.1 76.
7

62.2

% of passers that took the 2nd course within 1 year – restricted to those
indicating a planned CS related major at start of intro course

73.
8

55.6 88.
0

69.4 84.
9

66.7

% of those taking the 2nd course that passed it on the first attempt 68.
3

44.4 64.
6

37.5 65.
5

40.0

% of passers still at UCSC 1 year later that declared a CS major 46.
3

11.1 59.
5

41.1 56.
9

33.8

% of passers still at UCSC 1 year later that declared a CS major – restricted to
those indicating a planned CS related major at start of intro course

59.
5

22.2 74.
0

47.2 70.
8

42.2

Course Performance

In addition to completion and pass rates, we looked at specific parts of the course performance. We measured two
related, but distinct indicators of course mastery. The first, the quality of the programs that students produce was
operationalized as student’s normalized average score on the graded programming assignments. The second is the extent to
which students are able to apply the concepts covered during the course. We used final exam scores, which all students

took independently regardless of whether they paired or not, as the measure of the extent to which they had learned the
material. For the following analyses we included only the 486 students who completed the course, defined as taking the
final exam.

Among students who completed the class, those who paired produced significantly better programs (86.6%) than those
who worked alone (68.1%). There was no significant gender difference in average programming scores (men’s and
women’s scores were 81.9% and 82.5% respectively), nor was there an interaction between gender and pairing. In other
words, pairing was associated with significantly higher scores for both women and men.

It may be that the reluctance of some computer science faculty to use pair programming in their classes is due to a
concern that at least some students will “earn” grades that predominantly reflect their partner’s work. It is possible, for
example, that the pairing students in our study earned higher average programming scores simply because weaker students
received scores that were primarily due to the work of the stronger student in the pair, thus artificially inflating the average
programming scores of the pairers.

Elsewhere we have argued that the very process of working collaboratively enhances the quality of programs that pairs
produce [9]. In that paper we compared the two sections of the introductory programming course that were taught by the
same instructor, and for which assignments were intentionally designed to be equivalent. We found that the average score
on programming assignments of all of the students in the pairing section was significantly higher than the average score of
the top 50% (based on final exam scores) of the non-pairing section.

Because the students in different sections of this study did not complete the exact same programming assignments, we
did a follow-up study [10] in which a section of pairing students was given the exact same programming assignments as
the non-pairing students from our original study. In that study we again found that the programs produced by the pairing
students were significantly better than those produced by the non-pairing students, although the difference was not as great
as in the original study. This suggests that some of the difference reported in our main study could be from variations in
the difficulty of the assignment, but that the overall conclusion is unchanged.

Because all of the students in this study took the final exam independently, we considered final exam scores to be a
strong indication of the extent to which students had mastered the course material. There was no significant difference in
the average final exam of the pairers (75.2%) and the non-pairers (74.4%). This finding strongly suggests that a student’s
ability to independently apply concepts to novel problems is not compromised by learning to program in pairs. Indeed,
considering that a significantly greater percentage of the students who paired took the final, it seems that learning to
program in pairs results in mastery for a greater percentage of students.

Confidence and Enjoyment

Of course the most important goal for students in any class is mastery of the material. This is certainly the case for
introductory programming courses, where future success is dependent on a strong foundational knowledge. However,
subjective experiences in introductory programming courses may also contribute to decisions about whether to pursue
computer science related degrees. For this reason it is important to understand how the experience of pairing influences
students’ confidence and enjoyment of their work. Students responded to the following questions in their logs completed
after each graded programming assignment.

Confidence: On a scale from 0 (not at all confident) to 100 (very confident), how confident are you in your solution

to this assignment?
Enjoyment: How much did you enjoy working on this programming assignment? (1=not at all, 7=very much)

Pairing students enjoyed working on programming assignments (M=5.15) more than non-pairing students (M=4.69),

Likewise, among just the males pairing students reported greater enjoyment (M=5.23) than non-pairing students (M=4.75).
Women pairing students also reported greater enjoyment (M=4.90) than non-pairing women (M=4.65), however this
difference was not significant. There was also no significant difference in the reported enjoyment of all women versus all
men.

