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Securing Distance-Vector Routing Protocols

Bradley R. Smith

Abstract

The security requirements of distance-vector routing protocols are analyzed, their
vulnerabilities identified, and countermeasures to these vulnerabilities are proposed. The
innovation presented involves the use of mechanisms from the path-finding class of distance-
vector protocols as a solution to the security problems of distance-vector protocols. The
result is the first proposal to effectively and efficiently secures distance-vector protocols in

constant space.
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Chapter 1

Introduction

Routing protocols support the delivery of packets, in spite of changes in network
topology and usage patterns, by dynamically configuring the routing tables maintained at
routers in internets. The compromise of this routing function in an internet can lead to the
denial of network service, the disclosure or modification of sensitive routing information, the
disclosure of network traffic, or the inaccurate accounting of network resource usage. The
primary focus of security services in routing protocols is the protection of routing informa-
tion from threats to the integrity (the intentional corruption of routing data), authenticity
(the acceptance of routing information from an unauthorized entity by legitimate routers),
and in some cases the confidentiality (of for example sensitive policy information) [19] of
routing updates. The specific strategies and mechanisms most effective at securing this in-
formation depend on a number of attributes of routing protocols that determine specifically
what information is exchanged and which set of principles interact in the progression of a

routing computation.



The routing protocols used in most of today’s computer networks are based on
shortest-path routing algorithms that can be classified as distance-vector or link-state al-
gorithms. In general, shortest path algorithms operate by computing the shortest path
spanning tree of a network rooted at the source node. Distance-vector algorithms are based
on the Distributed Bellman-Ford (DBF) algorithm [2], in which a node knows the length
of the shortest path from each neighbor node to every network destination and uses this
information to implicitly compute the shortest-path spanning tree. Specifically, with this
information, a node is able to compute the length of the shortest path and the next node
on this path to each destination. A node sends update messages to its neighbors, who in
turn process the messages and send messages of their own if needed. Each update message
contains a vector of one or more entries, each of which specifies, as a minimum, the distance
to a given destination. In contrast, link-state algorithms are based on Dijkstra’s algorithm
[2], where a node must know the entire network topology to compute the shortest path
spanning tree. Each node broadcasts update messages, containing the state of each of the
node’s adjacent links, to every other node in the network.

Current distance-vector based routing protocols contain few, if any, mechanisms
to provide for the security of their operation, and those that exist are often incomplete. For
example, the security mechanisms currently defined for BGP [16] and RIPv2 [10] protect
the transmission of routing messages across local networks; however, they do not provide
integrity or authenticity of the routing information itself as it traverses an internet. These
mechanisms require trust of neighbors regarding updates describing the full internet, and
transitively, similar trust of all routers in an internet. Solutions to this problem have been

proposed (for example, that of Murphy [12]) involving the inclusion of full path information



and a digital signature of the selected route in the updates. However, such solutions,
requiring the validation of nested signatures, have extreme space and time costs that make
them unusable in any practical sense. Solutions for securing link-state protocols have been
proposed that address both the security of routing message transmission and of the routing
information itself [12, 15]. While this class of routing protocols has the advantage of a
more straightforward means of securing routing information in a manner that effectively
limits the scope of trust, it also involves considerable computation and space overhead
that compromise its usability in large-scale internets. Given the evolution of the global
Internet to a commercial, production network infrastructure, this state of affairs is clearly
unacceptable.

The proposal presented here addresses all of these issues. It addresses distance-
vector protocols specifically, providing security to these protocols, which have an inherent
advantage in computation and space overhead compared to link-state protocols. The so-
lution presented here validates the full path represented by a routing update, confirming
not only the next hop of a route but, also that the next hop is the first hop on a path
that reaches the named destination at the reported cost. Furthermore, this validation only
requires trust of routers concerning information regarding links incident on them, eliminat-
ing the transitive trust required by previous proposals. Lastly, this security is provided in
constant space per destination in an internet.

