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Abstract

Efficient Policy-Based Routing in the Internet

by

Bradley R. Smith

Traditional Internet routing has focused on shortest-path routing where paths are
chosen which minimize an additive weight function on a single, typically delay-related
metric. The evolving topology control requirements of the Internet require the gen-
eralization of this model to satisfy functions on multiple metrics. The inclusion of
multiple metrics in a routing computation is called policy-based routing. Policy-based
routing supports traffic engineering by the computation of routes in the context of con-
straints on the traffic allowed over portions of an internet. Analogously, policy-based
routing supports quality-of-service (QoS) by the computation of routes in the context
of constraints on the paths specific traffic flows are allowed to use. Previous work on
policy-based routing has focused on virtual-circuit-based solutions, and has resulted in
computationally expensive algorithms. This paper presents a number of advances in
the provision of policy-based routing services in networks and internetworks. A family
of routing algorithms are presented for computing routes in the context of traffic-
engineering constraints, quality-of-service constraints, and a combination of the two,
which achieve new levels of computational efficiency. In addition, a forwarding archi-
tecture is presented that efficiently supports hop-by-hop forwarding in the context of

multiple paths to each destination, which is desirable for policy-based routing.
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Chapter 1

Motivation

The architecture of today’s Internet has its origins in the original ARPANET protocol
architecture [1]. In the ARPANET architecture, a communication backbone was used
to interconnect host computers directly attached to the backbone. The backbone
was formed by packet switches called Interface Message Processors (IMP), and a host
attached to an IMP through a terminal IMP processor (TIP). The protocols needed to
establish end-to-end communication in support of such applications as file transfer and
remote login were IMP-to-IMP, IMP-to-host, and host-to-host protocols. The host-
to-host protocol was called the Network Control Program (NCP). The IMP-to-IMP
protocol supported reliable communication between neighboring IMPs and routing of
packets from source to destination IMP. The IMP-host protocol supported the passage
of messages between a host and an IMP in order to create a virtual communication
path between hosts. NCP supported the communication between two remote hosts

attached to the ARPANET.



As local area networks (LANs), the DARPA packet radio network (PR-
NET) and the DARPA satellite network (SATNET) evolved, the ARPANET backbone
started to grow. Consequently, the end-to-end communication among hosts could no
longer assume packet switches in a common backbone, running the same protocol for
packet forwarding. The need to mask the details of how packets, originated and con-
sumed by hosts, were forwarded within specific networks was imperative to the ability
to interconnect any set of hosts through any set of networks. To cope with the need for
interconnecting hosts on an end-to-end basis through many computer networks rather
than a single backbone, Cerf et al proposed the catenet model.

The modern Internet Architecture is based on the catenet model for inter-
networking [18, 19, 20]. A catenet is defined to be a “collection of packet networks
that are connected together.” The two basic components of a catenet are networks and
gateways, where a catenet is formed by the interconnecting of networks with gateways.
A primary goal of the catenet model, and therefore the Internet Architecture, was to
encourage the development and integration of new networking technologies into the
developing catenets. To achieve this goal, only minimal assumptions were made of
networks by the catenet model. Specifically, networks were assumed to support the
attachment of a number of computers, transport datagrams, allow switched access so
that attached computers could “quickly” send datagrams to different destinations, and
provide best-effort delivery, where the definition of best-effort allowed datagrams to
be dropped, or delivered out of order.

This best-effort model of communication has proven surprisingly powerful.



Indeed, much of the success of the Internet Architecture can be attributed to this
inspired design decision. However, largely as a product of its own success, limitations
of the Internet Architecture are being encountered as new application and management
requirements are made of it as it is applied to ever more demanding environments [11].
Real-time applications, such as on-demand streaming, audio and video conferencing,
visualization, and virtual reality require varying degrees of bandwidth, delay, and
delay jitter commitments from the network infrastructure. Furthermore, to support
the efficient management of network resources, traffic engineering [5] and network
management services require the ability to control the allocation of these resources in
an internet among network flows. This is accomplished by the assignment of traffic
classes or “colors” to links, specifying the traffic routable over a given link. Similarly, to
provide protection from denial-of-service between classes of traffic, and from disclosure
of sensitive traffic from transmission over insecure links in a network, it must be
possible to constrain the topology used for the forwarding of traffic through an internet.
Fundamental to these new requirements is the ability to control the link-layer topology
used to forward network-layer traffic.

Traditional Internet routing has focused on shortest-path routing where paths
are chosen which minimize an additive weight function on a single, typically delay-
related metric. The evolving topology control requirements of the Internet require the
generalization of this model to satisfy functions on multiple metrics. The inclusion
of multiple metrics in a routing computation is called policy-based routing [22, 87).

Policy-based routing supports traffic engineering via the enforcement of administra-



tive constraints on what subset of an internet is authorized to carry a given traffic
class. Analogously, policy-based routing supports quality-of-service (QoS) by the en-
forcement of constraints on the performance characteristics of topologies that can be
used to carry traffic for different traffic classes.

Metrics used in routing computations are assigned to individual links in the
network. For a given routing application, a set of link metrics is identified for use
in computing the path metrics used in the routing decision. Link metrics can be
assigned to one of two classes based on how they are combined into path metrics.
Concave (or minmaz) metrics are link metrics where the minimum (or maximum)
value (called the bottleneck value) of a set of link metrics defines the path metric
of a path composed of the given set of links. Examples of concave metrics include
residual bandwidth, residual buffer space, and administrative constraints (described
in Section 2.2). Additive metrics are link metrics where the sum (or product, which
can be converted to a sum of logarithms) of a set of link metrics defines the path
metric of the path composed of the given set of links. Examples of additive metrics
include delay, delay jitter, cost, and reliability.

While, in general, policy-based routing is an NP-complete problem [36, 42],
there are many sub-classes of this general problem that have been shown to have
polynomial-time solutions. For example, any problem involving two metrics with at
least one of them concave can be solved in polynomial-time by a traditional shortest
path algorithm on the graph where all links that do not comply with the concave

constraints have been pruned [22, 52, 87]. However, even for this case, as the number



of constraints becomes exponential in the size of the graph, this result no longer holds.

The foundational work on the problem of computing routes in the context of
more than one additive metric was done by Jaffe [42] where he defined the multiply-
constrained path problem (MCP) as the computation of routes in the context of two
additive metrics. He presented an enhanced distributed Bellman-Ford algorithm that
solved this problem with time complexity of O(n*blognb), where b is the largest pos-
sible metric value. An algorithm with run time complexity of this form is called
pseudopolynomial [36] in that it is not polynomial in the length of the input (which
would be nlogb in this instance), however it is polynomial in the length of the input
and the largest value in the input (which is b in this case). The significance of an
algorithm being pseudopolynomial is this indicates the possibility that its run time
complexity can be kept polynomial by limiting the largest value in the input to some
polynomial function of the length of the input.

As a result, since Jaffe’s work, efforts at finding general, efficient solutions to
MCP and related policy-based routing algorithms have focused on the metric values
as the source of the computational complexity of policy-based routing algorithms.
Jaffe’s paper itself analyzed metric-focused approaches to controlling the run time
costs of MCP including mapping unbounded metrics to smaller ranges, and the use of a
function of the two metrics for computing approximate solutions. The drawbacks of the
current policy-based routing solutions are they have poor average case performance,
they implement inflexible routing models, and solutions for computing approximate

solutions do not work with the administrative constraints used for traffic engineering.



This dissertation presents a number of advances in the provision of policy-
based routing services in an Internet environment. New policy-based routing algo-
rithms are presented that significantly improve the average case time complexity of
computations in the context of administrative constraints for traffic engineering, and
the worst case space and time complexity of routing computations in the context of per-
formance constraints for the satisfaction of QoS requirements. A more comprehensive
model of the time complexity of policy-based routing is presented which suggests new,
more effective strategies for controlling these costs that work in the context of both
traffic engineering and QoS requirements, and new algorithms are explored based on
these insights. Lastly, a model is developed for efficiently implementing table-driven,
policy-based routing in the Internet using existing label-swap mechanisms.

Section 2 presents the network model and reviews basic architectural issues.
In Section 3 a family of policy-based routing algorithms are presented and analyzed
that compute optimal routes in the context of policy-based link metrics. Section 4
presents a new approach to computing approximate solutions that address the run
time costs of the optimal solutions in the context of general policy-based link metrics.
Section 5 discusses traffic expression processing, and possible approaches to dealing
with the inherent computational complexity of this problem. Lastly, Section 6 and
7 discuss applications of these technologies to intra-domain and inter-domain policy-

based routing.



Chapter 2

Preliminaries

In this dissertation a network is modeled as a weighted, undirected graph G = (N, E),
where N and F are the node and edge sets, respectively. By convention, the size of
these sets are given by n = | N | and m = | E|. Elements of F are unordered pairs
of distinct nodes in N. A(7) is the set of edges adjacent to ¢ in the graph. Each
link (¢,7) € E is assigned a weight, denoted by w;;. A path is a sequence of nodes
< Z1,%2,...,2q> such that (z;,z;41) € F for every i = 1,2,...,d — 1, and all nodes

in the path are distinct. The weight of a path is given by

d—1
Wp = Z Waizitq-
=1

The nature of these weights, and the functions used to combine these link weights into

path weights are specified for each algorithm.
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Figure 2.1: Effects of Routing Model

2.1 Routing Computation Model

The routing model used by the Internet architecture is a table-driven, hop-
by-hop routing model. In this model routers learn about the state of connectivity in an
internet by exchanging messages with each other, and run local routing computations
whose output is a forwarding table. This forwarding table is used by the router’s
forwarding process to make per-packet forwarding decisions. There are a number of
advantages to this routing model. First, changes in network state are detected earliest
by those routers needing to change their forwarding tables (e.g. the damage caused by
the failure of link (A, F') in Figure 2.1 is repaired after nodes A through D are notified,
which are the first nodes to receive notification of the failure). Second, the autonomous
control of the forwarding tables significantly simplifies the coordination of inter-router
state (e.g. adaptation to the failure of link (A,Y’) in Figure 2.1 does not require any
change in the forwarding tables of nodes A through E). Lastly, information about
a link needs only be propagated to those routers using the link in their forwarding
topology (e.g. the information regarding link (D, E) in Figure 2.1 only needs to
be propagated to nodes A,C,D, and E). As a result, routing is implemented in
the Internet as a distributed routing computation, with fully autonomous control of

forwarding state, that is very efficient, responsive, and robust.



In contrast, many recent policy-based routing proposals have endorsed an
on-demand, source-driven routing model where routes are computed on receipt of a
new connection request, and forwarding is source driven through the use of path setup
or source routing techniques. In contrast to the table-driven, hop-by-hop model, there
are a number of weaknesses to the on-demand, source-driven model. First, changes in
network state must be propagated to the source, and topology change requests propa-
gated back into the network to adapt to changes in an internet (e.g. the damage caused
by the failure of link (A, E) in Figure 2.1 is repaired only after node X is notified,
able to compute an alternate path, and communicates the necessary forwarding table
changes back to nodes A through E). Second, it implements a centralized model of
routing control where forwarding state for all sources at a given point in the network
is maintained by the router acting for those sources (e.g. adaptation to the failure of
link (A4,Y) in Figure 2.1 requires the deletion of forwarding state in nodes A through
E by node X). Lastly, information about a link must be propagated to all routes in
an internet (e.g. information regarding link (D, F') must be propagated to all nodes in
the internet to allow the computation of routes to E under any link failure scenario).
As a result, in these proposals, routing is implemented as a centralized routing com-
putation, with remote control of forwarding state, that is less efficient, responsive, and
robust to current solutions. Therefore, while the algorithms developed for this thesis
will work with either routing model, a primary goal of their design has been that they

be compatible with a table-driven, hop-by-hop model.



2.2 Administrative Constraints for Traffic Engineering

The original motivation for traffic engineering services was the need by IP
network providers to manage network bandwidth in the context of the single-path
routing model of IP networks [81]. Lacking such capabilities, the tendency of single-
path routing is to aggregate traffic for a given destination onto a subset of the possible
paths to that destination. As a result, networks frequently experience congestion in
spite of the availability of excess capacity for the offered load. To avoid this problem,
network providers developed the technique of deploying IP networks over a circuit
switched layer 2 technology (e.g. ATM or Frame Relay), and implementing a richly
connected topology of virtual circuits among the routers composing the provider’s
backbone. By manipulating the paths followed by individual virtual circuits it was
possible to distribute traffic more evenly over the underlying network.

There are a number of problems with this solution, however, including the
cost and responsiveness of manual intervention, the fidelity of IP routing decisions
based on an abstracted topology, the magnification of link events over all circuits
using a given link, and the inefficiency of IP routing protocols operating in network
density regimes they weren’t designed for. As a result, the requirements of traffic
engineering mechanisms are that: they require minimal human intervention only to
establish the policies to be used in computing forwarding topologies, they efficiently
and effectively forward traffic over the underlying network topology in accordance with
these policies, and that traffic-engineering-enhanced IP routing operates directly on

the link-layer topology. Given this basic definition, traffic engineering services can be

10



applied to a number of other problems.

The vulnerability of IP services to basic network disclosure and denial of
service threats is another result of the lack of topology control available from current
IP mechanisms. Excluding computationally expensive firewall mechanisms, IP traffic
can potentially traverse any link in an internet. Therefore, the disclosure of any traffic
stream and the denial-of-service attack of any destination in an internet are unavoid-
able threats. While unicast communication provides some protection against disclo-
sure in that forwarding paths will naturally follow the underlying network topology,
allowing networks to be structured such that sensitive information will only traverse
trusted infrastructure, these protections are delicate. The paths computed in unusual
failure modes are difficult to predict, and may violate security policies. Additionally,
maintaining the topology invariants necessary to meet given security policies in the
context of on-going network evolution is difficult, at best. And for multicast commu-
nication even these limited controls are lost as the location of sources and destinations
is determined by the users joining the group, magnifying the potential for disclosure
of multicast group communication. As a result, the forwarding topology for traffic in
a given group is not controllable. For denial-of-service the situation is worse in that,
if a destination is reachable from a portion of an internet, it is reachable by all nodes
in that region via the same path. The traffic engineering capability to directly express
constraints on what topologies can be used to carry given classes of traffic, and to
have these constraints be honored in the routing computation, is a powerful tool for

mitigating the affects of these threats.
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Lastly, traffic engineering services provide important functionality for viable
QoS services. QoS services come in both virtual-circuit (e.g. IntServ [11]) and hop-by-
hop (e.g. DiffServ [10]) forms. Both forms provide specific mechanisms for satisfying
resource requirements of traffic forwarded along QoS-enabled paths (e.g. RSVP mech-
anisms [12] for IntServ and per-hop-behavior code-points for DiffServ). Assuming less
than universal deployment of these mechanisms, it must be possible to forward QoS
service-dependent-traffic along paths providing the mechanisms that implement the
service. Traffic engineering services provide this ability to compute specific service-
enabled routes, and to ensure that service-dependent traffic is forwarded along ap-
propriate paths. Additionally, as will be discussed in detail in Section 3, the cost of
computing routes that satisfy QoS constraints can potentially be exponential in size of
a network, and is ultimately determined by the virtual topology induced by the current
link metrics. Since these metrics, reflecting existing link conditions, are not subject
to control, the cost of QoS routing computation is also not controllable. Section 4
shows how traffic engineering mechanisms provide a means of controlling these costs
by allowing administrative control of the virtual topology induced by the current link
states of a network.

As discussed in Section 1, the current prune-and-route traffic engineering
routing solutions have poor average case performance, and implement an inflexible
traffic-engineering model. The cost incurred by current solutions is to perform a
standard shortest path routing computation for each possible value of the concave

metric. Since the range of concave metrics can easily be exponential in the size of

12



the graph, these solutions have high best-case computation costs. Section 3 presents
solutions to routing in the context of concave metrics that grow only with the average
number of paths actually existing to the nodes in a graph. Furthermore, Section 4
presents new approximation solutions that contain this cost even in those instances
where this aver number of paths is large.

The inflexibility of current solutions derives from their use of a traffic engi-
neering model which is imperative in nature, requiring in effect the programming of
an internet with how to implement the desired forwarding policies. Specifically, the
current model requires the pre-definition of a set of forwarding classes which capture
the policy-significant traffic in an internet. The number of forwarding classes must
be minimized to control the cost of the prune-and-route style computation described
above. These forwarding class definitions must then be installed in traffic classifiers
at the edge of the internet. Lastly, the appropriate links in the internet must be la-
beled with the correct forwarding class sets to implement the desired policies. This
“program-the-network” style of traffic engineering is labor intensive and error-prone.

In the following, we propose a declarative traffic engineering model where
network links are labeled with statements declaring what the desired routing policies
are in the form of constraints of the traffic allowed on each link. These constraints
take the form of expressions, called link-predicates, in a boolean traffic algebra which
describe the traffic allowed on a link. New, efficient policy-based routing algorithms
then compute a minimal set of routes, composed of a path predicate and a next hop,

for each destination in an internet. These algorithms, in effect, discover the optimal
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set of forwarding classes needed at a given source in the internet to implement the
desired policies. These path predicates are then installed in the appropriate traffic
classifiers.

The traffic algebra is a boolean algebra used to define traffic classes in a flex-
ible and efficient way. Specifically, it is composed of the standard boolean operations
on the set {0,1}, where p primitive propositions (variables) are true/false statements
describing characteristics of network traffic. The syntax for expressions in the algebra

is specified by the BNF grammar:

p =011 vy | (=) | (@ Ao) | (V)| (p—= ¢ | SAT(p)

In terms of the truth-table based semantics of a Boolean algebra, expressions in this
traffic algebra specify the set of rows in the truth table composed of all the variables
in a given expression that evaluate to 1 (or true). From a set theoretic perspective,
these expressions can then be interpreted as this set of true rows, and each row as a
description of a traffic class. Therefore, each expression can be interpreted as identify-
ing a set of traffic classes with the Boolean operators acting as set operations (e.g. A
has the effect of set intersection, V has the effect of set union, etc.). When assigned to
a link in a network, expressions in the traffic algebra are called link predicates. Link
predicates identify the traffic classes allowed to traverse the link, and are denoted by
€ij in the algorithms. Path predicates, which are denoted by &, in the algorithms, and
defined as €) = €4,45 A €gozy N --- N€gy ,a,, sSPecify the set of traffic classes allowed to
traverse the path. There is a maximum of 2P unique sets of administrative constraints.

The SAT(p) primitive of the traffic algebra is the satisfiability problem of
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traditional Boolean algebra. SAT answers the question “is there an assignment of
truth values to the propositional variables in ¢ such that ¢ evaluates to true?” The
S AT (p) primitive evaluates to 1 (true) if such a truth assignment exists, and 0 (false)
otherwise. Satisfiability must be tested in two situations by algorithms presented in
Section 3 that implement traffic-engineering computations. First, when a new route to
a destination is considered for comparison to an existing route for the same destination
(e.g. lines 8 and 12 in Figure 3.29), they should only be compared if classes of traffic
exist that can use either route. Therefore, new routes are only compared with existing
routes when the conjunction of their path predicates is satisfiable. Second, given
that classes of traffic exist that can use either path, the algorithms must determine
whether all traffic supported by one path could use the other. This is the case if
the path predicate for one path implies (“—”) the other or, more precisely, if the
expression (e, — ¢,) is always true (i.e. is valid). Determining if an expression is
valid is equivalent to determining if the negation of the expression is unsatisfiable.
Therefore the expressions at lines 9 and 13, of the form ;1 — e9 are equivalent to
-SAT(=(e1 — €39)) (or ~SAT(e1 A —ez)). The satisfiability decision performed by
SAT(e) is the prototypical NP-complete problem [36]. As is typical with NP-complete
problems, it has many restricted versions that are computable in polynomial time.
Section 5 analyzes the complexity of the satisfiability problem in the context of this
algorithm, and identifies a number of implementation strategies that offer the promise
of efficient solutions for this application.

The set of primitive propositions, indicated by v; in the grammar, can be
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defined in terms of any globally significant attributes of the ingress router’s state that
can be expressed as a true/false statement. Care must be taken in defining the set of
primitive propositions. The definition of these propositions must be powerful enough to
express all expected administrative policies, must be known by all traffic classifiers, and
has a strong influence on the syntax required of link predicates. Since, as is analyzed
in detail in Section 5, the computational complexity of traffic expression processing is
largely determined by the richness of the link predicate syntax, the requirements of this
syntax must be kept to a minimum. Therefore the selection of the set of supported
primitive propositions is a balancing act between being rich enough to support the
desired policies, while containing the computational complexity of the link predicate
syntax required to support the desired expressiveness.

A natural, and very general example is a set of primitive propositions de-
scribing attributes of the traffic being forwarded. For example, a value of 6 in the
protocol field of an IP header is represented by IPProto(TCP); the value 53 in the
port field of a UDP header is represented as UDPPort(DOMAIN); and the value of all
addresses in the UC Santa Cruz address range in the destination field of an IP header

is represented by IPDest(128.114.0.0/16). For example, given the two expressions:

€12 = 1IPSrc(128.114.0.0/16) A IPProto(TCP)

€93 = IPSrc(128.114.48.0/24) A
((IPProto(UDP) A UDPPort(DOMAIN)) v
(IPProto(TCP) A TCPPort(DOMAIN)))

the conjunction of these expressions evaluates to:

€13 = €12 A €93 = IPSrc(128.114.48.0/24) A IPProto(TCP) A
TCPPort(DOMAIN)
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which succinctly describes the traffic allowed on a path composed of two links labeled

with the expressions €12 and €93.