In addition to enjoying their coursework more, students who paired reported significantly higher confidence in their
program solutions (89.4%) than students who worked independently (71.2%), Consistent with findings in other areas, men
were significantly more confident (87.0%) than women (81.1%). There was also a significant interaction between pairing
and gender with regard to reported confidence. Follow-up tests of the interaction indicated that pairing resulted in more
confidence for both women (86.8% vs. 63.0%) and men (90.3% vs. 74.6%). However, the 24% increase in confidence
that pairing afforded women was even greater than the 15% confidence boost experienced by men who had the benefit of
pairing. The result was a significant decrease of a gender gap in confidence as shown in . Figure 1

89.4%

71.2%

86.8%

63.0%

90.3%

74.6%

0%

20%

40%

60%

80%

100%

All Women Men

Pairers Non-pairers

3.5

11.6

Figure 1: Confidence in program solutions - closing one gender gap.

Conclusion

The results of this study provide some of the most compelling evidence to date of the effectiveness of pair programming
as a pedagogical tool. It appears that pairing bolsters course completion and consequently course pass rates, and
contributes to greater persistence in computer science related majors. Moreover, students who pair were more likely to
pass the subsequent programming course which required them to work alone. This is a strong indicator that pairing did not
result in a significant number of students passing the course without learning how to program due to a free-ride from their
partner. The pairing students also produce higher quality programs, are more confident in their work, and enjoy it more.
We hope these findings will encourage instructors to use pair programming not only in their introductory courses, but also
in their upper level courses.

The continued underrepresentation of women in computer science underscores the need for strategies that foster
women’s interest and promote their success[4]. Pair programming appears to be one such approach. That the benefits
associated with pair programming extend to both men and women speaks to its broad-based appeal. As we continue to
investigate the effects of this technique on attracting and retaining female students, parallel research investigating these
phenomena in the workplace is also needed.

Acknowledgments

This work was funded by National Science Foundation grant EIA-0089989. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

[1] Beck, K., Extreme Programming Explained: Embrace Change. 2000, Reading, Mass:
Addison-Wesley.
[2] Williams, L., et al., Strengthening the Case for Pair Programming. IEEE Software, 2000.
17(4): p. 19-25.
[3] Women, Minorities and Persons with Disabilities in Science and Engineering. 2002, National
Science Foundation (available at http://www.nsf.gov/sbe/srs/nsf03312).
[4] Tech-Savvy Educating Girls in the New Computer Age Executive Summary. 2000, American
Association of University Women Education Foundation (available at
http://www.aauw.org/2000/techsavvy.html).

http://www.nsf.gov/sbe/srs/nsf03312
http://www.aauw.org/2000/techsavvy.html)

[5] Williams, L., et al. Building Pair Programming Knowledge through a Family of Experiments.
in International Symposium on Empirical Software Engineering. 2003. Rome, Italy: IEEE.
[6] McDowell, C.E., et al. The Impact of Pair Programming on Student Performance and Pursuit
of Computer Science Related Majors. in International Conference on Software Engineering. 2003.
Portland, Oregon, USA: ACM Press.
[7] Williams, L.A. and R.R. Kessler, All I Really Need to Know About Pair Programming I
Learned in Kindergarten. Communications of the ACM, 2000. 43(5): p. 108-114.
[8] Williams, L.A. and R.R. Kessler. The Effects of "Pair-Pressure" and "Pair-Learning" on
Software Engineering Education. in 13th Conference on Software Engineering Education and
Training. 2000. Austin, TX, USA: IEEE Computer Society.
[9] McDowell, C., et al. The Effects of Pair-Programming on Performance in an Introductory
Programming Course. in 33rd SIGCSE Technical Symposium on Computer Science Eduation. 2002.
Northern Kentucky: ACM Press.
[10] Hanks, B., et al. Program Quality with Pair Programming in CS1. in 9th Annual Conference
on Innovation and Technology in Computer Science Education. 2004. Leeds UK: SIGCSE BUlletin:
ACM Press.

	Acknowledgments
	
	
	References