Chapter 2 gives a brief description of the network model assumed in the following.
Chapter 3 contains a brief review of cryptography, and the specific technologies used in
the following sections to secure distance-vector routing protocols. Chapter 4 analyzes the

security of distance-vector algorithms, and identifies their vulnerabilities and the threats to



which they are susceptible. Chapter 5 presents the proposed strategies and countermeasures
for securing distance-vector routing algorithms. Chapter 6 reviews related work. Chapter 7

presents conclusions.



Chapter 2

Network Model

A network is modeled as an undirected connected graph where nodes in the graph
are routers and links are sub-networks (subnets). Each link has two lengths or costs associ-
ated with it — one in each direction. A network is defined by an IP address range, and can
either be a single link-level network (often called a local/metropolitan/wide area network
or LAN/MAN/WAN), or, recursively, another set of networks sharing an IP address space.
Such a set of interconnected networks is often referred to as an internet. Each node (router)
and link (subnet) in the graph has a unique id. Each link has a cost, which can vary in time
but is always positive. The distance between two nodes is the sum of the link costs in the
path of least cost, or shortest path, between them. Figure 2.1 shows a map of an example
internet, and Figure 2.2 shows a schematic of the same network with arrowed lines drawn to
show selected routes for use later in the paper. In these drawings lower case letters identify

routers, and upper case letters identify subnets.



Figure 2.1: Map of Example Internet

Figure 2.2: Schematic of Example Internet



Chapter 3

Cryptographic Tools

Except where noted, this section is heavily based on Schneier [18], which is a rich
source of references for many of the concepts in what follows. The proposed Internet Security
Architecture (ISA) [19] provides an architecture for the inclusion of security facilities in the

design of protocols to be used in the Internet. Fundamental to the ISA are four concepts:

Vulnerability: A weakness in a system’s security that may be exploited by an intruder.

Threat: A potential violation of security. It requires an intruder who has the capability to
exploit an existing vulnerability. Threats can be classified into four general categories.
Disclosure is an event in which an entity gains access to data that the entity is not
authorized to receive. Deception is an event that results in an authorized entity
receiving false data and believing it to be true. Disruption is an event that interrupts
or prevents the correct operation of system services or functions. And, usurpation is
an event that results in control of system services or functions by an unauthorized

entity.



Security Service: Vulnerabilities and threats are minimized or eliminated through the
provision of six security services [14]. Confidentiality is the protection of data so
it is not made available or disclosed to unauthorized individuals, entities, or pro-
cesses. Integrity is the protection of data so that it is not altered or destroyed in an
unauthorized manner. Authenticity is the verification of the identity claimed by a
system entity. Access Control is the protection against unauthorized use of system
resources. Non-Repudiation is the protection against false repudiation of a commu-
nication. Awailability is the assurance that resources are accessible and usable upon

demand by an authorized entity.

Countermeasure: A mechanism or feature that provides a security service. Examples of
countermeasures include encryption of network traffic to provide confidentiality, and

the use of challenge-response technology for providing authentication of user logins.

This section provides a brief overview of the two fundamental cryptographic tech-
nologies used in the following sections to implement countermeasures to routing protocol

vulnerabilities: encryption and digital signatures.

3.1 Encryption

A message in its original, usable state is called plaintext. A message that has
been transformed to conceal its original meaning is called ciphertext. The process of
transforming plaintext into ciphertext is called encryption. The process of transforming
ciphertext back to plaintext is called decryption. The procedure used for encryption and

decryption is called a cryptographic algorithm, or a cipher. The steps taken to encrypt



a message are called encryption algorithms, and similarly decryption is performed using
a decryption algorithm. Modern ciphers use a key. The value of a key can range over
a set of values called the keyspace. Typically the larger the keyspace the more secure
the encryption. The value of the key is a parameter to the encryption and decryption
functions, along with the plaintext or ciphertext, such that for different keys, the same
cipher processing the same input text produces different output text. There are two general

forms of such key-based ciphers: symmetric and public-key.

