Haceph:
Scalable Metadata Management for Hadoop using Ceph

Esteban Molina-Estolano, Carlos Maltzahn, Ben Reed, and Scott A. Brandt
UC Santa Cruz and Yahoo!, Inc.
{eestolan,carlosm,scott}@cs.ucsc.edu, breed@yahoo-inc.com
No demo.

Hadoop has become a hugely popular platform for large-
scale data analysis. This popularity poses ever greater de-
mands on the scalability and functionality of Hadoop, and
has revealed an important architectural limitation of its un-
derlying file system: HDFS provides only one name node
which has to store the entire file system name space in main
memory. This limitation puts a hard limit on the amount
of metadata, in particular the number of files, HDFS can
store. Large clusters frequently run out of capacity at the
name node to track new files even though there is plenty of
storage capacity at the data nodes. The single name node
also creates a single point of failure and a potential perfor-
mance bottleneck for workloads that require relatively large
amounts of metadata manipulations such as opening and
closing of files. The single name node limitation is well-
recognized in the Hadoop user and developer community
(see for example [9]).

One solution is to distribute the functionality of the name
node across multiple nodes by statically partition the name
space either by subtree partitioning or by hashing of individ-
ual directories. A better approach—and the one we pursue
here—is to use dynamic subtree partitioning [8] which al-
lows busy nodes to shed popular subtrees to less busy nodes
while preserving access locality.

We are working on making Ceph [5] available as an al-
ternative to HDFS with equivalent or better performance.
Ceph is an object-based parallel file system with a number
of features that make it an ideal storage system candidate
for Hadoop: Ceph’s scalable metadata server [8] can be dis-
tributed over hundreds of nodes while providing consistent,
reliable, and high-performance metadata service using dy-
namic subtree partitioning with close to linear scalability.
(2) Each file can specify its own striping strategy and object
size. Flexible striping strategies and object sizes are impor-
tant tuning parameter for Hadoop workloads [3, 4, 2]. (3)
Data is stored on up to 10,000s of nodes which export a sin-
gle, reliable object service [7] with a flat name space of object
IDs, not unlike Amazon’s Simple Storage Service (S3) [1].
Changes in the storage cluster size cause automatic and fast
failure recovery and rebalancing of data with no interruption
of service and minimal data movement, making Ceph suit-
able for very large deployments. (4) The state of the entire
storage cluster, including data placement, failed nodes, and
recovery state, has a very compact representation due to cal-
culated placement [6] as opposed to allocation tables, and is
known in every part of Ceph. As in HDFS, Hadoop’s sched-
uler can take advantage of this information to place mapping
close to where the data resides. (5) Ceph is an open source

project (ceph.newdream.net) written in C++ that started as
a Ph.D. research project at UC Santa Cruz over four years
ago and has been under heavy development ever since. A
Hadoop module for integrating Ceph into Hadoop is in de-
velopment since release 0.12—but Hadoop can also access
Ceph via its POSIX IO interface, using ioctl calls for data
location information. (6) Since Ceph is designed to serve as
a general purpose file system (e.g. it provides a Linux kernel
client so Ceph file systems can be mounted), if it supported
Hadoop workloads well, it could also be a general solution
to other storage needs.

In a preliminary experiment we compared the run time
of Hadoop/HDFS with Hadoop/Ceph (Hadoop using the
POSIX IO interface and Ceph not providing locality infor-
mation) on a 40-node cluster running the word-count work-
load. We observed very similar run times which is very en-
couraging to us. Our poster will show more comparisons
using a number of other important map/reduce workloads,
and how name server scalability of Hadoop/Ceph compares
to Hadoop/HDFS.

[1] Amazon. Simple storage service - developer guide (api
version 2006-03-01). Web Page.
docs.amazonwebservices.com/AmazonS3/2006-03-01/,
March 2006.

[2] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha,

P. Sarkar, M. Shah, and R. Tewari. Cloud analytics: Do we
really need to reinvent the storage stack? In HotCloud’09,
San Diego, CA, June 15 2009.

[3] Hadoop Project. Hadoop cluster setup. Web Page.
hadoop.apache.org/core/docs/current /cluster_setup.html.

[4] W. Tantisiriroj, S. Patil, and G. Gibson. Data-intensive file
systems for internet services: A rose by any other name ...
Technical Report CMU-PDL-08-114, Parallel Data
Laboratory, CMU, Pittsburgh, PA, October 2008.

[5] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In OSDI 2006, Seattle, WA, Nov.
2006.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. In SC 2006, Tampa, FL, Nov. 2006. ACM.

[7] S. A. Weil, A. Leung, S. A. Brandt, and C. Maltzahn.
Rados: A fast, scalable, and reliable storage service for
petabyte-scale storage clusters. In PDSW 2007, Reno, NV,
November 2007.

[8] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file
systems. In SC 2004, Pittsburgh, PA, Nov. 2004. ACM.

[9] T. White. The small files problem. Web Page.
www.cloudera.com/blog/2009/02/02/the-small-files-
problem/.