2.3 Performance Constraints for QoS

As discussed in Section 1, the space and time complexity of current QoS-
based routing algorithms only allow their use for exceptional, typically on-demand path
computations. In addition, the approximation solutions that have been developed to
address the performance problems with optimal solutions only work with performance-
related, QoS metrics and not with administrative, traffic-engineering metrics. To
comprehensively address the problems described above, QoS-based routing must be
usable as the default Internet routing and forwarding model, and work in coordination
with traffic engineering mechanisms. To address these problems, this dissertation
presents a family of optimal routing algorithms that support routing in the presence
of traffic engineering, QoS, and combined traffic engineering and QoS requirements of
an internet.

The routing algorithms presented here are based on an enhanced version of
the path algebra defined by Sobrinho [79] that supports the computation of a set of
routes for a given destination containing the “best” set of routes for each destination.
Formally the path algebra P = <W,®,<,C,0,50> is defined as a set of weights W,
with a binary operator @, and two order relations, < and C, defined on W. There
are two distinguished weights in W, 0 and o0, representing the least and absorptive

elements of W, respectively. @ is the original path composition operator, and =< is
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the original total ordering from [79]. @ is used to compute path weights from link
weights. < is used by the routing algorithm to build the forwarding set, starting with
the minimal element, and by the forwarding process to select the minimal element of
the forwarding set whose parameters satisfy a given QoS request.

A new relation on routes, C, is added to the algebra and used to define classes
of comparable routes and select maximal elements of these classes for inclusion in the
set of forwarding entries for a given destination. C is a partial ordering (reflexive,

anti-symmetric, and transitive) with the following, additional property:
Property 1 (w; C wy) = (wy > wy).

A route 1, is a mazimal element of a set R of routes in a graph if the only element
r € R where 1, C 7 is 1y, itself. A set R, of routes is a mazimal subset of R if, for
all 7 € R either r ¢ R, or 7 € Ry, and for all s € R — {r}, r Z s. The maximum size
of a maximal subset of routes is the smallest range of the components of the weights
(for the two component weights considered here).

An example path algebra based on weights composed of latency and cost is
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as follows:

wi = (li,c)
0 = (0,0
© = (o0,00)
wi®w; = (li+1jc+¢))
wi 2w = (<) V(L=1)A (6 <c))
wiCwj = (<L) A(¢ <)

Figure 2.2 is a graphical depiction of the < relation on a set of weights for routes
(labeled A through I) to a given destination in an internet where the arrows are
interpreted as < tail of arrow >=<< head of arrow >. Figure 2.3 illustrates the C
relation where each route is represented as a subset of the plane with upper left-hand
corner at the coordinates for the route. The intuition communicated here is that a
route satisfies any constraint pair contained in its sub-region of the plane. Building on
this intuition, the C relation defines an ordering on routes in terms of the containment
(subset) of one route’s region within another’s, i.e. if w; C wj, then the set of constraint
pairs that route i can satisfy is a subset of those satisfiable by route j. The maximal
subset of a set of such routes (the set of routes shown with solid lines in Figure 2.3)
contains routes that satisfy all constraint pairs satisfiable by any route in the internet,
and is the goal of the routing computation. Clearly, any pair of routes in the maximal
subset of routes overlap, and can satisfy some set of constraint pairs. The < relation is
used to select one of the set of satisfying routes for a given constraint [56]. As defined
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in this example, the < relation has the affect of truncating the extent of a route’s
region at the first overlapping route to the right in the maximal subset of routes (as
shown in Figure 2.4). As a result, forwarding table lookups in this example involve

choosing the lowest latency route with acceptable cost.

2.4 Forwarding Mechanisms

The policy-based routing algorithms presented in this dissertation compute
multiple routes to the same destination to satisfy the policy requirements of an inter-
net. Such routes are not supported by current, host-address-based packet forwarding
mechanisms which only allow one route per destination. The underlying source of this
limitation is the restricted naming requirements supported by the current forwarding
mechanisms. Early work by Shoch [75] attempted to clarify the naming requirements

of computer communication by defining the following framework:

The name of a resource indicates what we seek;
an address indicates where it is, and
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a route tells us how to get there.

Subsequent work by Saltzer [67] proposed a more general framework in which
there may be one or more forms of names for a given type of object, and the naming
requirements of a communication system are defined by the possible bindings be-
tween the different types of objects in a system. Applying Saltzer’s naming framework
to standard Internet unicast communication, four types of objects can be identified:
hosts, network attachment points, network controllers, and network routes. The names
for these objects would then be Internet domain names, IP addresses, MAC addresses
(e.g., Ethernet addresses), and next hop IP addresses, respectively. Following Saltzer’s
model, the naming requirements of this Internet unicast communication system can
now be defined by the bindings that must be maintained among these four types of
objects (see Figure 2.5).

Focusing on the binding between network attachment points and network
routes we can see the source of this limitation of one route per destination is the use
of IP addresses in the mapping of a destination network attachment point to a net-
work route. Forcing the key to the mapping to be an IP address forces the one-to-one
mapping between destinations and routes identified above. The solution to this prob-
lem is to use label-swapping technology (e.g. MPLS [24]) as a generalized forwarding
mechanism which replaces IP addresses as the names for network attachment points
in the route binding function with arbitrary labels which can be defined by the routing

protocol to represent any policy/destination pair for which a route has been computed.
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) Figure 2.7: Labels with Policy-Based Forwarding
warding

A significant innovation of the policy-based routing architecture presented
here is the combination of a table-driven, hop-by-hop routing model with label-swap
forwarding mechanisms. Traditionally, label-swap forwarding has only been seen as
an appropriate match with an on-demand, source-driven routing model. Indeed, the
virtual-circuit nature of these previous solutions has been attributed to their use of
label-swap forwarding. Contrary to this view, the position taken in this work is that
host addresses and labels are largely equivalent alternatives for representing forwarding
state, and that the virtual-circuit nature of prior architectures derives from their use of
a source-driven forwarding model. The primary conceptual difference between address
and label-swap forwarding is that label-swap forwarding provides a clean separation of
the control and forwarding planes [81] within the network layer, where address-based
forwarding ties the two planes together. This separation provides what might be called

a topological anonymity of the forwarding plane that is critical to the implementation
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of policy-based routes.

As illustrated in Figure 2.6, label-swap forwarding can be used in the con-
text of traditional address-based forwarding. In this example the forwarding table is
referenced for both traffic classification (through the “address prefix” field), and for
label-swap forwarding (through the “local label” field). The benefit of this mechanism
for traffic forwarding is it can be generalized to handle policy-based forwarding. In
addition, label-swap forwarding can be used to implement traffic engineering via the
assignment of traffic to administrative classes which are used to select different paths
for traffic to the same destination depending on the labeling of links in the network
with administrative class sets. For example, Figure 2.7 shows a small network with
four nodes, two administrative classes A and B, and the given forwarding state for
reaching node 4. The benefits of this architecture are that it is based on forwarding
state that is agnostic to the definition of forwarding classes, allowing the data for-
warding plane to remain simple yet general; and it concentrates the path computation
functions in the routing protocol, which is the least time critical, and most flexible
component of the network layer.

The resulting routing architecture can be seen as analogous to the Reduced
Instruction Set Computer (RISC) processor architecture where, as part of the effort to
simplify processor designs to allow orders-of-magnitude improvements in the perfor-
mance of modern processors, researchers shifted much of the intelligence for managing
the use of processor resources to the compilers which were able to bring a higher-level

perspective to the task that allowed much more efficient use of the physical resources,
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as well as freeing the hardware designers to focus on performance issues of much sim-
pler processor architectures. Similarly, the communications architecture proposed here
requires a shift in intelligence for customized (i.e. policy-based) path composition to
the routing protocols and frees the network layer to focus solely on hop-by-hop forward-
ing issues, adding degrees of freedom to the network hardware engineering problem
that, hopefully, allow for significant advances in the performance and effectiveness of

network infrastructure.

2.5 Traditional Dijkstra Algorithm

Figure 2.8 presents the traditional Dijkstra algorithm. Section 3 presents a
number of enhancements to this algorithm to support different subsets of policy-based
routing services. This section presents the traditional algorithm with an analysis of its
complexity, and a proof of correctness as a baseline for the following sections to build
on.

The Dijkstra algorithm works by maintaining a set 7" of temporarily assigned
routes, and a set P of permanently assigned routes. Each routes is specified by a 3-
tuple <z, py,wy >. wy is the path weight currently assigned to node z. For nodes in
P, w; is the final weight assignment specifying the shortest distance to z. For nodes
in T, w; is the current best estimate of the shortest distance to = based on routes
currently contained in P. p, is the predecessor to z on the currently selected route
with weight w;. T} is the entry in T for node j.

The time complexity of the Dijkstra algorithm is dominated by the loop at
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algorithm Dijkstra
begin
1 Push(<s,s,0>, P);
2 for each {(s,j) € A(s)}
3 Insert(<j,s,ws; >, T);

4 while (|T| > 0)
begin

5 <i,pi,wi> — Min(T);

6  DeleteMin(T);

7 Push(<i,pi,w; >, P);

8 for each {(i,7) € A(3)}

9 if (T, = 0)

10 then Insert(<j,i,w; +wi;j >, T)

11 else if (w; + wi; < Tj.wj)

12 then DecreaseKey(< j,i,w; + wij >, T);
end

end

Figure 2.8: Traditional Dijkstra Shortest-Path Algorithm.

line 4, which is executed at most once for each node in the graph for a total of n times,
and the loop at line 7, which is executed at most once for each edge in the graph
for a total of m times. The most time consuming operations within these processing
blocks are the access to the set T' at lines 5 and 9. Assuming the use of a d-heap
for representing the set T', these operations require log,; n time [2]. Therefore, line 5
requires at most nlog,;n time, and line 9 requires at most mlog,n time, resulting in

a worst-case overall time complexity for Dijkstra of O(mlog,n).

2.5.1 Proof of Correctness

The following proof of correctness of the Dijkstra algorithm is derived from

that given in [9].

Lemma 1 At the beginning of each iteration of the loop at line 4, w, < wy for all

<p,pp,wp>€ P, and <t,p,w; >€T.
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Proof: By induction. The property is true for the base case of:

P ={<s,5,0>}, T={<z,s,wspz > | (s,z) € E}.

Assume it is true at the beginning of an iteration, it is also true after the iteration
since the node added to P during the iteration is the node with the least weight in 7',
the weight of all nodes left in T' after the iteration may only have been modified by

wj < w; + w;j (in line 10 or 11), and w;; > 0. [ |

Lemma 2 At the beginning of each iteration of the loop at line 4, for each route
J = <jpj,wj>€ P U T, w;is the least weight to j using paths with all nodes

except possibly j having routes in P.

Proof: By induction. The property holds for the base case (described in Lemma 1).
Assume the property holds at the start of a given iteration. Let I = <4, p;, w; > be
the route added to P in that iteration, and let K = < k,pg,wy > be the route of
each entry in P U T at the beginning of that iteration. There are three cases to be
considered for the iteration: J = I, J € P, and J ¢ PUI. For the case J = I the
property holds by the induction hypothesis (w; was the least weight from s to i using
paths with all routes except I belonging to set P before the iteration, and nothing
happens during the iteration to change this). For the case J € P the property holds
by the induction hypothesis (the distances for routes in P were better at the start of
the iteration) and Lemma, 1 (all wy, for K € T stay worse than w; in the iteration). For
the case J ¢ P U I, consider a path to j which is one of the shortest of all those to j

with all nodes except j in PUI, and let wj be the weight of this path (see Figure 2.9).
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Figure 2.9: Dijkstra Relaxation Step

Such a path must be composed of a shortest path to some k& composed of nodes with

routes in P U I, followed by an edge (k,j) € E. From this we have:

Yi T emﬁg{i}(wk + W)

= min kHéiI}D(wk + wkj), w; + wij
Since the induction hypothesis implies:

wj = iy (g + wiy)

we get:

w; = min [wj, w; + wi] .
Thus, in lines 8 and 9, w; is set to the least weight w;- to 7 using paths with all nodes
except j having routes in P U 1. |

Theorem 1 Dijkstra computes the shortest route to each node in N in finite time.

Proof: Since a route for a new node is added to P in each iteration, the algorithm
terminates after n iterations. By Lemma 2 Dijkstra computes routes for the shortest

paths to each destination. |
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The important observation to make of the correctness of the Dijkstra algo-

rithm is it is based on three invariants:

1. For all routes <p,pp,wp> € P and <t,ps,wy> € T, wp < wy.

2. For all routes <j,pj,w;> € P U T, w; is the weight of the shortest path to j

using nodes with routes in P.

3. In each iteration, the route moved from P to T is the shortest route in 7', and

is for a destination that doesn’t currently have a route in P.

These invariants are targeted very specifically for a single-constraint routing applica-
tion. The following slight generalization of the second invariant maintains the correct-
ness of compliant algorithms, but expands the range of algorithm design and imple-

mentation options:

2a. For all routes < j,p;j,w; > € P, w; is the shortest path to j using nodes with

routes in P.

2b. The set of routes <j,p;,w;> € P U T, contains a route whose weight is that

of the shortest path to j using nodes with routes in P.

Using these invariants, the algorithm in Figure 2.10 can be defined where all routes
discovered in the for loop at line 9 are unconditionally added to the heap T (where P;
denotes the entry for node i in queue P). The loop at line 4 considers the minimum
route in 7', until a route is found for a destination with no route in P. This would

not be an efficient algorithm as it would require a heap large enough to hold all
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algorithm Generalized-Dijkstra()
begin

1  Push(<s,s,0>, P);
2 for each {(s,j) € A(s)}
3 Insert(<j,s,ws; >, T);
4 while (|T| > 0)

begin
5 <i,pi,wi> < Min(T);
6 DeleteMin(T);
7 if (P, = 0)

then begin
8 Push(<i,p;,wi >, P);
9 for each {(3,7) € A(4)}
10 Insert(< j,i,w; +wi; >, T);
end
end
end

Figure 2.10: Generalized (but Impractical) Dijkstra.

routes discovered for a destination before the permanent route is determined (which
is limited to the number of neighbors of the destination). However, as will be shown
in the remainder of this dissertation, it provides a good model for efficient solutions

to challenging, policy-based routing problems.
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Chapter 3

Algorithms for Exact Solutions

The challenge of multi-constrained routing is to find an optimal set of independent
routes to each destination in an efficient manner. A generalized set of invariants re-
quired for correctness of Dijkstra-like single-constraint algorithms was presented in the
previous section which provides a fruitful foundation for multi-constrained algorithms.
The appeal of these invariants for use in multi-constrained routing is that they support

the presence of multiple routes to the same destination during the computation. Due

1. Forallroutes I € Pand J €T, 1=<J.
All routes to j € P are incomparable for some

satisfying truth assignment.

3. The maximal subset of routes to j € PUT
represents the maximal subset of paths to j
using nodes with routes in P.

4. Ineach iteration, the route moved from 7" to P
is the lightest route in 7', and is incomparable
with any route for the same destination in P
with a shared satisfying truth assignment.

Table 3.1: Invariants Required for Correct Multi-Constrained Routing
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P = Queue of permanent routes to all nodes.

P, = Queue of permanent routes to node n.

T = Heap of temporary routes.

T, = Entryin T for node n.

B, = Balanced tree of routes for node n.

H, = Heap of best routes on each link for node n.

HF = Entry in H, for link (k,n).

k= Queue of routes for node n over link (k,n).

&, = Summary of traffic expression for all routes in
P,.

ek = Summary of traffic expressions for all routes
that have been added to QF (included those
added but subsequently deleted).

Table 3.2: Notation.

to the presence of multiple metrics for each link and path, the generalized invariants
for single-metric routing must be enhanced as shown in Table 3.1.

The remainder of this section presents a family of routing algorithms that
provide on-demand and table-driven solutions for traffic engineering only, QoS only,
and combined traffic engineering and QoS routing, simulation results from these al-
gorithms, and a review of previous solutions for computing optimal, policy-based
routes. The notation used in the algorithms presented in the following is summa-
rized in Table 3.2. In addition, the maximum number of unique truth assignments
is denoted by A = 2P (see Section 2.2), the maximum number of unique weights by
W = min(range of weight components) (see Section 2.3), and the maximum number
of adjacent neighbors by ay,q; = max{| A(¢)| | € N}. Table 3.3 defines the primitive
operations for queues, heaps, and balanced trees used in the algorithms, and gives
their time complexity used in the complexity analysis of the algorithms. Note that d-
Heaps are assumed in the remainder of this dissertation rather than Fibonacci-Heaps
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Notation Description Complexity
Queue
Push(r, Q) Insert record r at tail of queue 0(1)
Q
Head(Q) Return record at head of queue 0(1)
Q
Pop(Q) Delete record at head of queue 0(1)
Q
PopTail(Q) Delete record at tail of queue 0(1)
Q
d-Heap
Insert(r,H) Insert record r in heap H O(logg(n))
IncreaseKey(r,mp,) Replace record r, in heap with  O(dlog,(n))
record r having greater key
value
DecreaseKey(r,r,) Replace record 7, in heap  O(log,(n))
with record r having lesser key
value
Min(H) Return record in heap H with 0(1)
smallest key value
DeleteMin(H) Delete record in heap H with O(dlogy(n))
smallest key value
Delete(ry) Delete record ry, from heap O(dlog,(n))
Balanced Tree
Insert(r, B) Insert record r in tree B O(log(n))
Min(B) Return record in tree B with  O(log(n))
smallest key value
DeleteMin(B) Delete record in tree B with  O(log(n))

smallest key value

Table 3.3: Operations on Data Structures [2].
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Figure 3.1: Model of Data structures for Basic Algorithms
in spite of the better asymptotic behavior of the latter. This choice was made due
to the simplicity of the d-Heap algorithms (allowing for simpler implementation), and
the fact, due to the large constant factors associated with Fibonacci heap’s run-time,
that they are actually less efficient when applied to the scale of problem expected for
these algorithms.

The algorithms presented in this section apply the algorithmic model pre-
sented in Figure 2.10 to the data structure model shown in Figure 3.1. In this struc-
ture, a balanced tree (B;) is maintained for each node in the graph to hold newly
discovered, temporary labeled routes for that node. The heap T contains the lightest
weight entry from each non-empty B; (for a maximum of n entries). Lastly, a queue,
F;, is maintained for each node which contains the set of permanently labeled routes
discovered by the algorithm, in the order in which they are discovered (which will be in
increasing weight). The general flow of these algorithms will be to take the minimum
entry from the heap T', compare it with existing routes in the appropriate F;, if it is
incomparable by existing routes in P; it is pushed onto F;, and “relaxed” routes for

its neighbors are added to the appropriate B,’s.
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As will be detailed below, the runtime complexity of these algorithms all have
a log F factor (where F' denotes the maximum number of forwarding classes, whose
components depend on the algorithm). This factor reflects the cost of maintaining B;,
which may grow to contain a4, F elements. The use of balanced trees for B; is driven
by the requirements that finding the minimum element of B; must be inexpensive, that
no assumptions can be made of the order in which routes are added to a given B;,
and that the maximum size of B; (anqF') is too large (as well as unlikely to occur) to
justify the use of a heap (which requires a fixed maximum size). Section 3.7 presents
enhanced versions of the algorithms in this section that exploit the fact that routes to
a given node with the same predecessor are discovered in increasing (or non-decreasing,
depending on the algorithm) order. This ordering is used to reduce the binary tree
data structures to more intricate, but more efficient queue-based data structures with
the result that the maintenance of these structures becomes a lower order term in the

complexity of the algorithms.

3.1 On-Demand Traffic Engineering

As a demonstration of the traffic algebra, a modified version of the Dijkstra
algorithm that supports the on-demand computation of routes subject to link-predicate
constraints is given in Figure 3.2. In this algorithm a request R is being processed,
typically triggered by the receipt of the first packet of a flow, with the set of truth
assignments to the primitive propositions given by R,. This algorithm works by
evaluating the link predicate of every candidate link on the given truth assignment,
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algorithm OD-TE-Dijkstra
begin

1 Push(<s,s,0>, P);

2 for each {(s,j) € A(s)}

3 Insert(<j,s,ws; >, T);

4 while (|T| > 0)
begin

5 <ip,i,wi> < Min(T);

6  DeleteMin(T);

7 Push(<i,pi,w; >, P);

8  for each {(i,j) € A(i) | &;(R.)}

9 if (I; = 0)

10 then Insert(<j,i,w; + wij)

11 else if (Tj.w; > w; + wij)

12 then DecreaseKey(< j,i,w; +wij >, T);
end

end

Figure 3.2: On-Demand, Traffic Engineering Dijkstra.

specified by &;;(R,), and processing only those links whose link predicate evaluates to
1 (or true).

This algorithm works by running the traditional Dijkstra algorithm on the
subset of the graph containing links whose predicates are satisfied by the request’s
truth assignment (R,). This is, in effect, an in-lined version of the prune preprocess-
ing solution discussed in Section 1. The satisfying sub-graph is “discovered” as the
algorithm progresses.