3.1.1 Symmetric Ciphers

Symmetric ciphers are based on algorithms where the encryption and decryption
keys can be calculated from each other. In many of these systems the keys are the same.
The primary functional differences between symmetric and public-key algorithms are a
result of difference in the use and management of the keys in each system. When using
symmetric ciphers, by definition, both the sender and receiver of a communication either
have the same key, or have enough information to calculate each other’s keys. This shared
nature of symmetric cipher keys presents a number of problems. One is that, fundamentally,
non-repudiation is not possible due to the need to share keys. The other is that the need
for confidentiality in key distribution adds significant complexity to the key management
mechanisms as compared to public-key systems.

Popular examples of symmetric ciphers include the U.S. Data Encryption Standard

(DES), and the International Data Encryption Algorithm (IDEA).
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3.1.2 Public-Key Ciphers

Public-key ciphers are based on algorithms where the encryption and decryption
keys differ, and cannot be calculated from each other in a reasonable amount of time. The
name “public-key” comes from the fact that the encryption key is typically made public.
Anybody can encrypt a message, but only the individual with the corresponding decryption
key can read the message. Some public key ciphers allow the encryption/decryption process
to be performed using either key for encryption, and the other for decryption. As will be
explained later, this ability is very useful for the generation of digital signatures. Other
ciphers provide a similar capability using a different algorithm for digital signatures, which
uses the same keys.

This dual key aspect of public-key ciphers gives rise to some significant differences
vis-a-vis symmetric ciphers. When using public-key ciphers, only the owner of a key pair
has full encryption/decryption information; the public-key portion of a key pair only gives
others access to half the process. Using these ciphers, true non-repudiation is possible.
Given adequate private-key management mechanisms, the ability to decrypt a message
with the public-key verifies the owner as the source of the message, since only the owner has
access to the private-key component. Additionally, public-key ciphers have less demanding
requirements of the key exchange mechanism vis-a-vis symmetric ciphers. In a public-key
cipher the only key that requires distribution is the public key. Since, by definition, a public
key does not require any privacy in its distribution, the key exchange mechanism for public
keys only needs to provide integrity and authentication. This significantly simplifies the

key distribution mechanism.
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Examples of public-key algorithms include the RSA algorithm, named after its
three inventors, Ron Rivest, Adi Shamir, and Leonard Alderman, and the ElGamal al-
gorithm (named after its inventor). An example of a public-key algorithm that provides
for digital signatures via a separate signature algorithm is the U.S. government’s Digital

Signature Algorithm.

3.2 Digital Signatures

Digital signatures are the other fundamental building block of cryptographic sys-
tems. Their purpose is to duplicate the function of traditional signatures in paper-based
systems. In particular, the characteristics of traditional signatures that need to be provided

by digital signatures include:

e the signature cannot be repudiated (the signature is bound to the identity of the

signer).
e the signature is not re-usable (the signature is bound to the signed document).

e the signed document is unalterable (the document is bound to the signature).

As alluded to earlier, many public-key ciphers have the mathematical properties,
or are designed in such a way as to provide effective digital signatures. Using the RSA
algorithm, which allows either key to be used for encryption, as a popular example: the
signer encrypts the message with their private key, and sends the resulting ciphertext to the
recipient; the recipient decrypts the ciphertext with the sender’s public key. If the resulting

plaintext is a valid message then the requirements of a signature have been met:
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e the signature cannot be repudiated since only the sender has the private key that

could have created the ciphertext.

e the signature is not re-usable, being a function of the original plaintext and a key, it

would not be valid for any other document.

e the signed document is unalterable since modified plaintext would not match the

deciphered ciphertext.

While digital signatures implemented only with encryption work, as outlined above,
they have a couple of problems: space and speed. Because the signature is an encrypted
version of the message, the size of the signature is some significant fraction of the size of
the message; this results in a storage requirement of somewhere close to double the size of
the original message for storage of the message with its signature. Because the speed of
public-key encryption is relatively slow, the requirement of encrypting and decrypting a full
message to create and verify a signature in this manner is prohibitive. To address these
problems, digital signatures can be implemented with a combination of encryption and a
one-way hash function.

A one-way hash function, also called a cryptographic checksum, message au-
thentication code (MAC), or message digest, has two mathematical properties that make
it useful for implementing digital signatures. First, as a hash function, it is a function that
takes an arbitrary size message and converts it to a fixed size string. The output of a hash
function provides a kind of fingerprint of the input message. A simple example would be the
function returning the byte resulting from the XOR of of all bytes of the input message. Be-

cause they are many-to-one functions (the example XOR function maps all possible strings
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into 256 values), hash functions do not uniquely identify a string, but they do provide a
useful validity check. A one-way function is a function that is easy to compute, but hard to
reverse. A simple example is 2, which is easy to compute, while its inverse, \/z, is difficult.

Combining these two concepts results in a one-way hash function that is a function
that computes a fixed length value from an arbitrary size message such that calculating the
value from the message is easy, but generating a message that hashes to a given value is
very hard. The XOR function mentioned earlier clearly is not a one-way hash function
because it is easy to generate strings that hash to a given value. Examples of one-way hash
functions include Message Digest 4 (MD4), and Message Digest 5 (MD5), both developed
by Ron Rivest, and the Secure Hash Algorithm (SHA), developed by NIST and the NSA
for use with the U.S. government’s Digital Signature Standard.

Combining one-way hash functions with public-key encryption results in an effi-
cient and effective digital signature. Using a public-key cipher, such as RSA, and a one-way
hash function, a digital signature would be implemented as follows: the sender calculates
a one-way hash of their message, and encrypts the hash value with their private key; the
sender sends the message with the encrypted hash value to the receiver; the receiver calcu-
lates the hash value of the received message, and decrypts the received hash value with the
sender’s public key.

If the calculated and received hash values are the same, then the requirements of

a signature have been met:

e The signature cannot be repudiated because only the sender has the private key to

encrypt the hash value.
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e The signature is not reusable because the one-way hash function is effectively unique
for a given document. For the SHA algorithm, which generates a 160 bit hash value,

2160

the chances are one in of two documents having the same hash value.

e The signed document is unalterable because even a slight modification of the message

would dramatically change the resulting hash value.

Benefits of this signature method are many: the speed is increased dramatically,
much less space is needed to store the document with its signature, and the signature may
be stored separately from the document. These features provide many benefits — including
practical implementations of multiple signatures for a document, and signature archives

which prove the existence of a document without requiring the disclosure of its contents.
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Chapter 4

Vulnerabilities in Distance-vector

Protocols

These concepts are now used to develop a solution for securing distance-vector
routing protocols by analyzing the protocol design to identify vulnerabilities and threats,
identifying the security services needed to reduce or eliminate the vulnerabilities, and design-
ing the appropriate countermeasures to provide the needed services. The solution presented
here only deals with threats to the flow of routing traffic and does not address threats to
the flow of data traffic. Attacks are described in terms of different classes of internet nodes,
including authorized routers and intruders. Authorized routers are those nodes intended
by the authoritative network administrator to participate in the routing dialog and compu-
tation, that run correct and bug-free code, and that use correct and bug-free configuration

information.
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4.1 Intruders

The countermeasures presented here assume that intruders can position themselves
at any point in the network through which all traffic of interest flows, and that an intruder
has the capability to fabricate, replay, monitor, modify, or delete any of this traffic. Inter-
preting this description for a routing environment, the following general classes of intruders

are identified:

Masquerading routers: A masquerading router is a node that successfully forges an au-
thorized router’s identity. This can be accomplished using the IP spoofing [11] or

source routing attacks.

Subverted routers: A subverted router is one that is caused to violate the routing proto-
cols or to inappropriately claim authority for network resources. This typically occurs
due to bugs in the routing code, mistakes in the configuration information, or by caus-
ing a router to load unauthorized software or configuration information. The specifics

of how this can occur depend on the design and configuration of the router.

Unauthorized routers: An unauthorized router is a node that is not authorized as a
router that manages to circumvent any access control mechanisms in place and par-
ticipates in the routing dialog and computation. How this is achieved depends on the

design and configuration of existing authentication and access control mechanisms.