Implementing, in effect, the Dijkstra algorithm on a subset of the graph,
ignoring the cost for traffic algebra expression evaluations (which will be analyzed
in depth in Section 5), the time complexity of this algorithm is the same as the
traditional Dijkstra algorithm (i.e. mlog,n). Similarly, the correctness derives from

the correctness of the Dijkstra algorithm which was proven in Section 2.5.1.
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algorithm TD-TE-Dijkstra()
begin

1 Push(<s,s,0,1>, Ps);
2 for each {(s,j) € A(s)}
3 Insert(<j,s,wsj,es;>, T);
4 while (|T| > 0)
begin

5 <i,pi,wi, i > < Min(T);
6 DeleteMin(B;);
7 if (| B;| = 0)
8 then Delete Min(T)
9 else IncreaseKey(Min(B;), T;);
10 if (0(e; — &))

then begin
11 Push(<i,pi,wi,ei >, Pi);
12 & + & Ve
13 for each {(i,j) € A(:) | SAT(ei Neij) N —((ei Neij) — &)}

begin
14 wj — wi + wij; € < & N Eij;
15 if (T; = 0)
16 then Insert(<j,i,wj,e; >, T)
17 else if (w; < Tj.w)
18 then DecreaseKey(< j,i,wj, e;>, T);
19 Insert(< j,i,wj,e; >, Bj);
end
end
end

end
Figure 3.3: Basic, Table-Driven, Traffic-Engineering Dijkstra.

3.2 Table-Driven Traffic Engineering

Figure 3.3 presents a further enhancement to Dijkstra that precomputes all
optimal routes to all destinations in an internet in the presence of administrative
constraints on the links in the network. In effect, this algorithm computes routes in
the virtual graph induced by the link predicates existing in the internet. This virtual
graph is composed of all nodes reachable by some path with a satisfiable path predicate,
and all links composing these paths. Similar to the on-demand version, the virtual

graph is “discovered” as needed by the algorithm as the computation progresses.
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Similar to Dijkstra, TD-TE-Dijkstra works by maintaining a temporarily la-
beled set of routes, T', and a queue of permanently labeled set of routes per destination,
P;. Each route is specified by a four-tuple <d, pg,wq, €4 >. For routes in P, w, is the
final weight assignment specifying the shortest distance to z for traffic satisfying the
path expression ;. For routes in T', w, is the current best estimate of this distance
based on routes currently contained in P. p, is the predecessor to z for the route.
Similar to the Generalized-Dijkstra algorithm (Figure 2.10), TD-TE-Dijkstra proceeds
using the typical Dijkstra iteration over the n'* closest node with the difference that,
as new routes are discovered, they are inserted in the heap T if there is some class
of traffic that can satisfy the path expression (the SAT() test at line 13), and at the
top of each iteration routes are pulled from T' and discarded until one is found that is
unique in P (in the sense that it includes a traffic class for which no route currently
exists in P;), which is then added to P.

Ignoring the cost for the satisfiability problem (which will be analyzed in
detail in Section 5), the time complexity of the TD-TE-Dijkstra algorithm is dominated
by the loops at lines 4 and 13. The loop at line 4 is executed at most once for each
incomparable path (in terms of path predicates) to each node in the graph for a
total of nA times. The loop at line 13 is executed at most once for each distinct
instance of an edge in the graph, for a total of mA times. The most time consuming
operation performed as part of the loop at line 4 is the deletion from the balanced
tree B; at line 6 of the best temporarily labeled route with per-operation cost of

log aype A, and an aggregate cost of nAloga,,q,A. The accesses in lines 7-9 to the best
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route in heap T have a per-operation cost log,;n, for an aggregate cost of mAlogn.
For the loop at line 13, the most time consuming operation is the addition to the
balanced tree B; at line 19 with a per-operation cost of log a;m. A, and an aggregate
cost of mAlog apesA. Therefore, the worst case time complexity of TD-TE-Dijkstra,

dominated by the operation at line 19, is O(mAlog A).

3.2.1 Proof of Correctness

The correctness of this algorithm is based on the generalized invariants (Ta-
ble 3.1). An optimization is included at line 13 where traffic classes supported by new
routes are tested against those supported by routes existing in P; before being included
in the set of temporary labeled routes. In the following, Lemma 3 shows that routes
in P have a smaller weight than those in 7'; Lemma 4 shows that each route in P is
uniquely best for some truth assignments using routes in P; and Lemma 5 shows that
there is a route in P U T for every shortest path with satisfying truth assignments

using nodes with routes in P.

Lemma 3 At the beginning of each iteration of the loop at line 4, wy, < wy for all

<P,Pp,Wp,Ep> € P and <t,py,w,e¢> € T.

Proof: By induction. The property holds for the base case (at the start of the first

iteration) of:

P={<s,5,0,1>}, T ={<x,s,wsz,5z> | (s,2) € E}.

Assume it holds at the beginning of an iteration, it is also true after the iteration since

the route I =< i,p;,w;,&; > added to P during the iteration is the route with the
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smallest distance in T, the distance of all routes N =< n, py,wn,en > left in T after

the iteration may only have been modified by w; < w; + w;; (line 14), and w;; > 0. W

Lemma 4 FEach route J = <j,pj,wj,ej> € P is the only route in P with the least
weight to j for some set of satisfying truth assignments to €; using paths with nodes

having routes in P satisfied by the set of truth assignments.

Proof: By induction. The property holds for the base case. Assume it holds at the
start of some iteration. Let I = < i,p;,w;,&; > be the route added to P in that
iteration. The property holds following the iteration because: by Lemma 3, all routes
in P are less than I; by the induction hypothesis, all routes in P are best for some truth
assignments; and, since I is the smallest entry in 7' (line 5), and I is only added to P
(line 11) if there are some satisfying truth assignments for ¢; that are not satisfied by
routes in P (line 10), I is uniquely best among the route in P U I for those satisfying

truth assignments to g; A —&;. |

Lemma 5 For every path using nodes with routes in P U T that is shortest for a
truth assignment 7, there exists a route J = <j,pj,wj,e;> € P U T such that T

satisfies €; and w; is the weight of the path.

Proof: By induction. The property holds for the base case. Assume the property
holds at the start of a given iteration. Let I =<1, p;, w;,&; > be the route added to
P in that iteration, K =<k, pg, wg, € > for each route in P U T at the beginning
of that iteration, and N =< j,p;,w;,&; > be the new route possibly added to T in
that iteration (lines 14-19). There are three cases to be considered at the start of the
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iteration: J =1,J € P, and J ¢ PU{I}. For the case J = I the property holds after
the iteration by the induction hypothesis and the fact, since w;, > 0, that w; < wy
(line 14). For the case J € P the property holds after the iteration by the induction
hypothesis and Lemma 3. For the case J ¢ P U {I}, consider a path to j which
is one of the shortest of all those to j composed of routes in P U {I} where 7 satisfies
the path predicate; let w; be the weight of this path, and s;- be its path predicate (see
Figure 2.9). Such a path must be composed of a shortest path to some k& with a route
in P U {I}, followed by an edge (k,j) € E such that €;(r) A €g;(7). From this we

have:

W = min __ (wg + wi;)
kePU{I}ep(T)Aeg;(T)

w; + Wiy if@-(T)/\EZj(T)

= min min_ (wg + wgj),
kEP|ep(T)Nep; (T .
lek(T)Nek; (7) 00 otherwise
Since Lemma 4 implies
wi=  min_ (0t )

kEP|ex(T)AeR; (1)
we get
/ wi + w1 (1) A& (T)
w; = min |wj,
00 otherwise

Thus, lines 14-19 ensure that IV is only added to T if w,, is the least weight w;- to 7
using paths with all nodes = except possibly j having routes in P where &,(7) Ag4(T)
is true. Furthermore, since no routes for a given destination are deleted from 7' (lines
6—9) until it is the least weight route for the destination, the property holds at the end

of the iteration. ]
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algorithm OD-TE-CM-Dijkstra
begin

1 Push(<s,s,0>, P);

2 for each {(s,j) € A(s)}

3 Insert(<j,s,ws; >, T);

4 while (|T| > 0)
begin

5 <ipi,wi>— Min(T);

6  DeleteMin(T);

7 Push(<i,p;,w; >, P);

8 for each {(,j) € AG) | E;(R) A (Re <ci)}

9 if (T; = 0)

10 then Insert(<j,i,w; ® wij)

11 else if (w; B wi; < Tj.wj)

12 then DecreaseKey(< j,i,w; ®wij >, T);
end

end

Figure 3.4: On-Demand, Traffic Engineering with Concave QoS.

Theorem 2 TD-TE-Dijkstra computes a set of shortest routes to each reachable node

in N for every truth assignment with a path to the node in G.

Proof: Since the number of routes in the set of routes induced by G is finite, no
duplicate routes are added to T', and a new route is added to P in each iteration, the
algorithm terminates after a finite number of iterations. By Lemma 4, every route in
P is a uniquely best route for some set of truth assignments. By Lemma, 5, the set
of routes in P U T contains routes for all shortest paths using nods with routes in
P. Therefore, the algorithm terminates with 7' = (), and P containing a route for
the shortest path to every reachable node in IV for every truth assignment for which

a path exists. [
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3.3 On-Demand Traffic Engineering and Concave QoS

Figure 3.4 presents a modified version of the OD-TE-Dijkstra algorithm (Fig-
ure 3.2), enhanced to support concave QoS link metrics. The OD-TE-CM-Dijkstra
algorithm performs such computations where the request R also includes a set of con-
cave link metric constraints (R.), and each link is labeled with a QoS subset, c;;, of
the concave link metrics, w;; (i.e. ¢;;j C wij). The algorithm works by testing the
constraints for every candidate link, and only processing those links whose metrics
satisfy the constraint. This is, in effect, an in-lined version of the prune preprocessing
solution mentioned discussed in Section 1. The satisfying sub-graph is “discovered”
as the algorithm progresses.

Implementing, in effect, the Dijkstra algorithm on a subset of the graph,
ignoring the cost for traffic algebra expression evaluations (which will be analyzed in
depth in Section 5), the time complexity of this algorithm is the same as the traditional
Dijkstra algorithm (mlogyn). Similarly, the correctness derives from the correctness

of the Dijkstra algorithm which was proven in Section 2.5.1.

3.4 Table-Driven General QoS

Figure 3.5 presents a modified Dijkstra algorithm that computes an optimal
set of routes to each destination subject to multiple general (additive or concave) path
metrics. An optimal set of routes for a graph is a subset R, of the routes in the graph

such that for any requested set of metric constraints w, to a destination d, the shortest
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algorithm TD-QoS-Dijkstra
begin

1 Push(<s,s,0>, P);
2 for each {(s,j) € A(s)}
3 Insert(<j,s,ws;j >, T);
4 while (|T| > 0)
begin
5 <i,pi,wi> +— Min(T);
6 DeleteMin(B;);
7 if (|B;| = 0)
8 then Delete Min(T')
9 else IncreaseKey(Min(B;), T;);
10 if (w; £ Tail(P;).w)
then begin

11 Push(<i,p;,wi >, P;);
12 for each {(,j) € A(}) | wi ®wi; L Tail(P;).w}

begin
13 wj & wi @ wij;
14 if (I; = 0)
15 then Insert(<j,i,w; >, T)
16 else if (w; < Tj.w)
17 then DecreaseKey(< j,t,w; >, T);
18 Insert(<j,i,w; >, Bj);

end

end
end

end

Figure 3.5: Table-Driven, QoS Dijkstra.

route <d,ps,ws > to d in R, such that w, C ws is a shortest path in the graph with
path metrics satisfying the request constraints. The following theorem defines the goal

of the TD-QoS-Dijkstra in terms of the path algebra presented above.

Theorem 3 Any mazimal subset of the set of routes R induced by a given G, is an

optimal set of routes for the network modeled by G.

Proof: By contradiction. Given a route request w, for destination d, let Rpest = <
d, py,wp > be the smallest route from a maximal set of routes for the graph where
wr E wp. Also assume the route is not the shortest path to d satisfying w,. There

must exist a route Rgporter = < d,ps,ws > that is not a maximal route for the graph
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where w, C wg. This implies that w, > wp > ws. This either implies that wy C wg,
which contradicts the fact that Rpes: is a maximal route for the graph, or that there
exists another maximal route R}, , = <d,p},w; > where wy C wj, (since Rgporter 1S 0Ot
a maximal route), which implies that wj < ws < wp < wy, which contradicts the fact

that Rpes; is the smallest maximal route < w. |

Therefore, the route computation involves the computation of a maximal set of routes
for the input graph, and the route lookup function involves finding the smallest route
from this set such that the request is C the maximal route.

The complexity of TD-QoS-Dijkstra is of the same form as that for TD-TE-
Dijkstra (Section 3.2), except for the source of the limit on the maximum number of
incomparable paths to a destination. For TD-QoS-Dijkstra the maximum number of
incomparable paths (in terms of incomparable path weight values) paths to a given
node in the graph is limited by the number of unique path weight values, W. Similar to
TD-TE-Dijkstra, ignoring the cost for the satisfiability problem, the time complexity
of the TD-QoS-Dijkstra algorithm is dominated by the loops at lines 4 and 12. The
loop at line 4 is executed at most once for each incomparable path (in terms of path
weights) to each node in the graph for a total of nW times. The loop at line 12 is
executed at most once for each distinct instance of an edge in the graph, for a total of
mW times. The most time consuming operation performed as part of the loop at line
4 is the deletion from the balanced tree B; at line 6 of the best temporarily labeled

route with per-operation cost of log a4 W, and an aggregate cost of nW log aas W
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The accesses in lines 7-9 to the best route in heap T" have a per-operation cost log, n,
for an aggregate cost of mW logn. For the loop at line 12, the most time consuming
operation is the addition to the balanced tree B; at line 18 with a per-operation
cost of log ame, W, and an aggregate cost of mW log a;e W. Therefore, the worst
case time complexity of TD-TE-Dijkstra, dominated by the operation at line 18, is
O(mW log W).

TD-QoS-Dijkstra performs the same computation as Jaffe’s pseudopolyno-
mial time algorithm for the MCP problem [42] using only worst case O(nW') space
complexity compared with guaranteed space complexity of O(n2b) (where b is the
largest metric value) of Jaffe’s algorithm. The space savings comes from directly com-
puting the maximal set of routes. From this set of routes, all n?b routes computed by

Jaffe’s algorithm can be inferred with minimal overhead.

3.4.1 Proof of Correctness

Lemma 6 At the beginning of each iteration of the loop at line 3, for all pairs of

routes to to a given destination j, <j,pp,wp> € P and <j,pr,w;> €T, wp < wy.

Proof: By induction. The property holds for the base case (at the start of the first

iteration) of:

P=1{<s,50>}, T={<z,s,wsz> | (s,z) € E}.

Assume it holds at the beginning of an iteration. Let ¢ be the destination for which
a route is moved from 7' to P in the iteration. There are two cases to be considered

for each iteration: j = 4 and j # i. For the case j = ¢ the property holds by the
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induction hypothesis, the fact that the lightest weight route to j in T' is moved to P
in the iteration, and the fact, since no self-loops (i.e. edges of the form (j,j)) exist in
the graph), that no routes to j are modified in 7' during the iteration. For the case
j # ¢ the property holds by the induction hypothesis, and the fact, since all routes to
i left in T after the iteration may only have been modified by w; ¢ w; @ wj; (at line

13), that all routes to ¢ in 7" must still be greater than any route in P. |

Lemma 7 All routes J = <j,pj,w;j> € P; are incomparable.

Proof: By induction. The property holds for the base case. Assume the property
holds at the start of some iteration. Let I = <4, p;,w; > be the route considered for
addition to P; in that iteration. By Lemma 6, w; < w;, and therefore, by Property 1,
wj [ w;. Furthermore, w; [ w; by the test at line 10. Therefore, if T is added
to P; at line 11, I is incomparable with all routes in P;, and the property still holds

following the iteration. |

Lemma 8 For any j € N, the mazimal set of routes to j using paths composed of

nodes with routes in P is a subset of the set of routes {<j,pj,w;> € PUT}.

Proof: By induction. The property holds for the base case. Assume the property
holds at the start of some iteration. Let I = < i,p;,w; > be the route considered
for addition to P at line 11. [ is not added to P only if it is comparable to a route
currently in P (line 10). Similarly, relaxed routes are not added to T' (lines 14-18) only
if they are comparable to a route in P (line 12). Therefore, all potentially incomparable
routes are kept in P or T in each iteration, and the property holds after the iteration.
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Theorem 4 TD-QoS-Dijkstra computes the maximal set of routes to each node in N

in finite time.

Proof: Since the number of routes in the set of routes induced by G is finite, and a new
route is added to P in each iteration, the algorithm terminates after a finite number
of iterations. Therefore, when the algorithm terminates 7' is empty. By Lemma 7 all
routes in P are incomparable. Furthermore, by Lemma 8, the maximal set of routes

for GG is a subset of P. [ ]

3.5 Table-Driven Traffic Engineering and General QoS

Figure 3.6 presents a modified Dijkstra algorithm that computes an optimal
set of routes to each destination subject to multiple general (additive or concave) path
metrics, in the presence of administrative constraints on the links. Ignoring the costs
for the satisfiability problem (which will be analyzed in Chapter 5, the time complexity
of Policy-Based-Dijkstra is dominated by the loops at lines 4, 11, and 16. Similar to the
complexity of the previous algorithms, the loop at line 4 is executed nW A times, and
the loop at line 16 mW A times. The loop at line 11, which is new in this algorithm,
scans the entries in P; to verify a new route is best for some truth assignment. For a
given destination, this loop is executed at most an incrementally increasing number of

times, starting at 0 and growing to WA — 1 (the maximum number of unique routes
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algorithm Policy-Based-Dijkstra

W N =

0 g o ot

11
12
13
14

15
16

17
18
19
20
21
22

begin
Push(< s,5,0,1>, Ps);
for each {(s,j) € A(s)}
Insert(<j,s, wsj,es;>, T);
while (|T| > 0)
begin
<i,pi,wi, ;> — Min(T);
Delete Min(B;);
if (| Bi| = 0)
then Delete Min(T)
else IncreaseKey(Min(B;), T;);
Etmp — E&i; ptr <« Tail(F;);
while ((eimp # 0) A (ptr #0))
if (w; C ptrw)
Etmp $— Etmp N Tpir.e; ptr < pir.next;
if (Etmp 75 0)
then begin
Push(<i,pi,wi,ei>, Pi);
for each {(i,5) € A(i) | SAT (gtmp Neij)}

begin
wj < wi @ wij; &  Etmp A Eij;
if (T; = 0)

then Insert(<j,i,wj,e; >, T)

else if (w; < Tj.w)
then DecreaseKey(< j,i,w;j,e;>, T);

Insert(<j, 6wy, €5 >, Bj);

end

end
end
end

Figure 3.6: General-Policy-Based Dijkstra.

to a given destination) for a total of

times. For completeness, the statements at lines 6 and 22 take time proportional to
log(amaez W A) for a total of nW Alog(amqe; W A) and mW Alog(amqe: W A), respectively;
and those in lines 7-9 and 18-20 proportional to log,(n) for a total of nW Alog,(n)

and mW Alog,(n), respectively. Therefore, the worst case time complexity of Policy-

%Ez_(WA—UWA
-

=1

Based-Dijkstra, dominated by the loop at line 11, is O(nW2A2).
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3.5.1 Proof of Correctness

Lemma 9 At the beginning of each iteration of the loop at line 3, for all pairs of
routes to to a given destination j, <j,ep,wp,pp> € P and <j, &, wi,pr > € T where

SAT (ep Ner), wp < wy.

Proof: By induction. The property is true for the base case (following the first

iteration) of:

P={<s5,1,0,s>}, T ={<z, €52, wsz, 5> | (s,2) € E}.

Assume it is true at the beginning of an iteration. Let ¢ be the destination for which
a route is moved from 7" to P in the iteration. There are two cases to be considered
for each iteration: 7 = 7 and j # ¢. For the case j = ¢ the property holds by the
induction hypothesis, the fact that the lightest weight route to j in T" is moved to P
in the iteration, and the fact, since no self-loops (i.e. edges of the form (j, 7)) exist in
the graph), that no routes to j are modified in 7' during the iteration. For the case
j # i the property holds by the induction hypothesis, and the fact, since all routes to
i left in T after the iteration may only have been modified by w; ¢ w; @ wj; (at line

16), that all routes to i in 7" must still be greater than any route in P. |

Lemma 10 For all routes J = <j,pj,w;> € P}, the set of routes

<JyDg, Wy, x> € P; | SAT(e; ANeg)} are incomparable.
J J

Proof: By induction. The property holds for the base case. Assume the property
holds at the start of some iteration. Let I = <1, p;, w;, £; > be the route considered for

addition to P; in that iteration. By Lemma 9, w; < w;, and therefore, by Property 1,
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w; [ w;. Furthermore, from the loop at line 11, =(g; — €gum) Where €5y, is the
disjunction of path expressions for all J where SAT(e; A €;). Therefore, if I is added
to P; at line 15, I is incomparable with all routes in P; where SAT (¢; A €;), and the

property still holds following the iteration. |

Lemma 11 For each route J = <j,pj,w;,e;> € P U T the mazimal set of routes
to j using paths composed of routes in the set {<s,ps,ws,65> € P | SAT (5 Nes)} is

a subset of {<J,pg, Wy 65> € PUT | SAT (5 Neg)}-

Proof: By induction. The property holds for the base case. Assume the property
holds at the start of some iteration. Let I = <4, p;, w;, €; > be the route considered
for addition to P at line 15. I is not added to P only if it is comparable to routes
currently in P; for all satisfying truth assignments for ¢; (lines 11-12). Furthermore,
all relaxed routes are added to T' (lines 18-22). Therefore, all potentially incomparable
routes are kept in P or T in each iteration, and the property holds after the iteration.

Theorem 5 Policy-Based-Dijkstra computes the mazimal set of routes to each node

in N for each satisfying truth assignment in finite time.

Proof: Since the number of routes in the set of routes induced by G is finite, and a
route is delete from T in each iteration, the algorithm terminates after a finite number
of iterations. Therefore, when the algorithm terminates 7" is empty. By Lemma 10 all
routes in P are incomparable. Furthermore, by Lemma 11, the maximal set of routes

for GG is a subset of P. ]

50



3.6 Performance Results of Basic Algorithms

Figures 3.7 through 3.12 (starting on page 54) show the performance of the
TD-QoS-Dijkstra algorithm on problems with a range of values for the parameters
graph size, average degree, and maximum metric. Each data point in these graphs
represents the worst-case performance of the algorithm over 100 runs for a given set
of values for these parameters. For each set of these values 10 graphs were randomly
generated, and 10 weight assignments were randomly generated for each graph. The
graph size range from 100 to 1600 nodes, the average degree from 8 to 32, and the
maximum metric from 100 to 65535. Note that the ranges of metrics used are much
larger than those typically encountered in deployed Internets. These values were chosen
to try and bring out the exponential behavior of the algorithms, which isn’t evident
at smaller scales, and to match other published results ([76]). Space was measured in
terms of the maximum number of entries in the B; balanced tree structures. The main
results to note are that performance as a function of graph size and degree exhibit
fairly dramatic growth, hinting at exponential behavior on larger scales, while the
maximum metric value has no significant affect on performance. These results agree
with those reported in [76].

Figures 3.13 through 3.15 (starting on page 57) graph the number of candidate
routes, defined as a route considered by the for loop at line 12 of the TD-QoS-Dijkstra
algorithm, as a function of the same parameters. The similarity of these graphs with
the performance graphs illustrates the fact that the performance of these algorithms is

fundamentally driven by the number of paths in a graph. Based on these results, the
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graphs in Figures 3.16 through 3.21 (starting on page 58) showing the performance
results normalized per candidate route were generated to identify the performance
characteristics of the underlying algorithms and data structures. Of these graphs,
the most significant results are shown in Figures 3.16 and 3.17 where the normalized
runtime and space performance of the algorithms are shown to have a significant
correlation with the size of the graph. Figure 3.16 illustrates the strongly log-based
increase in the performance of the balanced tree and heap data structures, used for B;
and T in the algorithms, as a function of the size of the graphs. Figure 3.17 illustrates
that the candidate discard strategies get more effective as the networks grow. The
small variation on the y-axis, and the relative flat graphs of Figures 3.19 through 3.21
illustrate the lack of correlation of space with average degree, and space and runtime
with maximum metric.

Figures 3.22 through 3.24 (starting on page 61) show the performance of the
TD-TE-Dijkstra algorithm on a similar range of parameters. Each data point rep-
resents the worst performance of the algorithm out of 9 runs (3 randomly generated
graphs with 3 random link weight assignments each). To control the number of for-
warding classes in a graph, each graph was generated as two connected subgraphs
with the specified average degree and half the specified number of nodes. Bridge links
were then added between 32 randomly selected pairs of vertices from each subgraph
to form a single graph with at most 32 paths between any two nodes in different orig-
inal subgraphs. 32 tests of the algorithm are then run with all traffic classes initially

allocated to one bridge link (resulting in one forwarding class for all 32 traffic classes),
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and successive runs are performed with traffic classes distributed over one additional
link for each test, with the final run allowing one traffic class over each bridge link
(resulting in a one-to-one mapping of traffic classes to forwarding classes). In each test
the link predicate of all non-bridge links is set to allow all traffic classes (i.e. it is set to
true). Each plot shows the results for 1, 8, 16, 24, and 32 forwarding classes in terms
of the runtime of the algorithm normalized as a fraction of the “Brute Force” runtime
required to run the traditional Dijkstra algorithm once for each traffic class. The
plots show that the algorithm performed very well, providing significant savings when
the number of forwarding classes is small, and gracefully degrading as the number of
forwarding classes grows. Figures 3.25 through 3.27 (starting on page 63) plot the
results of these tests normalized per candidate route, illustrating again the log-based
performance of the balanced tree and heap data structures.

There are two lessons to be learned from this analysis. First, to minimize
the underlying performance driver, candidate routes should be discarded or deleted
as soon as it can be determined that they will not be eligible for inclusion in the set
of permanent routes. And second, to reduce the performance multiplier incurred by
each candidate route considered by the algorithm, the data structures used for the
temporary routes should be made as efficient as possible. The next section presents
enhanced versions of these algorithms that use these strategies to achieve significant

performance improvements.
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3.7 Enhanced Exact Algorithms

As discussed in the introduction to this chapter, the log(A) and log(W)
factors in the complexity of the TD-TE-Dijkstra and TD-QoS-Dijkstra algorithms
(respectively) presented in Sections 3.2 and 3.4 is a result of the use of a balanced tree
for storing the temporarily labeled nodes for a given destination. This section presents
enhanced versions of those algorithms which use a queue-based data structure for this
purpose, reducing the cost of managing these structures to a lower order term in the
time complexity. As a result the runtime cost of the enhanced algorithms becomes

dominated by log;(n) factors from the manipulation of the T' heap.
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Figure 3.28: Model of Data Structures for Enhanced Algorithms

This enhancement is based on the property that routes to a given node with
the same predecessor are discovered in strictly increasing (or non-decreasing, depend-
ing on the algorithm) order. This property is a direct result of Lemmas 3 and 6
which imply that routes to a given predecessor will be discovered in strictly increasing
(non-decreasing) order, and therefore the order of discovery of routes from a given
predecessor to one of its neighbors will have the same property.

Based on this insight, the data structure shown in Figure 3.28 can be used
to improve the performance of the algorithms presented in Chapter 3. In this data
structure the balanced trees for each node are replaced with a set of queues for each
neighbor of the node, and a summary heap containing the head of each neighbor
queue. Exploiting the ordering property of these queues, the algorithms ensure that
each node head H;, and therefore T;, contain the lightest route in the link queues that
is not subsumed by the routes in F;.

Figure 3.29 presents the enhanced version of the TD-TE-Dijkstra algorithm.
As described in Table 3.2, the new notation £F represents a traffic expression represent-

ing all routes that have been added to Q. The proof of correctness of this algorithm
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algorithm TD-TE-Dijkstra
begin

1 for each {n € N} &, + O0;
2 for each {(n,m) € E} €' « ep, <+ 0;
3 Push(<s,s,0,1>, P);
4 for each {(s,j) € A(s)}

begin
5 Push(<j,s,wsj €55 >, Q7);
6 Insert(<j,s,wsj,es5 >, Hj);
7 Insert(<j,s,wsj €55 >, T);

end
8 while (|T'| > 0)

begin
9 <n,p,w,e> +— Min(T);
10 En +— En V g
11 Push(<mn,p,w,e>, Pn);
12 DeleteTMin();
13 for each {(n,j) € A(n)}

begin
14 Wn — WO Wnj; En — EANEg;;
15 AddCandidate(< j, n, wn, en >);
end
end

end

function TE-DeleteTMin()
// Delete minimum entry from T and restore invariants.

// Invariant 3 — only deletes routes (line 9) where
// every STA for the route also satisfies a known
// better route (a route in Py).
// Invariant 4 — loop at line 7 ensures there are some
// STAs for new Ty that do not satisfy any known
//  better route (current T3 or any route in Pp).
// Assumes £, has been updated with Min(T).e.
begin
1 <n,p,w,e> — Min(T);
2 Pop(QF);
3 i (lQr|> 0)
4 then IncreaseKey(Head(QY), HE)
5 else DeleteMin(Hn);
6 i (|Hn|> 0)
then begin
// Find smallest route in link queues
// where = (e — Ep).
7 for each {(n,k) € A(n) | (1Q¥|> 0) A
(Head(QE).e — £}
begin
8 while ((|Q¥ | > 0) A (Head(QF).e — £n))
9 Pop(Q});
10 if (1QF|> o)
11 then IncreaseKey(Head(QfL), H,’f)
12 else Delete(HE);
end
13 if (|Hn,| > 0)
then IncreaseKey(Min(Hy), Trn); return;
end
14 DeleteMin(T);

end

function TE-AddCandidate(< n,p,wa,€a >)

[

D ot W

® 3

10
11

12
13
14

15
16

17

18

19
20
21
22
23

// Add new route to appropriate Q and restore invariants.
// Invariant 3 — only drops routes (lines 1, 10, and 21)
//  where every STA for the route also satisfies a known
//  better route.
// Invariant 4 — ensures there is an STA for Min(Hy)
//  that is not satisfied by any known better route.
begin
if (¢a — &n) then return;
if (| Hn | = 0)

then begin

Push(<n,p,wa;a>, Qh);

Insert(<n,p,wa,ea>, Hn);
Insert(<n,p,wa,ea>, T);

return;g

end

<n,k,wm,em > +— Min(Hn);
if (wm < wa)

then // Know —(eq — &g) from line 1.
if (ca — (em V €B)))

then return; // All STAs for e, satisfy a better route.

else begin // =(cq — (em V €B)))
// There is an STA for e, that does not satisfy
// any known better routes.
if (| Q% = 0)

then Insert(<n,p,wa,€a>, Hn)

Push(<n,p,wa,ca>, Qh);

end
else // wm > wa;since wa > Min(HE), it must be
// true that | Q| = 0.

if (—(em — (ea VEn)))

then begin
// There is an STA for &,, that doesn’t satisfy any
// known better route.
Push(<n,p,wa,ca>, Qh);
Insert(<mn,p,wa,€a >, Hn);
// Following replaces <n, k,wm, em >.
DecreaseKey(<n,p,wa,€a>, Tn);
end

else begin // (em — (€a V En))
// All STAs for e, also satisfy a better route.
Push(<n,p,wa,ca>, QF);
// Following replaces <n, k,wm,em >.
DecreaseKey(<n,p,wa,€a >, H,,I‘L’);
DecreaseKey(<n,p,wa,€a >, Th);
Pop(QF);
if QL1 > 0

then Insert(Head(Qﬁ), Hy);
end

Figure 3.29: Enhanced Traffic Engineering Dijkstra.
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algorithm TD-QoS-Dijkstra

2 forbzzxi:: {(s,9) € AG)} // Add new route to appropriate Q and restore invariants:
. i — onl T known comparable r
5 Push(<iaws>, Q) /11 Tnvariant 3 - only drops known compareble routes
4 Insert(<j,s,wsj >, Hj); // Invariant 4 — ensures Min(Hp,) =< (and therefore [Z)
5 Insert(<j,s,wsj >, T); //  all routes in QJ queues.
e‘nd; begin
6  while (lTl > 0 1  if (wag C Tail(Pn).w) then return;
begin ) 2 if (|Hp| = 0)
7 <n,p,w> +— Min(T); then begin
8 Push(<n.,p,u>, Pp); 3 Push(< n,p,wa>, QB);
9 DeleteTMin(); ) 4 Insert(<n,p,wa >, Hn);
10 for ea?h {(n,j) € A(n)} 5 Insert(<n.p.wa >, T);
begin 6 return;
11 Wn — WO wyj; end
12 AddCandidate(< j, n, wn >); 7 <nkywm> & Min(Hn);
snd 8 if (wm < wa)
end then
end 9 if (wa C wm)
10 then return; // wga down and right of wm,
function QoS-DeleteTMin() 1 else begin // ((wa £ wm) A (0m 2 wa))
// Delete minimum entry from T and restore invariants: // wapdown and left of wm
// Invariant 3 — only deletes routes (line 9) that are 12 if (|1Qn| = 0)
// T another route. 13 then Insert(<mn,p,wa>, Hn)
= . S
// Invariant 4 — loop at line 7 ensures new Ty, [Z 14 else if (wa C Tail(Q3).w)
// new Tail(Pp). 15 then return; >
begin 16 Push(<n,p,wa>, Qn);
1 <n,p,w> «— Min(T); end . . Py
2 Pop(QP); else // wg < wm; since wqg > Min(H7J ), it must be
»
3 if (]QE | > 0) . // true that | Q% | = 0.
4 then IncreaseKey(Head(QL), HY) 17 if (wa O ‘“(n) .
5 else Delete Min(Hy); then begin // wq up anpd right of wop .
6 if (|Hn|> 0) 18 Push(<n,p,wa >, Qpn);
then begin 19 Inse'rt(<.n,p, wa >, Hp);
// Find smallest route in link queues that is not // Following replaces <n,k,wm >.
// C the deleted route. 20 De:i:'r'easeKey(< n,p,wa>, Tn);
k en
7 for eachH{(n‘,ik) kE A(EL) | (Qul> 0)A else begin // (wa I wm)
begirE ead(Qy).w T w)} // wa up and left of wm .
> 21 Push(<n wqg > Py,
8 while ((] kQﬁ | > 0) A (Head(Qﬁ)-w C w)) // Fol(lowi,nj;, repla,cest);z, k,wm >.
9 Pop(Qy); 22 DecreaseKey(<n,p,wa >, Hﬁ);
10 if(‘Q: | > 0) 23 DecreaseKey(<n,p,wa>, Tn);
11 then IncreaseKey(Head(QX), HEF) 24 Pop(Q:cl);
12 else Delete(Hﬁ); 25 if (| Qﬁ | > 0)
end k )
13 (| Hn| > 0) 26 en::ihem Insert(Head(Q,), Hn);
then IncreaseKey(Min(Hy), Th); return; end
end
14 DeleteMin(T);
end

begin
Push(<s,s,0>, Pg);

function QoS-AddCandidate(< n,p, wq >)

Figure 3.30: Enhanced QoS Dijkstra.

mirrors that presented in Section 3.2, and is based on the fact that invariants listed in
Table 3.1 are maintained by the enhanced algorithm. Specifically, as detailed in the
comments to these algorithms, invariants 3 and 4 are maintained by the DeleteTMin()
and AddCandidate() functions, and, based on this, the Dijkstra iteration over the n'*
best route in the main body of the algorithm ensures invariants 1 and 2.

Similarly, Figure 3.30 presents the enhanced version of the TD-QoS-Dijkstra
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algorithm. The proof of correctness of this algorithm mirrors that presented in Sec-
tion 3.4, and is based on the fact that invariants listed in Table 3.1 are maintained by
the enhanced algorithm. Specifically, as detailed in the comments to these algorithms,
invariants 3 and 4 are maintained by the DeleteTMin() and AddCandidate() functions,
and, based on this, the Dijkstra iteration over the n'® best route in the main body of
the algorithm ensures invariants 1 and 2.

The runtime complexity of the TD-TE-Dijkstra (TD-QoS-Dijkstra) algorithm
(again, ignoring the cost for determining satisfiability) is dominated by the loops at
lines 8 (6) and 13 (10). The loop at line 8 (6) is executed at most once for each
incomparable path to each node in the graph for a total of nA (nW) times. The loop
at line 13 (10) is executed at most once for each distinct instance of an edge in the
graph, for a total of mA (mW) times. The most costly operation in the loop at line
8 (6) is the DeleteTMin() call at line 11 (9). In the DeleteTMin() routine, the loop
at line 7 (7) will be executed, in total, at most once per neighbor for each forwarding
class for a total of amezA (amez W), and the cost per call of the heap operations at
lines 13 (13) and 14 (14) is dlogp(n). Therefore, the total worst-case cost of the call at
line 11 (8) of the main algorithm is nAlog,(n) + amez A (RW log,(n) 4+ amez W). In the
AddCandidate() routine, the runtime complexity is dominated by the heap operations
at lines 5 (5), 17 (20), and 20 (23), which cost log,(n) each, for a total cost of the call
to AddCandidate() at line 15 (12) of the main algorithm of mAlog,(n) (mW log,(n)).
Therefore, the worst-case time complexity of the enhanced TD-TE-Dijkstra (TD-QoS-

Dijkstra) algorithm is O(mAlog(n)) (O(mW log(n))).
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Figures 3.31 through 3.36 (starting on page 72) show the results of running
the same tests described above with the enhanced version of the TD-QoS-Dijkstra
algorithm. These graphs show a significant improvement in the performance of the
enhanced algorithms in comparison to the basic algorithms. Furthermore, the nor-
malized graphs shown in Figures 3.37 through 3.42 (starting on page 75) identify the
sources of these savings. The flattening of the graph of space requirements as a func-
tion of the graph size (Figure 3.38) is a result of the far more aggressive candidate
dropping performed in the enhanced algorithms. With the much smaller resulting data
structures there is a corresponding decrease in performance costs across all the graphs.
Specifically, the conditional return at line 15 of the enhanced QoS AddCandidate()
routine ensures that each Q¥ contains only incomparable routes at all times, and the
loop at line 8 of the QoS DeleteTMin() routine ensures that the front of all Q¥ for a give
1 contain only incomparable routes following the transfer of a route from ¢ to P. The
only remaining source of “excess” routes held in the data structures, and processed
by the algorithms are the comparable routes carried in different Q¥ for destination i
until they are cleaned up the the DeleteTMin() loop. One inexpensive opportunity to
identify and cleanup such routes occurs at line 24 of the QoS AddCandidate() routine
where a loop similar to that in DeleteTMin() could be executed to clean up a queue
with known deletable routes at its front. However, experiments showed that such a
loop would only rarely (if ever) delete more than one route, and therefore such effort
is wasted.

Similarly, the fact that the graph of runtime as a function of the graph size
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(Figure 3.31 has flattened noticeably is the result of replacing the log-time balanced
tree data structure for B; with a constant-time queue data structure for QY. In addi-
tion, the very low cost of the simple queue data structure contributes to the decrease
in cost across all graphs. In summary, the more aggressive candidate drop strategy
and cheaper queue-based data structure used in the enhanced algorithms result in a
significant general reduction in the cost of the routing computations. Furthermore, the
replacement of the log-time balanced tree structures with constant-time queue data
structures by these algorithms has damped the growth rate of their performance. Fig-
ures 3.43 through 3.48 (starting on page 78) summarize these results by comparing the
run-time and space performance of the basic, enhanced, and traditional algorithms.
In practical terms these results are very promising. Focusing on the 200-node
network, which represents a typical high-end network size supportable with current
routing protocols, with an average degree of eight, which is more richly connected
than is typical for current networks but reasonable to expect with the availablilty of
this technology, the average worst case times are 0.0256 seconds per TD-TE-Dijkstra
routing computation and 0.01844 seconds per TD-QoS-Dijkstra computation. For TD-
TE-Dijkstra this translates to an ability to process approximately one administrative
policy change per link every 5 seconds (assuming a separate route processor common in
commercial routers). This capacity is much greater than needed for the expected use
of administrative policies. For TD-QoS-Dijkstra this translates to an ability to process
approximately one cost change per link every 3 seconds. Given a critical lack of results

on routing update rates in the literature, it is hard to evaluate this number; however, a
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few observations can be made. The need for QoS routing typically arises from the use
of applications that involve relatively long-lived connections to justify the overhead
of QoS signalling mechanisms. The stability of connections established for QoS flows
will tend to dampen the oscillations in load in a network. Furthermore, it is possible
to control the update rates of such applications using various mechanisms [4]. More
research is needed in this area to evaluate the performance of the TD-QoS-Dijkstra

algorithm.
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3.8 Related Work

As discussed earlier, the first work explicitly addressing the problem of com-
puting exact in the context of multiple metrics is that by Jaffe [42], discussed in
Section 1. In addition, work by Chen and Nahrstedt [22] on algorithms for computing
approximate solutions can be used, with appropriate parameters, to compute exact so-
lutions, and recent work by Siachalou and Georgiadis [76]. All of these algorithms will
only work in the context of performance constraints, and therefore are only useful for
satisfying QoS requirements. The Jaffe and Chen algorithms work by pre-allocating
maximally sized structures analogous to the T'R structures described above, and iter-
ating through the graph searching for the best routes for each TR entry. For example,
with weights composed of distance and cost metrics, these solutions setup a cost ma-
trix for each destination x distance pair, and traverse the graph attempting to fill in
each entry with the cost of the best route found in the graph.

The Jaffe algorithm is a variant of Distributed Bellman Ford (DBF), and
Chen presents both DBF and Dijkstra based algorithms. The drawbacks of these
algorithms are their expected space and time complexity. The expected and worst-case
runtime for Jaffe are the same at O(n*blognb) (the commonly quoted O(n’blognb)
is the cost over the whole network), and the expected and worst-case space is O(n?b)
(the Jaffe algorithm computes routes between all pairs of nodes in the network). For
the Chen algorithm the expected and worst-case values are O(n?W?) runtime and
O(nW) space.

In contrast, the worst-case performance of the equivalent TD-QoS-Dijkstra
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algorithm presented above is O(nW log W) runtime and O(nW) space, while the av-
erage case for typical, sparsely connected Internet topologies is significantly less. The
gain provided by TD-QoS-Dijkstra is obtained from the use of efficient mechanisms
that limit the growth in space and runtime complexity to only that required to process
the given topology. In contrast, the Jaffe and Chen solutions use less adaptable algo-
rithms that must make pessimistic assumptions to work correctly on arbitrary graphs.
Unfortunately, the algorithms presented here still have the potential to exhibit expo-
nential behavior on some combinations of topology and link weights. Therefore, the
next section explores new solutions for controlling the cost of these computations.

The algorithms recently developed by Siachalou and Georgiadis are very sim-
ilar to the QoS algorithms presented in Figures 3.5 and 3.30. Similar to the work
presented here, their algorithms are generalizations of Dijkstra. Their Algorithm I
is structured similar to TD-QoS-Dijkstra in Figure 3.5 except that it uses a single
heap (H,) in place of the balanced trees (B;) and heap (T") of TD-QoS-Dijkstra. The
drawback of their data structure is, since heap data structures must be pre-allocated,
Algorithm I must pre-allocate heaps to handle the maximum number of routes that
can be discovered by the algorithm which can grow to na,;,.,W. With higher resolu-
tion metrics, for example tending towards 32 bit quantities, this requirement becomes
prohibitive.