Subverted links: A subverted link is a channel controlled via access to the physical
medium (e.g. network cable-plant, the “air-waves”, or the electronics used to ac-
cess them), or via compromise of the protocols underlying the routing protocol in a

manner that allows control of the channel (e.g. the TCP session hijacking attack [7]).
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4.2 Threats to Routing Information

There are a number of vulnerabilities that allow a strategically placed intruder
to fabricate, modify, replay, or delete routing traffic. With these capabilities an intruder
can compromise the network in a number of ways. The modification or fabrication of
routing updates allows an intruder to reconfigure the logical routing structure of an internet,
potentially resulting in the denial of network service, the disclosure of network traffic, and
the inaccurate accounting of network resource usage [4]. The replay or deletion of routing
updates blocks the evolution of subsets of the logical routing structure (in response to
topological or link cost changes), or resets it to an arbitrary earlier configuration with
potential results similar to above. The vulnerabilities these attacks exploit is the lack of
access control, authentication, and integrity of routing messages.

In addition, it is relatively easy for an intruder to gain access to routing traffic.
The information carried in this traffic describes the next hop to take to reach a destination.
This information is available from other sources, such as monitoring authorized traffic to the
desired destination for the next hop it uses, and therefore cannot be protected by measures
only involving the routing traffic. Additionally, in some distance-vector routing protocols,
the routing traffic includes information describing the path taken by traffic to different
destinations. In some circumstances this information may be considered confidential. Since
the only source of this information is the routing protocol, it should be possible to protect
with modifications to the routing protocols only. The vulnerabilities these attacks exploit

are the lack of confidentiality of peer links, and the level of trust placed in routers.
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Figure 4.1: Finn’s Network Partition Example

4.3 Specific Examples

The network equivalent of a “black-hole” can easily be created by installing a route
for a destination with a cost lower than the legitimate route that leads to a non-existent
or non-responsive router. All traffic destined for such a network will disappear down this
black-hole route, and the affected network will be effectively partitioned from the internet.
This is a reasonably common occurrence caused by mis-configured routers, but it can serve
a useful purpose in a hostile attack.

Finn describes a subtler version of the black-hole attack [4]. This attack is illus-
trated in Figure 4.1, where an internet with grid topology and unit link cost is shown with
three nodes labeled a, ¢, and v. Each node is labeled with its distance to network v. At some
time after the internet reaches the state shown in Figure 4.1(a), node ¢ sends an update to
a indicating a 1 hop route to v. Figure 4.1(b) shows the resulting internet after this update
has fully propagated. In the resulting internet all nodes beyond a certain boundary, shown
by the dark arrowed line in Figure 4.1(b), have reset their routes to v such that it follows

a path that ultimately leads through a to c¢. Subtle manipulation of the routing topology
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such as this can allow c to set itself up as a conduit for all traffic between v and a region of
the internet.

Rosen [17] documents another vulnerability where corrupted routing packets gener-
ated by a node with faulty memory caused the ARPAnet to cease functioning. The problem
turned out to be a series of three routing updates generated by the faulty router that caused
the routing processes on the receiving routers, in processing the faulty updates, to take over
the CPU of these routers causing them to cease any other processing (such as data packet
forwarding). Recovery from this problem required rebooting all the routers with modified
code. Other possible vulnerabilities include the generation of traffic to or from a forged node
in an internet where network fees are based on usage, thus causing inappropriate charges
to a node; or snooping routing protocol traffic for a distance-vector protocol that includes
path information in the updates (such as BGP), and using it to identify critical resources in
an internet to target for an attack. Clearly there are many examples. Some of the examples
given here involve mistakes or mis-configurations, however the same vulnerabilities can be
exploited for hostile attack — indeed, intentional attacks and accidental mis-configurations

are generally indistinguishable from the security countermeasure perspective.
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Chapter 5

Distance-vector Protocol Security

Countermeasures

In general, the goal of securing distance-vector routing protocols is to provide
authenticity, integrity, confidentiality, and access control of routing message transmission.
Referring to the previous sections, and speaking in terms of threats and classes of intruders,

this goal translates specifically to:

e Prevent the fabrication, modification, and replay of routing messages by all classes of

intruder,

e Prevent the deletion of routing messages by subverted links and subverted routers,

and
e Prevent the disclosure of routing messages by all classes of intruder.