More interesting, however, is their Algorithm II. Based on the property of
ordered discovery of routes with a given predecessor discussed in detail in Section 3.7,

Algorithm IT uses similar data structures and algorithm structures to the enhanced TD-
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Figure 3.50: Error in Siachalou Algorithm II

QoS-Dijkstra algorithm. However, due to a flaw in Algorithm II’s obtain_minimum()
function, the algorithm is incorrect. Specifically, the textual description of the al-
gorithm describes the purpose of lines 10-27 of the function as that of finding the
new element in Hg[n] to replace the entry for n in Hgy, and removing all “impossi-
ble discontinuities” (equivalent to comparable routes as defined here) with respect to
the new value for Hy[n] from the B[(*,n)] queues. This is, in effect, enforcing in-
variant 4 from Table 3.1. However, the pseudo-code does not correctly accomplish
this. Specifically, the while loop at line 19, which is executed in the event that the
current candidate for the new value to H,[n] is not a discontinuity (is C in terms used
here) with respect to the previous value, only drains the queue for the predecessor of
this route. As a result, discontinuities (incomparable routes, here) can be dropped,
and non-discontinuities (comparable routes) can be kept. Figures 3.49 and 3.50 show

two example configuration of the data structures that illustrate this problem. In Fig-
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ure 3.49, obtain_minimum() replaces (1,4) in H, with (4,3) when it should replace
it with (3, 2); similarly, in Figure 3.50 H, is updated with (4,2) instead of the correct
(3,3).

A number of solutions have been proposed for computing exact routes in
the context of multiple metrics for special situations. Wang and Crowcroft [87] were
the first to present the solution to computing routes in the context of a concave and
an additive metric discussed in Section 1. The Wang and Crowcroft algorithm could
be modified to work in the context of administrative constraints. Ma and Steenkist
[54] presented a modified Bellman-Ford algorithm that computes paths satisfying of
delay, delay-jitter, and buffer space constraints in the context of weighted-fair-queuing
scheduling algorithms in polynomial time. The Ma and Steenkist algorithm will not
work in the context of administrative constraints. Cavendish and Gerla [17] presented
a modified Bellman-Ford algorithm with complexity of O(n?) which computes multi-
constrained paths if all metrics of paths in an internet are either non-decreasing or
non-increasing as a function of the hop count. While determining if this condition
holds can take exponential time, the algorithm has the property that, independent of
whether this condition holds or not, if the algorithm finds a solution, the solution is
correct. However, if a solution is not found it is still possible that a solution actually

does exist.
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Chapter 4

Algorithms for Approximate

Solutions

As discussed in Section 1, the problem of computing routes in the context of multiple
metrics is NP-complete. Therefore, it is unlikely that an efficient solution exists to the
general policy-based routing problem (unless P = NP). In line with this expectation,
the optimal algorithms presented in Section 3 are pseudopolynomial in that they are
not polynomial in the length of the input, however they are polynomial in the length
of the input and the largest value in the input, which is the average number of incom-
parable paths to nodes in the graph (given by A, W, or A x W, depending on the
algorithm) which will be designated by I in this section. As discussed in Section 1,
the significance of these algorithms being pseudopolynomial is that this suggests an
approach for controlling the run time complexity of the algorithms by limiting the

range of I in the graph’s input to the algorithms.

85



The concept of incomparable paths used in the definition of I is based on the
link metrics used in a graph, and the fact that, in the context of multiple metrics
used for policy-based routing, there is a set of possible path metrics that can only be
evaluated in the context of a requested set of metric values; i.e. there is a set of path
metrics that are incomparable. For example, in the context of link weights comprised
of a latency and a cost metric, the two path weights of 10ms/10cents and 5ms/15cents
are not comparable in the absence of a requested set of metrics. In the context of a
request for a route with no more than 7ms of latency and 20cents cost, the first route
is “bad” and the second “good”. With a request for no more than 20ms latency and
20cents cost, both routes are “good,” and the the first route, being “good enough”
and less demanding on the network resources, would be the selected route. Lastly,
with a request for no more than 7ms and 12cents, both requests are “bad” and the
request should be denied.

Given this concept of incomparable metrics, a higher resolution definition
of I is possible where I is the lesser of the maximum number of incomparable path
metrics and the actual average number of paths to each node in a graph. Based on
this definition, previous algorithms for computing approximate policy-based routing
topologies have focused on controlling the maximum number of incomparable path
metrics. Both Jaffe [42] and Chen and Nahrstedt [22] propose algorithms which map
a subset of the metrics comprising a link weight to a reduced range, and show that
using such solutions the cost of a policy-based path computation can be controlled at

the expense of the accuracy of the selected routes. Similarly, a number of researchers
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Figure 4.1: Graph with Exponential Number of Paths

[42, 56] have presented algorithms which compute routes based on a function of the
multiple metrics comprising a link weight.

The goal of these two approaches is the computation of approximate solu-
tions to the quality-of-service routing problem where the metrics measure performance
characteristics of the links. As a result, they share the limitation that they won’t work
with administrative constraint metrics. Both of these approaches depend on the exis-
tence of a total-ordering over the set of possible metric values to allow a mapping of
these values onto a smaller metric range while still maintaining the relative ordering
of values in the original set (modulo those old values mapped to a single value in
the new range). This assumption is not valid for administrative constraints. There-
fore, there is no known algorithm for computing approximate routes in the context of
administrative constraint metrics.

The approach presented in this section is to focus on the second component
in the definition of I, and attempt to control the cost of the routing computation by
limiting the number of paths considered in the computation for a given graph. The
challenge in this approach is to, as much as possible, eliminate the less desirable paths
from consideration while including the better paths. There are a number of measures

of the “goodness” of the paths existing in a graph, including robustness (i.e. that all
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nodes are still reachable in the presence of link failures) and optimality (i.e. that the
best path exists in the set of considered paths). From the perspective of robustness
there is anecdotal evidence that the correlation between path count and robustness in
a graph is not strong. For example, while the path count in Figure 4.1 is high (Z?:l 2
paths), the robustness of this graph (edge connectivity of 2) is very low.

As illustrated in Figure 4.1, the number of paths in a graph is, worst case, ex-
ponential in the number of cycles in the graph. This suggests the strategy of indirectly
controlling the number of paths in a graph by limiting the number of cycles in the
graph. Fundamental cycles are the cycles created by adding an edge to a depth-first
tree of a graph. A fundamental set of cycles is the set of cycles created by adding edges
to a spanning tree of a graph that are in the graph but not in the spanning tree. It has
been shown that all cycles in a graph are the sum of a subset of a fundamental set of
cycles in the graph. This suggests a further refinement of the strategy for controlling
the cost of a policy-based routing computation in the context of administrative con-
straints of limiting the number of fundamental cycles in a graph. Fundamental cycles
are appealing to work with as they are free to count (there are m —n + 1 fundamental
cycles in a graph), and inexpensive to enumerate (a fundamental set of cycles in a
graph is a by-product of a depth-first search of the graph). Such a solution could be
applied to either an on-demand or table-driven routing model.

We implemented a simple version of such an algorithm, where edges were
deleted from a graph uniformly during a depth-first traversal of the graph. This algo-

rithm was compared with the metric mapping solution proposed by Chen and Nahrst-
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edt using the evaluation criteria used in [22]. Specifically, we generated a number of
random queries on a random graph, and compared the success rate of the approxima-
tion solutions with the success rate from an optimal algorithm for a range of parameters
for each approximation solution. The parameter for the Chen and Nahrstedt solution
was the coefficient x for this algorithm where larger values for x result in a higher
probability of finding a solution, as well as a higher cost of the computation. The pa-
rameter used for our new algorithm was the fundamental cycle density (FCD), defined
as the ratio of the number of FCDs to the number of edges in a graph. Similar to z,
larger values of FCD result in higher a probability of success, as well as a higher cost
of the computation.

Figure 4.2 compares the run time of the optimal, FCD, and Chen/Nahrstedt
algorithms, showing that the run time of FCD approaches that of Chen/Nahrstedt
from below as the parameters of the two algorithms are increased towards higher-
fidelity computations, and is significantly less than the optimal solution. Figure 4.3
shows that the success rate of the two algorithms are comparable, and approach that
of the optimal solution. Figures 4.4 and 4.5 show the performance improvement of
the FCD algorithm compared with the optimal QoS algorithm as both a function of
the size and average degree of the graph. We interpret these results, from such a
simple application of this approach, as very promising. We continue research into

more sophisticated implementations of this strategy.
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Chapter 5

Traffic Expression Processing

A critical component of the cost of link predicate routing is evaluating the satisfiability
of a path predicate. As explained in Section 2.2, this occurs both explicitly (when
deciding whether to consider a new route to a destination) and implicitly in the form
of validity testing (when deciding whether traffic served by one route is also fully
served by another) in the algorithms presented in Section 3 which perform traffic
engineering computations. As observed in Section 2.2, satisfiability is the prototype
NP-complete problem. As such, the worst-case time complexity of algorithms that
solve the satisfiability problem are not expected to be improved to less than exponential
in the size of the tested expression (unless it is shown that P = NP). However, many
strategies have been developed for containing this cost for practical applications.
Additionally, traffic expressions are good candidates for restricted solutions
for a number of reasons. First, the syntax of link predicates is open to definition,

allowing for the adoption of a restricted syntax that allows for more efficient pro-
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cessing. While restricting the traffic expression syntax typically results in restricted
expressiveness, this flexibility leaves open the option of customized traffic algebras for
different applications which minimize the processing cost while providing the expres-
siveness required of the application. Second, for many important applications, the
rate of change of link expressions can be kept quite low. Third, very simple syntax
is used to construct path expressions from link expressions. Specifically, as shown in
Figure 3.29, path expressions are built from the conjunction and negation of other
expressions. Furthermore, at least one of the component expressions is known to be
satisfiable.

Lastly, likely patterns of use of the capabilities could provide opportunities
for optimized satisfiability tests. One possible pattern, called “prioritization” here, is
to define a hierarchy of traffic classes where higher priority traffic classes have access
to a superset of the topology available to lower priority traffic classes. As an example,
the following prioritization policy could be defined over the HT'TP, SMTP, and FTP

services ranging from highest to lowest, respectively:

TCP_PORT(HTTP),
TCP_PORT(HTTPV SMTP),

TCP_PORT(HTTPV SMTPV FTP).

All links in an internet could then be labeled to allow only HTTP traffic, a connected
subset of these links could be labeled to allow SMTP traffic, and a connected subset

of these SMTP links labeled to allow FTP traffic. As a result, higher priority traffic
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would tend to have more robust and better performance service.

Another possible pattern, called “partitioning” here, is to dedicate subsets of
a topology to carrying specific traffic classes. The motivation is the same as described
in Section 2.2 of managing network bandwidth among multiple services. As an exam-
ple, the following partition policy could be defined over the HT'TP, SMTP, and FTP

services:

TCP_PORT(HTTP A ~SMTP A~FTP),
TCP_PORT(~HTTP A SMTP A ~FTP),

TCP_PORT(-~HTTPAN-SMTP A FTP).

Important links in an internet (e.g. long-haul links between city-level internets for
an ISP) could then be dedicated to one of each of these traffic classes. As a result,
the bandwidth demand of the three services could be satisfied under circumstances
where it otherwise would not (i.e. when the separate bandwidth of each service is less
than that of the link(s) it is assigned to, but the aggregate bandwidth of all services
is greater than any one link).

In addition, the context in which satisfiability must be determined for traffic
expressions has significant structure which can be exploited to help contain these
costs. The remainder of this section reviews the strategies previously identified in the
extensive body of research on controlling the cost of the general satisfiability problem,
identifies a number of context-specific opportunities for further improving the efficiency

of these tests in the processing of traffic expressions, and lastly presents a restricted
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solution that allows for very efficient satisfiability testing.
In the following expressions are assumed to be in the standard conjunctive

normal form (CNF), defined as:

(A Liy)

i=1 j=1
where literals, denoted by L; ;, are primitive propositions or negations of primitive
propositions. Additionally, the following clausal representation of CNF expressions is
used where a clause, which represents a disjunction of literals in a CNF expression,
is defined to be a set of literals, and a CNF expression F is represented as a set of

clauses:
{{Ll,la ) Ll,nl}a ) {Lm,l, ) Lm,nm}}'

The remainder of this section presents a sampling of strategies from previous satis-
fiability and proof theory research for optimizing the satisfiability test that appear
promising for application to traffic expressions, one particular solution that provides
extremely efficient processing of restricted but useful traffic expressions, and simulation

results.

5.1 Optimization Strategies from Satisfiability and Proof

Theory

Given the ability to define the syntax of link expressions, one possible ap-
proach to containing the cost of testing satisfiability of such expressions is to restrict

the syntax of these expressions to forms defining relations with efficient algorithms for
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computing satisfiability. Significant work has been done along this line, culminating
in Schaefer’s Dichotomy theorem [69]. Schaefer’s theorem comprehensively defines the
boundary between relations for which satisfiability can be determined in polynomial
time, and those for which it is NP-complete. Specifically, the theorem shows that, for
some Boolean expression F, SAT(F) is in P if F is in one of the six Boolean expression
classes 0-valid, 1-valid, bijunctive, affine, Horn, or Dual-Horn, and is NP-complete
otherwise. Unfortunately for the work here, Schaefer also showed that none of these
properties is preserved under negation. As a result, while the properties required of
path expressions for polynomial satisfiability testing are maintained by the statements
in lines 7, 8, and 12, they are lost by the statements in lines 11 and 16. This leaves a
possible strategy for exploiting these results of using a link expression syntax from one
of the six classes identified in the theorem, keeping track of those expressions in such
a way to maintain the chosen property, and using the polynomial time satisfiability
test for those path expressions in which the property still holds.

Given the other characteristics of traffic expressions described above, and
the expected use of traffic expressions, a number of other optimization techniques
and strategies developed in the extensive research into satisfiability and proof theory
over the past 30 years can also be applied to determining the satisfiability of traffic
expressions. The remainder of this section presents a set (not exhaustive) of possible
techniques from this body of results that can be applied to testing the satisfiability of
traffic expressions.

Modern algorithms for testing satisfiability are based on the inference rule
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called resolution. Fundamentally, resolution is a generalization of the inference rule
that yields (Q V R) from (P — @) and ((—P) — R) or, equivalently, from ((—-P)V Q)
and (P V R). Resolution is applied by replacing two clauses containing negative and
positive literals on the same variable with a single clause containing the remaining
literals from the two clauses. The application of resolution to satisfiability is based on
the two observations that resolution of a set of clauses preserves the satisfiability of the
clauses, and that a set of clauses containing two clauses composed only of negative and
positive literals on the same variable (e.g. {...,{Q},{—Q}, ...}, called unit conflict, is
unsatisfiable. Modern satisfiability algorithms work by repeatedly applying resolution
to a set of clauses until either a unit conflict is encountered (in which case the original
set of clauses was unsatisfiable), or all clauses are consumed (the set of clauses is
empty, in which case the original set of clauses was satisfiable). While the use of
resolution with one other inference rule (factoring) is sound (they only identify as
satisfiable sets of clauses that are actually satisfiable) and complete (all satisfiable
expressions are identified as satisfiable by the use of resolution and factoring), alone
they do not provide an effective mechanism for satisfiability testing due to the possible
cost they incur in coming to a conclusion. The reason for this is the uncontrolled use of
resolution can result in a satisfiability computation wandering through unproductive
lines of inference in the “theory space” defined by a set of clauses with the result
that a conclusion is not reached within the time or space resources available to the
computation.

To control this tendency, strategies have been developed for the application

97



of these inference rules that restrict their application to lines of reasoning expected to
be more productive. The most powerful of these strategies is the set of support strategy
[89]. In this strategy, given a set of clauses C' whose satisfiability is to be tested, a
subset A of C' is identified that is known to be satisfiable (the set A could be thought
of as the axioms of the set C), and the remaining set of clauses S = C — A is defined
as the set of support. Resolution is then restricted to apply only to sets of clauses that
include one clause from S, and all resolvents (clauses resulting from the application of
resolution) are then added to S. The soundness and completeness of resolution with
the set of support strategy depends on the specific form of resolution used (e.g. binary
resolution, described above, with factoring is sound and complete with this strategy).
The set of support strategy significantly improves the efficiency of such inference rules
at finding a solution. Intuitively this makes sense as the restriction of resolution to sets
of clauses including elements of the set of support can be seen as a way of directing
resolution towards finding a “proof” of the clauses in the set of support.

As for how this strategy can be applied to traffic expressions, the character-
istic of these expressions that they are built from more fundamental expressions, at
least one of which is known to be satisfiable provides the basis for using this powerful
strategy to control the cost of testing the satisfiability of such expressions. Specifically,
the construction of traffic expressions performed in line 7 of Figure 12 builds a new
traffic expression as the conjunction of two known satisfiable traffic expressions, and
those in lines 8, 9, 12, and 13 build new expressions as the conjunction of one known

satisfiable expression (in all cases, the left hand expression). Also, note that in the
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constructions done at lines 11 and 15 the satisfiability of the resulting expressions have
previously been established at lines 9 and 13, respectively (see Section 2.3). Therefore,
in testing the satisfiability of a new expression, a set of support can be established
with the sub-expression of unknown satisfiability, thereby significantly improving the
effectiveness of the test for satisfiability.

Another potentially effective optimization is based on a linear time solution
developed by Knuth [49] for a special case of the satisfiability problem he called nested
satisfiability. Nested satisfiability applies to a set of clauses which have a hierarchical
structure. Specifically, given a linear order < on the set of variables in a set of clauses,
say one clause Cy straddles another clause Cs if there are literals o, 7 in C; and £ in
Cs such that o < £ < 7. Two clauses overlap if they straddle each other. For example
{a,b,d} and {a,c,d} overlap, but {a,b,d} and {a,b,c,d} don’t. A set of clauses is
called nested if no two clauses overlap. A binary, nested relation > can be defined
on clauses as C > Cs if C1 straddles Co, but not vice-versa. The term “nested” is a
little misleading here in that it implies something a little stronger than simply that the
literals of one clause are “inside” those of another; specifically there is also a subset
relation implied such that C; = Cs iff the set of variables in C; and in the range of
the variables in Cy is a proper subset of those in Cy. Applied to traffic expressions,
Knuth’s nested satisfiability algorithm has potentially significant application to the
prioritization form of traffic expressions where some classes of traffic are given access
to greater portions of an internet’s topology. For example, given four traffic classes

a, b, c, and d, the following set of nested clauses could be used to define prioritization
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style policy: Cy = {a,d},Cs = {a,b,d},Cy = {a,b,c,d}. Clause C; (for the “gold”
traffic classes) could be assigned to all links in an internet, the Cs (for “silver”) to
a subset of the links in the internet that still defines a connected graph, and Cj, (for
“bronze”) to a similar subset of the Cs labeled links.

Another strategy for controlling the cost of this test is to use dynamic pro-
gramming techniques. Dynamic programming has been characterized as “recursion
with the addition of a caching strategy.” These techniques would involve recording
the results of tests for reuse in subsequent instances of the same test. Given the
recurring nature of edge traversals in routing algorithms, there is the potential for
significant savings from the reuse of test results. Additionally, all the above strate-
gies benefit from the relatively static nature of link predicates which allows significant

pre-processing work to be amortized over many subsequent routing computations.

5.2 An Efficient, Restricted Solution

An efficient solution to the SAT problem involves exploiting the isomorphism
of set algebras and boolean algebras by implementing the traffic algebra as a set algebra
with the set operations of intersection, union, and complement on the set of all possible
forwarding classes. In this solution, each forwarding class defined by a single row in
the boolean algebra’s truth table is represented as an element in a set (e.g. as a bit
in a bitmap). The boolean operations A,V, and — can then be mapped to the set
operations N, U, and — (which, for a bitmap, can be efficiently implemented as bitwise
and, or, and complement). Similarly, satisfiability of a boolean expression translates
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to testing for a non-empty set (and a non-zero bitmap). All of these operations can
be implemented very efficiently for a small number of forwarding classes.

In this solution, the set can be interpreted in two ways. Either as a boolean
algebra, with a small number of variables (e.g. sixteen variables defines 2'6, or 64K
forwarding classes, which can be represented in an 8KB bitmap data structure). Al-
ternatively, as a set of forwarding classes whose definitions are universally known by
routers in a routing domain. The benefits of this solution are that it has a very eflicient
implementation, and maps reasonably well to the requirements of modest policy-based
routing applications. The primary drawback is its limited scalability in terms of the
number of traffic classes, and therefore traffic algebra variables it can efficiently sup-
port. For the full power of this traffic algebra approach to traffic engineering, less

constrained solutions must be found.
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Chapter 6

Intra-Domain Policy Routing

Applications

This chapter presents a number of applications of the policy-based routing technologies

presented above to routing systems deployed in the Internet today.

6.1 Unicast

The major component of these systems is a routing protocol whose function
is to communicate connectivity information among the routing processes in an internet
for use in computing routes for reaching existing destinations. The routing protocols
used in most of today’s computer networks are based on shortest-path algorithms that
can be classified as distance-vector or link-state. In a distance-vector algorithm, a

node knows the length of the shortest path from each neighbor node to every network
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destination, and uses this information to compute the shortest path and next node
in the path to each destination. A node sends update messages to its neighbors,
who in turn process the messages and send messages of their own if needed. Each
update message contains a vector of one or more entries, each of which specifies, as a
minimum, the distance to a given destination. These route vectors implicitly describes
the topology of the subset of the internet actually used by the routing process in
forwarding traffic.

In contrast, in a link-state algorithm a node must know the entire network
topology, or at least receive such information, to compute the shortest path to each
network destination. Each node broadcasts update messages, containing the state of
each of the node’s adjacent links, to every other node in the network [34]. The differ-
ence between these protocols has been characterized as “in distance-vector algorithms
a router sends information about the whole network to its neighbors; in link-state
algorithms a router send information about its neighbors to the whole network” [60].
In aggregate, the link-state updates explicitly describe the complete topology of the
internet.

From a performance perspective, the differences between these two classes of
protocols revolve around what information must be exchanged in response to a link
cost change, and how far must this information travel. In a distance-vector protocol
information is exchanged describing the reachability of destinations and, in response
to a link cost change, a router attached to the affected link must transmit information

describing all destinations downstream from the changed link. In a link-state protocol
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information is exchanged describing the state of a link in the internet and, in response
to a link cost change, only information describing the link must be transmitted. Con-
versely, in a distance-vector protocol the transmitted information is only propagated
to routing processes whose state may change based on the information, while in a
link-state protocol link-state updates must be propagated to all routers in the inter-
net. Therefore, while distance-vector protocols typically must transmit much more
information in response to a link cost change, the propagation of this information is
far more constrained in comparison with link-state protocols.

Based on this insight, a hybrid class of routing algorithms, called link-vector
[35] has recently been defined which combines the strengths of the distance-vector
and link-state classes of algorithms. In this class of protocols, similar to link-state
protocols, only information describing changes to the state of links in an internet
is exchanged; furthermore, similar to distance-vector protocols, this information is
only propagated to routers that might use the information. As a result, in a link-
vector routing system, the routing processes only carry information about the subset
of the internet topology they actually use to forward traffic. This gives rise to another
classification of link-state-based protocols as complete vs. partial topology protocols.

The enhancement of traditional unicast routing systems with the policy-based
routing technology presented above is straight-forward. The routing protocol must be
enhanced to carry the additional link metrics required to implement the desired poli-
cies. This requires the use of either a link-state or link-vector routing protocol that

exchanges information describing link state. Note, however, that for a system de-
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Figure 6.1: Traffic Flow in Policy-Enable Router

pending on on-demand routing computations a link-state, complete topology protocol
is required to ensure an ingress router has the information it needs to compute an
optimal route. In contrast, hop-by-hop based routing systems can work with link-
vector, partial topology protocols as each routing process is ensured of learning from
its neighbors of all links composing optimal routes to all destinations in the internet.

Forwarding state must be enhanced to include local and next hop label infor-
mation in addition to the destination and next hop information existing in traditional
forwarding tables. Traffic classifiers must be placed at the edge of an internet, where
“edge” is defined to be any point from which traffic can be injected into the internet.
Since each router represents a potential traffic source (for CLI and network manage-
ment traffic), this effectively means a traffic classification component must be present
in each router. While this provides sufficient coverage for any internet (in the sense

that a traffic classifier will be in place at all possible sources of traffic in an internet) it
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Figure 6.2: Next Hop Problem with Policy-Based Routing

may still be desirable to provide additional traffic classifiers (e.g. in switches) to dis-
tribute processing load. Additionally, traffic classifiers must have current definitions
of primitive propositions used in traffic expressions, and the current mapping from
traffic expressions to local labels for the ingress router. As illustrated in Figure 6.1,
the resulting traffic flow requirements are that all non-labeled traffic (sourced either
from a router itself, or from a directly connected host or non-labeling router) must be
passed through the traffic classifier first, and all labeled traffic (sourced either from
the traffic classifier or a directly connected labeling router) must be passed to the
label-swap forwarding process.

Lastly, the routing protocol must be enhanced to exchange information needed
to compute the label swap components of its forwarding tables. The output of the
routing algorithm is forwarding information described in terms of a destination, traffic

expression, and path weight for each computed route. To be used for forwarding, this
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information must be augmented with local and next hop labels. To determine the next
hop label for a given route the routing process requires the forwarding tables of its
neighbors. Therefore, the final enhancement required of routing protocols is that they
exchange local forwarding tables and use this information to compute the next hop
label for their routes. One challenge presented by this requirement is that the routes
computed by the routing algorithm must be assured of matching an active route in
the selected next hop neighbor. As illustrated in Figure 6.2, this is not guaranteed
by the algorithms presented above. Specifically, in this internet there are a number of
equally “good” routes from nodes s and ¢ to node d. For example, it is possible that
the routing process at node ¢ selects the paths through its neighbors [ and j to provide
two hop paths for traffic classes A, B, and C, while node s selects the paths that go
through nodes k and m. In such a case there is no next hop label that can be chosen
at s for routes to d that will satisfy the traffic policies.

To address this problem Figure 6.3 presents an enhanced version of the TD-
TE-Dijkstra algorithm for use in the context of hop-by-hop forwarding. In this algo-
rithm, routes are augmented with two additional fields; ng is the next hop neighbor
for a route to destination d, and [4 is the next hop label for d. As described above, a
partial forwarding table is maintained for each neighbor, specified by Fy[d], contain-
ing an array of routes for each destination in the internet. Each entry in this array,
denoted by <d,wg, e4,lq>, gives the weight, traffic expression, and next hop label for
each route in the neighbor’s forwarding table. In this algorithm, new paths are only

considered if they are extensions of paths chosen by the neighbor which is the next
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algorithm Hop-by-Hop-TD-TE-Dijkstra
begin
Push(<s,s,0,1,5,0>, P,);
for each {(s,j) € A(s)}
Inse'rt(<j75:w8j:€8jaj:®>: T);
while (|T| > 0)
begin
<1, Di, Wi, €i, N, i > «— Min(T);
DeleteMin(B;);
if (|B:| = 0)
then Delete Min(T)
else IncreaseKey(Min(B;), T;);
0 if (_‘(€i — 51))
then begin
11 Push(<i,ps,wi,ei >, Pi);
12 & — EiNes
13 for each {(i,j) € A(7) |
3 <j,wj &5, 5> € Fol§] | (eon; A = & Neig) A
(Wsn; +wj = wi+wij)) N SAT(ei Aeij) A =((ei Neij) = &)}

B~ W N =

= © 00 o O

begin
14 wj — wi + wij; & — & N gij;
15 if (T; = 0)
16 then Insert(<j,1, (A)j,Ej,ni,lg >, T)
17 else if (w; < Tj.w)
18 then DecreaseKey(<j,i,wj,€j,m,l; >, T);
19 Insert(<j,i,wj, &5, ni, U5 >, Bj);

end

end
end
end

Figure 6.3: Hop-by-Hop TD-TE-Dijkstra.

hop to the predecessor to the path’s destination. For example, from Figure 6.2, node
s will only consider paths to destination d that are extensions of node #’s paths to
d through nodes [ and j. A fringe benefit of this enhancement is the next hop label
computation can now be integrated with the routing computation (as shown by the

inclusion of the next hop label in the routes computed by the algorithm).
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6.2 Multicast

As discussed in Section 2.2, an important application of traffic engineering
technologies is the control of forwarding topologies to protect against the denial of
network services, and the disclosure of network traffic. The network services can be
denied by the forwarding of unauthorized traffic over regions of an internet, result-
ing in the compromise of policies regarding the use of network resources. The current
Internet model of universal, undifferentiated access of network traffic to internet topol-
ogy means every portion of an internet is exposed to such misuse from traffic sourced
from anywhere in the internet. While recent DDOS attacks dramatically illustrate
this vulnerability, protection against denial of services is not limited to protection
against active attacks. Denial of service protection is also important for controlling
the allocation of resources in an internet. For example, controlling access to portions
of an internet topology among classes of users (e.g. the differentiation among “Bronze,
Silver,” and “Gold” customers), or among types of users (e.g. academic versus ad-
ministrative users in an academic environment) would be a very powerful tool for a
network service provider.

Similarly, disclosure of network traffic has the same cause (forwarding of
network traffic over unauthorized regions of an internet), but with the compromise
being of policies regarding access to the traffic rather than use of network resources.
Again, the undifferentiated traffic forwarding model of today’s Internet provides no
means for controlling the distributed of traffic in an internet. As a result, either

through accidential mis-configuration of an evolving internet, or through the active
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attack and compromise of an internet’s routing computation, sensitive information
can be forwarded over inadequately protected infrastructure. Clearly the ability to
control the topology used to forward traffic in an internet would provide important
benefits to the Internet architecture, in general. However, closer analysis shows that
the multicast services defined in the Internet architecture are critically handicapped
without such capabilities.

The IP multicast model [26] is based on the notion of a host group identified
by an IP multicast address. Multicast packets are delivered to all members of the
host group specified by the destination multicast address. An open group model is
assumed in that the sender does not know the membership of the group. Hosts can
join and leave at will by communicating with a nearby multicast router. Multicast
routers collectively compute efficient multicast forwarding trees, and forward multicast
packets over these trees to all members of the destination host group.

The multicast model has several advantages over the alternative unicast and
broadcast models for communicating with members of a host group. By building mul-
ticast forwarding trees that efficiently connect all host group members the multicast
model avoids the overhead of transmitting packets over unnecessary links that would
be incurred in using a broadcast service. By using a single forwarding topology for all
traffic to host group members the multicast model avoids the redundancy of transmit-
ting the same data over a given link multiple times that would be incurred in the use
of a unicast service. Lastly, by using a single multicast address to identify all members

of a host group the multicast model avoids the transmission overhead of per-group
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member address state that would be incurred by the sender in the use of a unicast
service.

A number of important applications can take advantage of the efficiency and
scalability of multicast services. Live audio and video distribution, referred to as
web-casting, involve a single source transmitting real-time audio or video to multiple
receivers across an internet. Data push applications involve a single source transmit-
ting information to a large audience or subscriber base. Examples of data push include
stock tickers, PointCast-style news push services, software distribution, network news
distribution, etc. Interactive content distribution, in the form of conferencing and
group collaboration applications, involve the bi-directional use of the web-casting and
data push technologies to allow interactive communication over an internet in forms
such as interactive games, audio and video conferencing, etc.

In spite of the clear benefits provided to these (and similar) important appli-
cations, multicast services have seen only limited deployment as a production service
in the Internet. A number of reasons for this limited deployment have been identified
[28] including the lack of mechanisms for controlling the allocation and use of multi-
cast addresses, the lack of commercial network management tools, the lack of billing
mechanisms, and the lack of mechanisms for securing multicast communications.

However, on closer analysis of the basic multicast model, more fundamental
limitations come to light. Specifically, the multicast model defines few requirements
of the topologies to be used for multicast traffic forwarding. The only requirements

implied by the model are that the topologies used for multicast traffic must reach
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all group members with no redundant use of any individual links, and must optimize
some metric (e.g. latency). This single class forwarding model, combined with the
open group model used by IP multicast, is crippling for multicast services in that it
cedes control of the topology computation to the user, rendering a multicast deploy-
ment inherently un-controllable. As a result the topology used for a given multicast
destination can’t be controlled without, in general, denying service to authorized recip-
ients of the traffic, leaving multicast services inherently vulnerable to denial of service
and disclosure of multicast traffic. The remainder of this section identifies the weak-
nesses of the multicast model, and develops a solution to them based on the traffic

engineering capabilities developed in previous sections.

6.2.1 Symptom — IP Multicast is Expensive to Manage

The unusual one-to-many nature of multicast communication poses a man-
agement problem for those wishing to deploy multicast services. A number of efforts
have been made to document effective techniques and tools for managing such ser-
vices [3, 68, 83]. In general, these works identify the kinds of problems experienced by
the users of multicast services, present troubleshooting techniques and strategies for
identifying the underlying causes of the problems, and suggest courses of action for
eliminating the causes or mitigating their effects.

While the various proposals differ in details, they are similar in their gen-
eral outline. At the highest level, troubleshooting a problem with multicast services

involves determining if the underlying cause is a configuration error or traffic conges-
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tion. Configuration problems can include lack of support of the necessary protocols
or the necessary versions of the protocols, traffic scoping problems, network config-
uration errors (e.g. NAT services blocking multicast traffic), etc. While identifying
these problems may be difficult due to the tree-based nature of multicast services (as
compared with the path-based nature of unicast services), resolving them once identi-
fied is straightforward; software is upgraded, users are educated, or configurations are
changed.

In contrast, congestion problems are equally difficult to identify, but often
impossible to resolve without denying services to some set of users. Once a congested
link and the problem traffic have been identified a mechanism is needed for eliminating
the traffic from the link. Fundamentally this means the link must be removed from the
tree used for distributing traffic for the targeted group (or source/group). The reason

the link is on the tree is that the router at one end of the link is seen by the router at
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the other end of the link as the next hop to the core or source of the targeted traffic.
To remove this link from the tree we must change the topology of the corresponding
unicast routing tree. In general, this is not possible. Therefore, to relieve congestion
on a link due to multicast traffic, it is necessary to reduce the volume of traffic for
the targeted group (or source/group). This reduction in traffic is required in spite of
the possible availability of bandwidth on an alternative path adequate to satisfy the
un-constrained demands of the multicast users (see Figure 6.4).

Therefore, in general, the only way to manage the bandwidth demands on a
multicast system is to deny services to some of the users of the system. This is true
even in the case where there is adequate bandwidth in the internet for the offered
load to the system. To avoid this limitation an alternative to the underlying unicast
routing protocols is needed for topology discovery that allows network administrators
to specify what traffic is allowed on which links, and computes the shortest path to a

source or core that is authorized to carry traffic for a specified group (or source/group).

6.2.2 Symptom — IP Multicast is not Secure

The acute vulnerability of the current infrastructure for Internet multicasting
has been recognized for some time, and many opportunities for malicious attacks or
misuse have been identified. To date, the efforts to secure multicast services have
resulted in solutions that, while innovative, fall short of adequately protecting the
Internet’s infrastructure. The purpose of a threat model [8, 23, 70], is to provide a

framework for the identification of threats and countermeasures. A threat to a protocol
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is defined by the actions taken to exploit vulnerabilities in the protocol, called the
attack, and the loss resulting from an attack. A countermeasure is a mechanism that
eliminates or mitigates the loss resulting from an attack.

A threat model identifies what resources in a system need to be protected,
who the principals are in the system with authorized access to these resources, the
capabilities expected of intruders in the system, and the security requirements of these
resources. The resources are the elements of a system whose access by an intruder
results in loss. The principals are the active entities in the system that have authorized
access to the controlled resources. Together, principals and resources are, respectively,
the subjects and objects of security policies. All controls desired in a system must be
describable as an action performed by a principal on a resource. Careful thought must
be given to defining these sets as they effectively define the world that can be secured.

Intruder’s capabilities are the set of actions intruders are assumed to be capa-
ble of performing that have the potential to cause loss to a system. Typically intruders
are assumed to be able to: position themselves at a point in the network through which
all traffic of interest will pass; fabricate, monitor, delete, or replay messages; and sub-
vert any principal in the protocol dialog, thereby obtaining cryptographic material it
may possess.

Security requirements are the properties of a system whose compromise results
in a loss. The desired properties include confidentiality, integrity, authenticity, non-
repudiation, authorization, and availability [74]. Confidentiality is the protection of

data so it is not made available or disclosed to unauthorized individuals, entities, or
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processes. Integrity is the property that data has not been altered in transmission;
that the data received is the same as the data sent. Awuthentication is the property
of a system that the identity claimed by principals in the system is securely verified.
Non-repudiation is the property of a system that principals cannot falsely repudiate
a communication (i.e. a principal cannot deny authorship of a message it actually
authored). Authorization is the property of a system that access by principals to
resources in the system is authorized in the sense that it is allowed by the system’s
current security policies. Lastly, availability is the property of a system that resources
in the system are accessible and usable upon demand by an authorized principal.

Security countermeasures involve the application of cryptographic and access
control mechanisms to eliminate or mitigate losses resulting from attacks. Confiden-
tiality is typically provided by encryption. Integrity and authenticity are provided by
encryption, message authentication codes (MACs), or digital signatures [71]. Non-
repudiation is provided by digital signatures. Authorization is provided by an access
control mechanism such as access control lists (ACLs). Awailability is provided by
redundant infrastructure, and the enforcement of resource usage policies by the access
control mechanism.

The group nature of multicast systems results in additional dimensions to the
traditional security requirements; specifically authentication and confidentiality [57].
In multicast systems authentication is further differentiated into group and source
authentication. Group authentication is the property that, while the specific identity

of a principal is not verified, the membership of the principal in the group is. Source
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authentication is the more traditional property that the principal’s identity is verified.
Similarly, confidentiality must be further differentiated to address the dynamic nature
of the set of recipients of a multicast transmission, which changes over time. We
call this current membership confidentiality (CMC). CMC can be further classified
depending on whether the sequence of audiences need to be strictly partitioned such
that confidentiality is established precisely on a join or leave, or within some period
of time after a join or leave. We call these strict and loose CMC, respectively. Lastly,
with these epochs introduced in the cryptographic key state by CMC, protection must
be provided from compromise of a past epoch allowing an intruder access to all future
epochs. This is called perfect forward secrecy (PFS) [40].

The confidentiality requirements specific to multicast are provided through
the careful re-keying of authorized group members. Loose CMC is typically provided
by re-keying the group on the join or leave of a member. Re-keying on a join is typically
much easier than on a leave because following a join the existing group key can be used
to distribute the new group key to existing members, and a unicast transmission can be
done to transmit the new key to the new member. For loose CMC on a leave, however,
the old key cannot be used because it is held by the leaving member. Instead, the
new key must be distributed without the benefit of the existing group key. A number
of innovative and efficient mechanisms have been developed to address this problem
[16, 21, 38, 86, 88].

Providing strict CMC is more complicated. While strict CMC can be pro-

vided on a join through careful re-keying (by ensuring the new key is not sent to the
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new member until the reliable multicast to the existing members is complete), no so-
lution for strict CMC on a leave based solely on re-keying has been proposed. One
proposed mechanism that goes beyond re-keying is to have normal communication
require senders to encrypt data with an individual key they share only with a group
controller, and send the message unicast to the group controller; the group controller
then multicasts the message to the group using the current group key [57]. Using
this solution group traffic can be transitioned to the new group key immediately on
a decision to re-key. PFS is typically provided by a periodic “refresh” re-keying that
breaks the chain of key information developed in the join and leave re-keying schemes
referenced above. Special mechanisms have also been proposed for providing source
authentication in a multicast environment [14].

A large body of recent work has focused on end-to-end security services
[13, 14, 57]; the services provided in these solutions include group management or
access control to authorize host access to multicast groups, the distribution of keys
to authorized hosts, and the encryption of data traffic by hosts. A smaller body of
work has attempted to address the security of the multicast network infrastructure
[7, 73]; the additional services provided by these solutions include access control to
authorize the use of network bandwidth by data traffic, the distribution of data traffic
in an internet, and the cryptographic protection of multicast protocol control traffic
between hosts and routers and among routers themselves.

These prior end-to-end and network infrastructure approaches to providing

security in Internet multicasting are significant contributions; however, they all have
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significant vulnerabilities that must be addressed for use in a production environment.

End-to-End Threat Model.

Most work to date on securing multicast services [15, 39, 57] has focused
on providing end-to-end confidentiality, integrity, and authentication of the multicast
traffic itself by encryption using a group key shared by all members of the group.
Access to this group key is controlled by requiring potential group members to obtain
authorization from an access control server (ACS) before being included in the distri-
bution of group keys. The primary requirement of these countermeasures is a scalable,
reliable re-keying mechanism. A number of innovative and efficient mechanisms have
been developed to minimize the number of encryptions and messages required to re-
key a set of users [16, 21, 86, 88]. In general these mechanisms work by computing
a hierarchy of keys to cover the members of a group such that there is a one-to-one
correspondence between the leaf nodes of the key tree and users in the multicast group.
On authorizing itself with the group’s access control server, a new member of a group
is given the set of keys forming the path from the leaf node corresponding to the new
user to the root of the tree. By the careful use of these keys it has been shown that
re-keying costs scale with logg(n) (where d is the degree of the key tree, and n is the
number of group members). Since key distribution is done by multicast, reliability of

re-keying must be provided by reliable multicast [53].
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Uniform Infrastructure Threat Model.

Some previous work has attempted to provide security of the routers com-
posing the network infrastructure [7, 14, 39, 73]. The motivation for securing the
network infrastructure can be broken down to two observations. First, the extent of
the distribution of traffic for a multicast group in an internet is a security concern. The
distribution of traffic, even encrypted traffic, to unauthorized subsets of the routers and
hosts in an internet poses potentially serious denial-of-service and disclosure threats.
For example, if it is not possible to prevent a host from joining a group at the routing
level (independent of whether it can obtain the key for the group) then it is possible
for any host, given the availability of a large enough number of multicast groups, to
overload the network infrastructure in its region of an internet by joining (via the
transmission of IGMP Report messages [33]) as many groups as is necessary to cause
failure of the network. The only effect of the end-to-end countermeasures described
above would be that the attacker will not be able to read the traffic, which does not
stop the damage done to the services provided on that internet. Similarly, for some
applications, the uncontrolled distribution of multicast traffic, even encrypted traffic,
in an internet can pose a serious disclosure threat. If sensitive information is available
from the analysis of encrypted traffic for an application, the the ability to obtain en-
crypted traffic for that application would allow an attacker to obtain such information
from any point in the internet. These vulnerabilities make existing multicast systems
un-deployable in any production network environment.

The second observation is that, due to the architecture of IP multicasting
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services, the only entities able to control the extent of distribution of multicast traffic
in an internet are the multicast routers. A host joins a multicast group by sending
IGMP Report messages that include the desired group on a directly attached LAN.
Routers on the LAN receive these messages, notice the new group desired on that LAN,
and join the group using mechanisms specific to the multicast routing protocol. The
join process followed by the routers typically only involves other routers, and doesn’t
require interaction with other principals in the multicast group such as a source for
the group or the group creator. This anonymous style of group join has very good
scaling properties, unfortunately it leaves only the routers as entities able to enforce
any access control restrictions on the extent of distribution of multicast traffic in an
internet.