The countermeasures presented below assume that access control is provided us-

ing the same naming and key distribution mechanism used to implement the authentication



Neighbor-to-neighbor, routing messages.

********** > Dynamic multicast, routing updates.

Figure 5.1: Classes of Routing Information

mechanism. The remaining access control design issues are orthogonal to the countermea-
sures presented here, and are not discussed further.

There are two classes of communication occuring in routing protocols (see Fig-
ure 5.1): communication between neighboring routers, which is composed of routing up-
dates for destinations the sender has determined are appropriate to forward to the receiver,
and communication between a given router and an arbitrary set of remote routers, which
is dynamically determined by routing decisions, composed of the fields of routing updates
that describe a given destination. Correspondingly, two classes of countermeasures are
presented, described in terms of distance-vector algorithms: routing message protection
countermeasures and routing update protection countermeasures.

Figure 5.2 shows the additional information used by these countermeasures, and
Figures 7.1 and 7.2 specify the primitives required and procedures used to secure a distance-
vector routing protocol. A number of assumptions are made in the design of these security

mechanisms for distance-vector protocols:

e Intruders have the capabilities described in Section 4.1.
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Figure 5.2: Proposed Routing Message Changes

e A router can trust information it receives from other routers only concerning links

incident on the remote routers.

Each router is assigned a public-key pair for use in digitally signing routing messages.

Key distribution is based on domain names, and domain names can be efficiently and

securely determined given an IP address of a host (for example, Secure DNS [3]).

5.1 Routing Message Protection Countermeasures

The following countermeasures are effectively implementing security services not
available from lower level transport or network protocols. Specifically, the routing message
digital signature and sequence numbers are providing authentication and integrity services
of routing messages, which compose the first class of communication described above. If
these services were available from network [1] or transport layer protocols, these mechanisms

would no longer be needed in the routing protocols.
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5.1.1 Routing message sequence number.

A sequence number is included in each routing message. This sequence number is
initialized to zero on the initialization of a newly booted router, and is incremented with
each message. On detection of a skipped or repeated sequence number a reset of the session
is forced by the re-initialization of the routing process. The size of this sequence number
is made large enough to minimize the chance of it’s cycling back to zero. However, in the
event that it does, the session is reset by the re-initialization of the routing process. This

protects against the deletion and replay of routing messages.

5.1.2 Routing message digital signature.

Each routing message is digitally signed by the sender. This provides authentic-
ity and integrity (protection from message modification, but not from replay) of routing

messages. On detection of corruption, the message is dropped.

5.2 Routing Update Protection Countermeasures

The countermeasures presented in this section protect the second class of commu-
nication described above composed of individual routing updates. These countermeasures
provide authenticity and integrity of this communication; confidentiality is not necessary as

the potential recipients include all authorized routers in an internet.

5.2.1 Add sequence information to updates.

Sequence information is added to each update to protect against the replay of old

routing information. This sequence information can be in the form of a sequence number
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or a timestamp. New sequence information is generated for each route output from the
routing selection process. While a number of updates may be generated for each route (one
message per neighbor of the originating router), only one sequence number or timestamp
is used for all of them. This is necessary as a remote router may receive the same route
as a number of updates, each describing the same destination but representing different
paths; all of these updates must be considered valid. This implies that updates for a given
destination must be considered valid if their sequence information is greater than or equal
to the current sequence information. Note that sequence information must be maintained
and validated on a per router basis. An invalid update is silently dropped.