From these observations it is clear that the ability to secure interactions
involving the multicast routers is a requirement for many important multicast appli-
cations. To provide these protections previous proposals assumed that all routers and
LANSs composing the infrastructure of a network are authorized to carry traffic for all
groups, and proposed countermeasures that limit construction of multicast trees so

they are only built between authorized senders and receivers.

Differentiated Infrastructure Threat Model.

Both of the previous proposals assume the routing infrastructure as a whole
is trusted for all groups, and security is defined as ensuring traffic is only forwarded

between authorized sources and receivers. While this assumption and this definition
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of security are adequate for many denial of service and disclosure threats, they are
critically inadequate for many other important classes of such threats.

Denial of service occurs when unauthorized use of a resource results in its not
being available for authorized use. The proposals presented above protect against the
simplest scenario for such abuse where traffic for all multicast groups is authorized to
consume bandwidth on all components of the network infrastructure, and authorized
use of the infrastructure is based solely on a user’s rights for membership in any group
carried in the internet. However, there are many finer-grained security policies where
traffic for a given group may only be carried by a subset of the network’s infrastruc-
ture, and authorized use of the infrastructure is based on the particular traffic being
transported. For example, in an environment where subsets of the infrastructure are
deployed for specific uses along organizational lines (e.g. sales, engineering, human
resources, etc. in a corporate environment), or along functional lines (e.g. class deliv-
ery, administration, specific research projects, etc. in an academic environment), and
multicast groups are authorized to use the appropriate subsets of the infrastructure.
In an environment with such security policies the proposed solutions would not mit-
igate the very significant threats of e.g. a spike in class delivery use of the network
causing the complete denial of service of a given research project’s use of its subset
of the infrastructure. The number of ways to subset network infrastructure in this
manner is only limited by imagination.

In a related sense, the assumption and definition of security used by previous

proposals do not address threats of disclosure that are significant for some applications.
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For example, in a military environment where information is assigned one of a hierarchy
of security levels (e.g. un-classified, secret, top secret, etc.), the network infrastructure
must be classified as to the highest level of traffic it is authorized to carry. In such
an environment the transmission of traffic at a given level (e.g. top secret) over
segments of the network rated below that level (e.g. un-classified) represents a serious
disclosure attack, independent of whether the traffic is encrypted. In the previous
proposals it would be possible for top-secret traffic to be routed over un-classified
network infrastructure.

To address these significant remaining vulnerabilities the uniform network
infrastructure assumptions must be replaced with the enhanced set of assumptions
that only a subset of the network infrastructure is authorized to carry traffic for a
given group, and security is provided by ensuring multicast traffic is only forwarded

between authorized sources and receivers over authorized network infrastructure.

6.2.3 The Problem

The fundamental problem underlying the symptoms discussed above is that
there is an incomplete understanding of the naming requirements of multi-destination
communication. As a result, existing multicast systems do not provide adequate means
for controlling the topology used to forward multicast traffic in an internet. Services
based on these systems are impossible to effectively control and therefore are not
manageable and inherently in-secure. Using Saltzer’s model discussed in Section 2.4 to

do a careful analysis of multicast communication the underlying cause of the symptoms
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described above becomes evident. Ignoring the issues relating to network attachment
points and and their binding (which, generally, are trivial in multicast communication),
the naming requirements of multicast communication can be described as shown in
Figure 6.5.

Recalling that the problems described in the previous sections manifested
themselves as an inability to control the topology used for multicast communication,
we focus on the network attachment point to route binding function which determines
the topology used by network traffic, and compare the unicast and multicast routing
functions. In both instances the inputs to the routing computations are the topology of
the internet and the location of addresses in that topology. To control the forwarding
traversed by network traffic it must be possible to control both of these inputs to the
routing function.

In unicast communication the topology of an internet and the distribution
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Figure 6.6: Unicast Traffic Control

of addresses in that topology are controlled by the network manager. This provides a
basic mechanism for controlling the topology traversed by unicast traffic in an internet.
For example, assume in the topology on the left of Figure 6.6 the routes from S to the
subnet containing D1 and D2 go through subnet X. If subnet X becomes overloaded
the network manager can correct this by re-organizing the topology as shown in the
right-hand of the figure.

In contrast, in multicast communication the distribution of multicast group
addresses in the topology of an internet is not controlled by the network manager.
Rather it is determined by the users of the multicast service, and what groups they
choose to join. This loss of control cripples the viability of production multicast
services. For example, assume in the topology on the left of Figure 6.7 multicast
traffic from source S to groups G1 and G2 go through subnet X (as determined by the

unicast routing tables used to construct the reverse-path forwarding tree). If subnet
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Figure 6.7: Multicast Traffic Control

X becomes overloaded there is no way to correct the problem without denying service
to one of the hosts D1 or D2. This is directly a result of the incomplete control of the
multicast address to route binding in the multicast architecture.

As a result, among the requirements of an internet multicast communication
service are the requirements that availability of the service is not required (because
of the possible need to deny service to a subset of the authorized receivers), and that
confidentiality with respect to traffic analysis is not required. These requirements
limit the use of current Internet multicast services to prototype, “toy” deployments.
To meet the requirements of a production, infrastructure-grade multicast deployment
the multicast architecture must provide a means for controlling the topology used for
forwarding multicast traffic in an internet. The remainder of this section presents a

proposal for such a mechanism.
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6.2.4 The Solution

Previous sections have identified the need to support the specification and en-
forcement of policies that authorize subsets of a network infrastructure to carry traffic
for a given multicast group. Unfortunately, such policies pose a fundamental conflict
with the assumptions underlying the design of modern multicast routing protocols.

Modern multicast routing protocols depend on the unicast routing tables to
build shortest-path, loop-free trees for the distribution of data and control traffic for
multicast groups. However, given the assumption presented above that only a subset
of the network infrastructure is authorized to carry traffic for a given group, it is now
possible that the link shared with the parent router selected by a new router to a
group based on the unicast routing tables may not be authorized to carry traffic for
the group. Depending on the multicast routing protocol in use this failure to build a
tree for the new group will manifest itself in different ways with the end result of the
denial of multicast service to portions of the internet.

As an example, the reverse-path forwarding mechanism used by sender-
initiated multicast routing protocols (e.g. PIM Dense Mode [25]), whereby the unicast
next hop router towards a new source for a group (specified as (S, G)) is selected as the
parent of a given router, does not work in a secured multicast environment. Specifi-
cally, if a router picks a parent for an (S, G) that is not authorized to carry traffic for
G then that router and its descendents will not receive traffic from that source. For
this scheme to work the security policies must be the same among all multicast groups

and the unicast routing; effectively no security at all. To receive (S, G) traffic a router
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must select a parent that is authorized to carry traffic for the group. Similarly, the
parent selection mechanism used in receiver-initiated multicast routing protocols (e.g.
CBT [6], OCBT [30], PIM Sparse Mode [72]) suffers from problems similar to those of
the sender-initiated reverse-path check mechanism described above. When selecting
the parent for a group, these protocols choose the unicast next hop router towards the
group rendezvous-point or core. Join requests are sent to the parent, join acks and
other control messages are only accepted from the parent, and data is only forwarded
over these links. Selection of a parent not authorized for the group will cause joins to
fail because the parent won’t be trusted to forward the message.

Therefore, support of such differentiated infrastructure policies requires an
enhancement of the basic multicast model. Specifically, the topology discovery mech-
anism used in multicast systems must compute forwarding topologies for a group that
are authorized to carry traffic for that group. In terms of Section 6.2.3 this requires
a policy input to the routing computation that specifies what links in an internet are
authorized to carry traffic for which multicast groups. In the context of the algorithms
presented in Sections 3 and 4, this solution can be implemented as a traffic engineering
problem where the links are labeled with administrative constraints specifying which
multicast groups are authorized over each link, and multicast trees are built using

paths authorized for the given group.

128



Chapter 7

Inter-Domain Policy Routing

Applications

Inter-domain routing protocols are designed to perform policy-based routing in an
internet of autonomous systems. An autonomous system (AS) is defined as a set of
routers under a single technical administration, using an interior gateway protocol
and common metrics to route packets within the AS, and using exterior gateway
protocols to route packets to other ASs. In practice, this definition is relaxed to
allow multiple intra-domain protocols and several sets of metrics, the focus being on
a single administration. The two primary inter-domain routing protocols currently
defined are the Border Gateway Protocol (BGP) [64] (and it’s descendant, the Inter-
Domain Routing Protocol (IDRP) [41, 65]); these are primary in the sense that they
are currently the protocols used to maintain the global Internet routing topology. A

third protocol, based on a different architectural model, called Inter-Domain Policy
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Routing protocol (IDPR) [80] has also been defined.

BGP is an inter-domain, path-vector routing protocol. It is designed to per-
form policy based routing in an internet composed of autonomous systems. The path-
vector class of routing protocols was developed to address looping problems inherent
to the distance-vector based protocols. Called path-vector, these protocols are similar
to distance-vector protocols in that they are based on the Distributed Bellman-Ford
algorithm; they differ in that the path traversed in the computation of a given route
is carried with the computation as it propagates through a network for use detecting
loops and for policy decisions. BGP exploits the path vector computed in these proto-
cols to carry additional policy information for use in controlling the propagation and
selection of routes based on domain-based policies.

In addition to their underlying algorithms, routing protocols differ in the
basic function they serve in a network. In a simple network environment, owned
and administered by a single entity the primary purpose of a routing protocol is to
maintain connectivity information in the presence of topological changes. In such an
environment the primary information processed by a routing protocol is reachability
and link cost information. Protocols used in such environments are called intra-domain
routing protocols. RIP [55] and OSPF [59] are popular intra-domain routing protocols.
In contrast, inter-domain protocols are designed to perform policy based routing in an
internet of autonomous systems.

The remainder of this chapter reviews and analyzes problems with the path-

vector protocols currently used for inter-domain routing in the Internet, and proposes
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an alternative architecture based on the IDPR protocol enhanced with the policy-
routing algorithms presented above. Section 7.1 analyzes the security of BGP, presents
a strategy for securing the protocol, reviews previous work in this area, and evaluates
the results. Section 7.2 reviews convergence problems recently discovered in the BGP
protocol. Lastly, Section 7.3 proposes a new inter-domain, policy-based routing archi-
tecture based on the IDPR protocol, enhanced with the routing algorithms presented

above.

7.1 BGP Security Problems

There are four basic components in a BGP system: speakers, peers, links,
and border routers [64]. A BGP speaker is a host in the network that executes the
BGP protocol. BGP peers are two BGP speakers that form a connection and engage
in a BGP dialog. A BGP peer is either an internal or external peer, depending on
whether it is in the same or a different AS as the reference BGP speaker. The con-
nections between BGP peers are called links, with internal and external links being
defined similarly to internal and external peers. BGP links are formed using a reliable
transport protocol such as TCP. This eliminates the need to implement transport ser-
vices such as retransmissions, acknowledgments, and sequence numbers in the routing
protocol.

A border router is a router with an interface to a physical network shared with
border routers in other autonomous systems. Similar to BGP speakers, border routers
are either internal or external. Note that BGP speakers need not be border routers
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(or even routers of any kind). It is possible that a non-routing host could serve as the
BGP speaker, gathering routing information from internal or other external routing
protocols, and advertising that information to internal and neighboring external border
routers. This feature is currently in use in the Route Servers of the Routing Arbiter
project [31].

We make the following assumptions in designing security mechanisms for

BGP:

The BGP version 4 protocol as defined in RFC1771 [64].

A BGP speaker can trust its internal peers.

A BGP speaker can trust information it receives from external speakers only

concerning links incident on the AS to whom the external speaker belongs.

Intruders have capabilities as described in Section 7.1.1.

Key distribution is based on domain names, which can be efficiently and securely
determined given an IP address of a host, and the key distribution mechanism

provides a controllable refresh rate. !

7.1.1 BGP Threats and Vulnerabilities

We now identify the threats to which BGP is susceptible, and the vulner-

abilities these threats exploit. We consider separately threats to the flow of routing

!The DNS Security Extensions [29] might meet these requirements.
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traffic and threats to the flow of data traffic that involve portions of the routing infras-
tructure. We describe attacks in terms of different classes of internet nodes including
authorized BGP speakers and intruders. Authorized BGP speakers are those nodes

intended by the authoritative network administrator to perform as a BGP speaker.

Intruders

We assume that an intruder can be located at any point in the network
through which all traffic of interest flows, and that the intruder has the capability
to fabricate, replay, monitor, modify, or delete any of this traffic. Interpreting this
description for a BGP environment, we identify the following four general classes of

intruders:

Subverted BGP speaker: A subverted BGP speaker occurs when an authorized
BGP speaker is caused to violate the BGP protocols, or to inappropriately claim
authority for network resources. This typically occurs due to bugs in the BGP
software, mistakes in the speaker’s configuration, or by causing a BGP speaker to
load unauthorized software or configuration information, which can be achieved

by many means, depending on the design and configuration of the BGP speaker.

Unauthorized BGP speaker: An unauthorized BGP speaker exists when a node
that is not authorized as a BGP speaker manages to circumvent any access
control mechanisms in place, and establish a BGP link with an authorized BGP
speaker. How this is achieved depends on the design and configuration of existing

access control mechanisms.
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Masquerading BGP speaker: A masquerading BGP speaker occurs when a node
successfully forges an authorized BGP speaker’s identity. This can be accom-

plished using the IP spoofing [58] or source routing attacks.

Subverted link: There are a number of forms that a subverted link can take. One is
to gain access to the physical medium (e.g. copper or fiber optic cable-plant, the
“air-waves”, or the electronics used to access them) in a manner that allows some
control of the channel. In addition, a link may be subverted by compromising
lower layer protocols in use on the link in a manner that allows control of the

channel. An example of such an attack is the TCP session hijacking attack [43].

Threats to Routing Information

Under the correct circumstances an intruder can fabricate, modify, replay,
or delete routing traffic. With these capabilities, an intruder can compromise the
network in a number of ways. The modification or fabrication of routing updates
allows an intruder to reconfigure the logical routing structure of an internet, potentially
resulting in the denial of network service, the disclosure of network traffic, and the
inaccurate accounting of network resource usage. The replay or deletion of routing
updates blocks the evolution of subsets of the logical routing structure (in response
to topological or policy changes), or resets it to an earlier configuration with results
similar to above. The vulnerability exploited by these attacks is the lack of access
control, authentication, and integrity of BGP message contents.

In addition, it is relatively easy for an intruder to gain access to routing
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traffic. The information available from this traffic includes the appropriate next hop
to reach a destination, and the path taken by traffic to different destinations. The next
hop information is available from other sources, such as monitoring authorized traffic
to the desired destination for the next hop it uses, and therefore cannot be protected
solely by measures directed at the routing traffic. However, in some circumstances,
the path used to reach different destinations may be considered confidential. The
vulnerabilities exploited by these attacks are the lack of confidentiality of peer links

and the level of trust placed in BGP speakers.

Threats to Data Traffic

It is relatively easy for an intruder to snoop or disclose data traffic. The
vulnerability exploited to accomplish this is the lack of end-to-end or link encryption
services for data traffic. We will not address the possible countermeasures to these
attacks, because they should be implemented, in the link, network, or transport layer
data transfer protocols such as Ethernet, IP or TCP, which is beyond the scope of our
intended modifications to BGP.

It is also relatively easy for an intruder to fabricate, modify, replay, or delete
data packets. The effectiveness of these attacks at deceiving or disrupting the source
and destination processes depends on the end-to-end protocols in use at the transport
layer and above, and is not a routing-protocol issue. However, the effectiveness of these
attacks at deceiving the intermediate routing nodes is not an end-to-end protocol issue.

Countermeasures to these vulnerabilities will depend on mechanisms in the network
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or lower layers of the protocol hierarchy. The appropriateness and effectiveness of
end-to-end vs. link layer security measures is a fundamental issue in the design of the
Internet protocols [46, 66, 85]. While in general these issues do not involve routing
protocol mechanisms, two exceptions include the ability to use multiple paths to a
single destination, and the inclusion of authentication and access control mechanisms
in the packet forwarding function [32]; we will not address these measures further in

this section.

Goals for Securing BGP

In general, our goal in securing BGP is to provide authenticity, integrity,
confidentiality, and access control of BGP message transmission. Referring to the

previous sections, this goal translates specifically to preventing:

e The fabrication, modification, and replay of routing messages by all classes of

intruder.

e The deletion of routing messages by subverted links and subverted speakers.

e The disclosure of routing messages by all classes of intruder.

In the following, we assume that access control is provided using the same
naming and key distribution mechanism used to implement the authentication mech-
anism. The remaining access control design issues, such as the definition of the access
control lists and their distribution mechanism, are orthogonal to the countermeasures
presented here, and are not discussed further.
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7.1.2 BGP Security Countermeasures

Two classes of communication occur in BGP and routing protocols in general:
between neighboring speakers, and between a given speaker and an arbitrary set of
remote speakers determined dynamically by routing decisions. That communication
between neighboring speakers is composed of routing updates for destinations that the
sender has determined are appropriate to send to the receiver. The communication
between a speaker and remote speakers is composed of the fields of routing updates
which describe a given destination. Accordingly, we present the following two classes

of countermeasures:

BGP Message Protection Countermeasures:

e Encrypt all BGP messages between peers using session keys exchanged at
BGP link establishment time. This encryption provides integrity and au-
thenticity of all path attributes whose values are valid for at most one AS

hop, and confidentiality of all routing exchanges.

e Add a message sequence number to protect against replayed or deleted

messages.

BGP Update Field Protection Countermeasures:

e Add an UPDATE sequence number or timestamp to protect against replayed
UPDATE messages.

e Add a PREDECESSOR path attribute indicating the AS prior to the desti-

nation AS for the current route. This allows the verification of the path
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information using the AS PATH path attribute.

e Digitally sign all unchanging UPDATE fields whose values are fixed on cre-
ation by the BGP speaker originating or most recently aggregating the
route. This provides for the integrity and authenticity of not only these

fields, but also of the full AS_PATH.

The rest of this section presents a more detailed description of these countermeasures,
and an analysis of the effectiveness of these countermeasures against the threats and

vulnerabilities identified previously.

BGP Message Protection Countermeasures

The purpose of these countermeasures is to provide authentication, confiden-
tiality, and integrity of the routing messages between BGP peers, which compose the
first class of communication described above. Specifically, the message encryption and
message sequence number provide corruption detection, sequencing, acknowledgment,
and retransmission mechanisms. While these mechanisms are redundant to those pro-
vided by TCP, they are required due to the insecurity of the TCP mechanisms [27, 45].
As discussed by Tardo [82], these countermeasures are most appropriately provided
at the network or transport layers. These BGP countermeasures would no longer be

required if a secure network [47] or secure transport protocol [44, 63] were used.

Message Encryption Upon establishment of each BGP link, a session key is ex-

changed by the peers to encrypt each BGP message transmitted over that link. This
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encryption provides confidentiality of messages, as well as authenticity and integrity of
KEEPALIVE messages, NOTIFICATION messages, and some of the path attributes carried
in UPDATE messages.

A number of path attributes carried in UPDATE messages are modified in each
AS they transit. These include the NEXT_HOP, MULTI _EXIT DISC, and LOCAL_PREF at-
tributes. The use of peer-to-peer encryption for authenticity and integrity of these
path attributes is based on two observations: (a) the recipient of these path attributes
receives them from either the most recent modifier or via a single relay that is an
internal peer, and (b) our assumption that internal peers are trusted. Given these,
peer-to-peer encryption provides a high degree of security in an efficient manner. On
detection of corrupted information, the link is terminated using a NOTIFICATION mes-

sage.

Message Sequence Number A sequence number is added to each message; it
is initialized to zero on establishment of a BGP link, and is incremented with each
message. On detection of a skipped or repeated sequence number, the BGP link is
terminated with a NOTIFICATION message. The size of the sequence number is made
large enough to minimize the chance of it cycling back to zero. However, in the event
that it does, the link is terminated and a new link is established, resetting the sequence

number to zero and establishing a new session key.
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Figure 7.1: Proposed UPDATE Message Changes

UPDATE Field Protection Countermeasures

The countermeasures presented in this section protect the communication
between a given speaker and a set of remote speakers. These countermeasures provide
only for authenticity and integrity of this communication, because confidentiality of
this communication is unnecessary as the potential recipients include all authorized
BGP speakers in an internet. As discussed by Tardo [82], these countermeasures pro-
vide authentication and integrity of fields within a message, and are most appropriately
implemented in the presentation layer.

Figure 7.1 illustrates the proposed modifications using the UPDATE message,

which includes all proposed new fields, as a model.
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UPDATE Sequence Number or Timestamp Sequence information is added
to each UPDATE message to protect against the replay of old routing information.
This sequence information is generated for each route output from the BGP decision
process, and can be in the form of a sequence number or a timestamp. While a
number of UPDATE messages may be generated for each route (one message per peer
of the originating speaker), only one sequence number or timestamp is used for all of
them.

This sequence information is necessary because a remote speaker may re-
ceive the same route in multiple updates, each describing the same destination but
representing different paths, and all of these UPDATES must be considered valid. This
implies that UPDATES for a given destination must be considered valid if their sequence
information is greater than or equal to the current sequence information. Note that
sequence information must be maintained and validated on a per speaker basis. An
invalid UPDATE message is dropped silently.

In a BGP environment, sequence numbers would have a potentially long
life. Given the recommended value of BGP’s MinASOriginationInterval timer (15
seconds) the sequence number can be relatively small and still be assured of not cycling.
Setting this timer to as low as 8 seconds, and assuming a new UPDATE is originated
at the end of every interval, a four octet sequence number would last for over 1000
years. The main difficulty introduced by a sequence number consists of maintaining it
in the context of arbitrary software and hardware failures. Techniques such as those

proposed by Perlman [62] could be used; however, if cycling of the sequence number
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must be supported, the following process can be used:

Each BGP speaker maintains an UPDATE message sequence number database
on a per BGP speaker < domainname, publickey > pair basis. When the
cycling of a sequence number approaches, a new public-key pair is gener-
ated. The key distribution mechanism and BGP speaker are updated with
the new key pair, and the speaker’s UPDATE sequence number is reset to
zero. On detection of a change in the public key for an originating speaker,
the receiving speaker will add an entry to its UPDATE sequence number
database for the new originating speaker < domainname, publickey > pair
with a sequence number of zero. It will continue to use the old sequence
number entry until a sequence number failure occurs where the digital sig-
nature validation succeeds using the new entry. At this time the old entry
is purged, and the conversion to a new sequence number is complete. Fur-
ther work is needed on a mechanism to load the database of a newly-booted
BGP speaker.
A timestamp could be used instead of a sequence number. The main benefit of
a timestamp would be the ease of administration provided by the well-defined external
reference for use in resetting lost state. The life of even a small timestamp, while not

as long as for sequence numbers, is still significant; assuming a granularity as small as

one second, a four octet timestamp still has a life longer than 130 years.

New PREDECESSOR Path Attribute To ensure the authenticity of the AS_PATH
attribute, we augment UPDATE messages with a PREDECESSOR attribute identifying the
AS prior to the destination AS for the current route. We call this AS the predecessor to
the destination AS. By including the predecessor information, and a digital signature
of this information calculated by the originating speaker (described in Section 7.1.2),
the authenticity and integrity of the complete path reported by a speaker to any des-
tination can be established by the speaker’s neighbors. Specifically, this can be done

by means of a path traversal of the verified predecessor information reported by the
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route.

The PREDECESSOR path attribute includes: the originating AS, the predeces-
sor AS, an IP address of the originating speaker, and a type field. The originating
AS must be the same as the AS in the AGGREGATOR and the first AS in the first
AS_SEQUENCE segment of the AS_PATH path attribute, if these attributes exist. The
predecessor AS must be the same as the second AS in the first AS_SEQUENCE of the
AS_PATH attribute, if it exists. The IP address of the originating speaker must be the
same as the IP address in the AGGREGATOR attribute, if it exists.

The TYPE field can take on the value of either ADD or DELETE. The ADD version
of the PREDECESSOR attribute is generated by the speaker that originates the UPDATE
message, which may either be the creator of an unaggregated UPDATE, or the last
speaker to perform an aggregation of the routing information in the current UPDATE.
The purpose of the ADD type of the PREDECESSOR path attribute is to identify the
originating BGP speaker whose key is used to digitally sign the UPDATE, and to iden-
tify the destination and predecessor information in the absence of AGGREGATOR and
AS_PATH attributes (see below regarding transit-only UPDATES). The DELETE version of
the PREDECESSOR path attribute serves the purpose of identifying a previously reported
predecessor relationship that is no longer valid. Possible reasons for this change in-
clude the failure of an inter-AS link, or the termination of a transit traffic agreement.
This segment type may be generated by either end of the deleted link; the originating
AS field of the PREDECESSOR attribute specifies the generating BGP peer.

The predecessor information is used by each node to maintain a predeces-
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sor table. The predecessor table is a column vector containing the predecessor to the
destination and to each intermediate node on the chosen path to each known destina-
tion. The information maintained in the predecessor table is used to verify AS_PATH
attributes. Before a speaker selects a route, that route’s AS_PATH attribute should be
verified by a walk through the predecessor table. This verification is done by traversing
backwards through all AS_SEQUENCE segments in the AS PATH, starting with the first
AS in the first AS_SEQUENCE path segment, confirming that a validated predecessor
table entry exists for each predecessor AS in the AS_PATH. The timing of this verifica-
tion is not specified, and is influenced by the expected frequency of invalid AS_PATH
attributes, expected load, and the performance requirements of the speaker. Options
for when to perform this verification include on receipt of the AS_PATH, or on selection
of the route for use. This check could also be performed on a statistical basis if loads

are excessive.

Policy-based Handling of PREDECESSOR Attributes Smith, Murthy and
Garcia-Luna-Aceves [78] have shown how predecessor information alone is adequate
to secure intra-domain distance-vector routing protocols. This is possible in these
protocols because the paths used to reach destinations downstream from a given node
are extensions of the path used to reach the node itself. As a result, at most one
update for any given node is passed along by upstream routers, and a chain of <
destination, predecessor > pairs uniquely identifies a path to any destination.

However, in inter-domain distance-vector routing protocols in which routing
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Figure 7.2: Need for Multiple Predecessors

decisions are made based on arbitrary policies, the assumption that paths through a
node are extensions of the paths used to reach that node no longer holds. In policy-
based routing, the path used to reach a node as a destination does not necessarily
have any relation to the path used to reach a node as a relay to a different destination.
This is illustrated in Figure 7.2. In the figure, due to policy-based decisions, a speaker
for AS E has chosen path < C,B, A > to reach destination A, and path < D,B >
to reach destination B. To validate both paths, the speaker for AS E needs two
predecessor table entries for B; one through C' and one through D. As a result, more
than one update for a given node, each with a different predecessor, can be passed
along by upstream speakers. The only restriction on handling updates being that at
most one update from a given node is used to reach any one destination. This relaxed
restriction results in two additional requirements of the protocol.

First, each speaker upstream from a given predecessor link must maintain a
list of destinations that will be accepted over that link. To allow these destination
lists to be kept current, speakers must include a list of destinations for which they

will handle traffic in updates they generate. Additionally, as speakers learn of new
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destinations, they must generate new updates (called transit updates) to add these
destinations to the list of valid destinations for their predecessor links. A danger of
transit updates is that they become hop-by-hop security for each AS_PATH. Fortunately,
there are a number of factors that mitigate this problem. First, it is not necessary to
re-authenticate the same predecessor link/destination pair as paths from the transit
AS to the destination change over time. Second, it is not necessary to delete a valid
destination for a predecessor link simply because the destination becomes unreachable.
Lastly, the MinASOriginationInterval variable mentioned earlier causes updates to
tend to consolidate, resulting in fewer updates describing more significant changes
rather than more updates describing smaller changes. Further work is needed on these
issues. Specifically in the areas of how to specify the destinations (AS, IP address
prefixes or both), and how to invalidate predecessor link/destination pairs.

Second, a new mechanism must be defined for determining the correct pre-
decessor for a given destination in the path-traversal described previously. With the
relaxed restriction on the propagation of updates described above, it is now possible
for an upstream speaker to have information describing multiple predecessor links to
the same AS that are valid for the same destination. To allow upstream speakers to
uniquely determine the correct predecessor link for the path from itself to the desti-
nation, each speaker includes information in each update it generates identifying the
successor to the downstream AS of the predecessor link it uses for the destination valid
on that link. Because each speaker selects only one successor for a destination, the

existence of the desired destination in the list of destinations specified for both the
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predecessor and successor links uniquely identifies the link as part of the current path,
and secures the link from both the upstream and downstream ends.

To summarize, the relaxed restriction on the propagation of updates in policy-
based routing requires the predecessor information used to secure non-policy-based
distance-vector routing protocols to be expanded to include information identifying
the destinations traffic is accepted for over that link, and information specifying the
successor AS to be used in reaching each of these destinations. Specifically, each
update now includes, in addition to the information listed in Section 7.1.2, a list of
successor ASs and the destinations for which each AS will handle traffic.

This information is used by upstream speakers to maintain a more compli-
cated distance table composed of, for each neighbor, a two dimensional matrix indexed
by destination and originating AS pairs. Each element of this matrix contains a list of
quadruplets of: predecessor AS, successor AS, destinations, and distance to the orig-
inating AS. An AS_PATH is verified by walking backwards through the path verifying
that the appropriate overlapping predecessor/originator/successor entries exist, and
that the intermediate distances are consistent. Note that in this context the originat-
ing AS can act as a relay or a destination (or both). To advertise destinations in its
containing AS an originating speaker should include a null successor AS with its AS

as a destination in the PREDECESSOR field.

UPDATE Digital Signature To ensure the integrity and authenticity of the un-

changing UPDATE message information, it is digitally-signed by the originating BGP
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speaker specified in the PREDECESSOR attribute. Without protection, trust of this
information requires trust of BGP peers regarding information concerning links not
incident on their AS. This is something we explicitly do not do. By including the
PREDECESSOR attribute information in this signature we protect, in addition to the in-
formation in the current UPDATE, the full path information contained in the predecessor
table described above.

The UPDATE message digital signature is stored in the Marker field of the
header, and is calculated over the following fields: UPDATE sequence number, Un-
feasible Route Length, Withdrawn Routes, ORIGIN, ATOMIC_AGGREGATE, AGGREGATOR,
PREDECESSOR, and the NLRI. This definition of the digital signature assumes that these
fields are only meaningful as a unit; that a change in one requires the re-computation
of them all. If the protocol evolves to where this is not the case, and subsets of
these attributes may be updated independently by different BGP speakers, additional

sequence numbers and associated digital signatures will be introduced.

Countermeasure Effectiveness

We now analyze the impact of each countermeasure on the threats identified
in Section 7.1.1. The message protection countermeasures provide protection against
all nodes lacking the necessary cryptographic keys, specifically unauthorized speakers,
masquerading speakers, and subverted links. The encryption of BGP messages protects
them from fabrication, modification, and disclosure by these classes of intruders. The

addition of a sequence number to BGP messages protects them from replay or deletion
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by these intruders.

Similarly, the UPDATE field protection countermeasures provide protection
against compromise by those nodes that do have the cryptographic keys, specifi-
cally subverted speakers. The digital signature of the Withdrawn Routes, ORIGIN,
AS PATH, ATOMIC_AGGREGATE, AGGREGATOR, NLRI, and new
PREDECESSOR and UPDATE Sequence Number fields protects these fields from fabrication
or modification by subverted speakers. The addition of the UPDATE Sequence Number
protects against the replay of these fields by a subverted speaker. The addition of
the PREDECESSOR path attribute provides a means of validating a link in the internet,
which can then be used to validate each link in the AS_PATH attribute.

Referring back to Section 7.1.1 we see that we have achieved all but a few
of our goals. Specifically, a subverted speaker is still able to fabricate destination
information, delete routing updates, and disclose routing information. In retrospect,
we can see that these goals conflict with our basic assumptions of trust in BGP speakers
regarding policy and connectivity information concerning resources for which they are
authoritative, and trust to handle routing information confidentially. We believe these
vulnerabilities are unavoidable, because they are inherent to the requirements of the

protocol.

Performance Analysis

The cost of these countermeasures is in the space for the new sequence num-

bers and digital signatures, and the time for computing encryption and digital signa-
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tures, and verifying these protections. From the perspective of the actions occurring

in a BGP system, the costs are the following:

Message generation and reception: Space: A new field is added for the peer-
to-peer sequence number. Time: The cost of a symmetric key encryption and

decryption of each message.

Initiation and reception of UPDATE messages: Space: The Marker
field is used for the UPDATE message digital-signature. Each UPDATE message
includes a new UPDATE sequence number and PREDECESSOR attribute. Time:
The time to perform the computation and verification of the UPDATE message

signature.

Route Selection: Time: The time to verify signatures for each link. This cost will
only be incurred twice for each used link: once for the ADD and once for the

DELETE.

While these costs are not constant per destination (due to the possible need
for intermediate nodes to send “transit PREDECESSOR” path attributes), they do offer
the potential for significantly lower costs than the linear growth in cost with path
length of previous solutions. The factors contributing to this improvement were out-

lined in Section 7.1.2.
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7.1.3 Related Work

Kumar [50] analyzes the security requirements of network routing protocols,
and discusses the general measures needed to secure the distance-vector and link-state
routing protocol classes. He identifies two sources of attacks: subverted routers, and
subverted links. Since attacks by subverted routers are seen as difficult to detect and
of limited value to the intruder, Kumar focuses his attention on securing protocols
from attacks by subverted links. For distance-vector protocols, this translates into the
modification or replay of routing updates. The specific countermeasures proposed by
Kumar are neighbor-to-neighbor digital signature of routing updates, the addition of
sequence numbers and timestamps to the updates, and the addition of acknowledg-
ments and retransmissions of routing updates. Kumar and Crowcroft [51] perform a
similar analysis of inter-domain protocols, and come to similar conclusions for pro-
viding security of distance-vector related routing protocols (they specifically address
the path-vector routing protocol IDRP). The one addition they make is to encrypt
neighbor-to-neighbor updates.

These results are similar to ours with the exception that we explicitly assume
the existence of subverted routers, and provide countermeasures to protect against
them. We feel this is necessary, because BGP speakers are potentially vulnerable to
attacks from a number of sources, with potentially catastrophic results from success.

Murphy [60] outlines a solution for securing distance-vector protocols that
involves including the information used to select a route, signed by the neighbor from

which it received it, in the routing update it then signs and transmits to its neighbors.
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Murphy points out that this requires the validation of a number of nested signatures
equal to the number of routers in the path. This results in both update size and
validation computation time problems as the size of the network grows. These prob-
lems result, fundamentally, from the redundant signing of link information for paths
that are supersets of paths used to reach destinations traversed in the longer path. In
contrast, we avoid these problems by signing only the component link information, in
the form of predecessors, and performing a path traversal to validate full paths. This
results in the use of constant space, and significantly reduced computation time.

Smith and Garcia-Luna-Aceves [77, 78] have presented security mechanisms
for BGP and distance-vector protocols in general. The proposed solutions are similar
to those presented here, without as detailed an analysis of the implications of policy-
based decisions on the countermeasures.

Recent work by Kent et al [48] documented the design and implementa-
tion of a Secure Border Gateway Protocol (S-BGP). This design follows the model
of the secure distance-vector solution suggested by Murphy [60] involving the nested
signature of routing updates as they propagate through an internet. While a num-
ber of optimizations have been attempted to manage the cost of such a solution, the
costs (computational, bandwidth, and storage) incurred in this solution are significant.
From recent personal discussions it appears that there has been little interest on the
part of network operators to adopt this solution, and work continues on improving the

efficiency of the solution.
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7.2 BGP Convergence Problems

A specific requirement of inter-domain policy-based routing is the support
of AS-specific, private policies by the routing computation. An important implica-
tion of this requirement is that there is no guarantee that consistent route selection
criteria are used by the different nodes in the internet. Being fundamental to the
correctness, in particular the loop-free nature, of modern routing algorithms the lack
of this consistency poses a major problem in the design of inter-domain protocols. For
BGP this has proven to be a problem. Recent research [37, 84] has shown that the
path selection algorithm used by BGP (and IDRP) is susceptible to persistent route
oscillations (i.e. the routing computation will not converge) under certain conditions.
The source of this instability is the simultaneous use of hop-by-hop forwarding and
unconstrained path selection policies. While work has progressed on algorithmic and
administrative mechanisms for constraining path selection policies to ensure conver-
gence of BGP route computations, the solutions have proven to be painful either in
the limitations put on usable policies, or in the administrative and logistical overhead
required to ensure convergence. Based on these results the fundamental policy-routing

model assumed by BGP must be questioned.

7.3 Solution — IDPR

In contrast to BGP, the Inter-Domain Policy-Based Routing protocol (IDPR)

is an inter-domain, link-state routing protocol that uses source-specified forwarding.
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This policy-routing model (specifically, link-state with source-specified forwarding)
allows IDPR to avoid the convergence problems experienced by BGP. In an IDPR
environment, two classes of routing policies are defined: transit and source. Transit
policies define how resources in a domain can be used by transit traffic. By default,
these policies are assumed to be public, and are flooded as part of the link-state
distribution to all ASs in an internet. Source policies define how traffic originating
from a domain is to be handled as it travels through an internet. By default, source
policies are assumed to be private, and are not transmitted outside an AS. Routes are
computed by IDPR routers in the source domain in compliance with the (in general)
globally known transit policies, and the locally known source policies. Forwarding
state is established using source-specified path setup. These computations are typically
done on-demand, although provision is made for the pre-computation and path setup
of routes for requests that can reliably be anticipated. Provision is also made for the
restricted distribution of private transit policies, when needed.

The routing algorithms developed in Sections 3 and 4 can be applied to IDPR
in two ways. First, these algorithms can be used to provide more efficient on-demand
routing computations in the currently proposed IDPR architecture. Additionally,
IDPR can be enhanced to provide more efficient support for public source policies.
Such support would provide significant benefits in the case where widely desired, non-
sensitive source policies existed. Fur such policies, IDPR could perform table-driven,
hop-by-hop routing computations using the table-driven routing algorithms presented

above. As described in Section 2.1, the benefits of such computations include more
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efficient, responsive, and robust forwarding of such traffic. Furthermore, being funda-
mentally a link-state protocol, IDPR can be secured using straightforward techniques
such as those proposed for securing other link-state protocols [61]. In general, the
combination of the IDPR inter-domain, policy-based routing protocol, and the effi-
cient policy-based routing algorithms presented here would provide an efficient, easily

securable, and provably correct alternative to BGP.
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Chapter 8

Conclusions

The goal of this dissertation was to explore the problem of efficiently supporting policy-
based routing in the table-driven, hop-by-hop routing model used in the Internet
architecture. We formulated an integrated policy-based routing architecture, where
policy-based routing is defined as routing in the context of multiple metrics. Policy-
based routing can then be seen to support traffic engineering by the computation of
routes in the context of metrics specifying administrative constraints on the type of
traffic allowed over portions of an internet. Analogously, policy-based routing supports
QoS requirements by the computation of routes in the context of metrics describing
performance-related characteristics of links in an internet. We presented a traffic
algebra that formalized the notion of a traffic class, and identified an efficient set-based
implementation of the traffic algebra for traffic expressions composed of restricted
numbers of variables. We presented an extension of Sobrinho’s path algebra [79] to

formalize the notion of the best set of weights for a given destination.
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We then presented a family of routing algorithms that compute exact solu-
tions to policy-based routing problems using these algebras. The enhanced version of
TD-TE-Dijkstra is the most efficient algorithm available for computing routes satisfy-
ing traffic engineering constraints on the traffic allowed to traverse subsets of an inter-
net. The enhanced version of TD-QoS-Dijkstra is the most efficient algorithm available
for computing routes satisfying QoS constraints on the paths allowed to carry traffic
for a given flow. Policy-Based-Dijkstra is the first algorithm for computing routes that
simultaneously satisfy traffic engineering and QoS constraints.

A new forwarding architecture based on distributed label-swapping was pre-
sented that efficiently supports multiple-paths per destination which is required for
policy-based routing. In this architecture the routing protocol is enhanced to exchange
the additional link metrics, and forwarding table information. The neighbor forward-
ing table information is used to compute the label-swap entries as well as the traffic
classification rules used by each router. A significant innovation of the policy-based
routing architecture presented here is the combination of the table-driven, hop-by hop
routing model with label-swap forwarding mechanisms. This innovation is based on
the insight that host addresses and labels are largely equivalent alternatives for rep-
resenting forwarding state, and that the virtual-circuit nature of prior label-swapped
architectures derives from their use of a source-driven forwarding model. The advan-
tage of this distributed label-swap forwarding model over traditional address-based
forwarding is that label-swap forwarding provides a clean separation of the control

and forwarding planes, while address-based forwarding unnecessarily binds them to-
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gether. In addition, enhanced versions of the routing algorithms were presented which
compute routes that are compatible with this forwarding architecture.

We articulated a new model for the complexity of policy-based routing where
the complexity of the computation is seen to be driven by the number of incompara-
ble paths existing in a graph. Based on this new model the previous algorithms for
computing approximate solutions to the policy-based routing problem can be seen as
attempting to limit the number of incomparable routes possible in a graph through the
manipulation of link weights. The limitation of this approach is that it does not work
in the context of administrative policies. Taking the alternative approach of limiting
the total number of paths in the graph, we developed the first algorithms for com-
puting approximate solutions in the context of administrative constraints, and both
administrative and performance constraints. Experimental results showed that the
performance of this algorithm compared favorably with that of the previous solutions.

Lastly we explored the application of this new technology to a number of
specific problems. We showed that the application of these algorithms and techniques
to intra-domain policy-based unicast and multicast routing could provide significant
improvements in manageability and security of IP-based networks. Further more, the
application of these technologies to inter-domain policy-based routing offers a solution

to the critical problems recently identified with the current path-vector solutions.
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8.1 Future Work

The most significant future work to be done is relating to the traffic algebra
and processing of traffic expressions. First, investigation needs to be made into efficient
solutions to the satisfiability problem for traffic expressions. Similar to studies on the
characteristics of expressions encountered in hardware design and software verification,
and strategies for efficiently determining their satisfiability, investigation needs to be
done into the typical structure of expressions encountered in a policy-based routing
context, and strategies identified to efficiently process such expressions. Furthermore,
investigation needs to be done into higher-order reasoning about these expressions for
use in network analysis and design to enable such systems to be effectively deployed.
Further research is needed into more sophisticated approximation solutions based on
the model defined here. Lastly, work is needed into the application of this exciting new
technology. Examples include: intra-domain policy-based unicast routing where the
routing infrastructure, in effect, can bee seen as a distributed firewall; intra-domain
policy-based multicast routing where significant manageability and security problems
with the existing multicast architecture can be addressed; and inter-domain policy-
based routing where a new approach can now be considered, based on the availability
of these new algorithms, that is a more direct and provably correct solution to the

problem.
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