In a routing environment sequence information must be valid for the life of a
given router id, and therefore has a potentially long life. The primary challenge posed by
this requirement of a long life is how to prevent sequence information from cycling. The
primary advantage of sequence numbers compared to timestamps is their significantly longer
life. Making even aggressive assumptions of the average time between changes in cost of
directly connected links (the event that would cause the generation of an update requiring
a new sequence number from the local router) a sequence number can be relatively small
and still provide reasonable assurance of not cycling. Even assuming local link changes
(and the resulting new sequence number) as frequently as every 8 seconds, a four octet
sequence number would last for over 1000 years. The main difficulty introduced by sequence
numbers is how to maintain them in the context of arbitrary software and hardware failures.
Techniques such as those proposed by Perlman [15] could be used; however, if cycling of the

sequence number must be supported, the following process can be used:
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Each router maintains an update sequence number database on a per router
< domainname, publickey > pair basis. When the cycling of a sequence number
approaches, a new public-key pair is generated. The key distribution mechanism
and router are updated with the new key pair, and the router’s update sequence
number is reset to zero. On detection of a change in the public key for an
originating router, the receiving router will add an entry to its update sequence
number database for the new originating router < domainname, publickey >
pair with a sequence number of zero. It will continue to use the old sequence
number entry until a sequence number failure occurs where the digital signature
validation succeeds using the new entry. At this time the old entry is purged,
and the conversion to a new sequence number is complete. Further work is
needed on a mechanism to load the database of a newly booted router.

Alternatively, a timestamp could be used. The main benefit of a timestamp would be the
ease of administration provided by the well-defined external reference for use in resetting lost
state. The life of even a small timestamp, while not as dramatic as for sequence numbers,
is still significant; assuming a granularity as small as one second, a four octet timestamp

still has a life of over 130 years.

5.2.2 Add predecessor information to updates.

A routing-table update of a distance-vector routing protocol consists of one or
more entries, each specifying a destination and a distance to the destination. To verify the
integrity and authenticity of a given update entry, the router processing the update must
make sure that the distance to the destination reported in the update entry corresponds
to a path that is valid and authentic for each of its hops, and that the reported successor
is the first hop on this path. By including the information about the second-to-last hop
(predecessor) in the path to a destination, the validity and integrity of the entire path from
the source router to the destination can by verified iteratively using information reported
by the routers directly adjacent to the destination and routers immediately adjacent to each

intermediate hop in the path.
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Do

Figure 5.3: Oriented Tree for Example Internet

The use of predecessor information in the reconstruction of the path implied by a
route is based on the concept of oriented trees [8]. An oriented tree is a directed graph with

a distinguished vertex R such that:

e Each vertex V' # R of the graph has exactly one out bound arc e[V].
e R has no out bound arcs.

e R is the root of the graph (i.e. for all V' # R there is an oriented path from V to R).

From this definition it is clear there is only one oriented path from each vertex to the root,
and therefore there are no oriented cycles. Recalling that the purpose of shortest-path
routing algorithms is to compute the shortest-path spanning tree rooted at the source, we
see that the predecessor information describing the second-to-last hop of these routes is the
arc information, e[V'], described above which defines an oriented tree. As an example, the
arrows in Figure 2.2 show the paths chosen by router 7 to reach all destination networks in
the internet. Figure 5.3 shows the oriented tree implied by these paths, and the predecessor
links which define it. Using this information we can reconstruct the path from a destination

to the source and, with the digital signatures described in Section 5.2.4, verify the reported
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distance. The method used to accomplish this is based on the path-traversal technique of
path-finding algorithms.

Path-finding algorithms are distance-vector routing algorithms that maintain pre-
decessor information in addition to the distance and successor information for every destina-
tion in the internet. This information is used to compute loop-free paths to all destinations.
Using the predecessor information, an implicit path to a destination can be inferred and
thus routing loops can be detected. As an example, Table 5.1 shows the routing table
maintained at node ¢ for the internet diagramed in Figure 2.2. A routing table is a vector
with each entry specifying the destination j, current shortest distance D;-, successor sj- and
the predecessor p; Let router ¢ want to validate a loop free path to network J. Router
1 starts the trace at the entry for destination J, and finds that the predecessor to J is G.
Subsequently, ¢ walks through the predecessors to the directly connected network F. The
sequence of predecessors encountered during such a trace is referred to as the implicit path,
or the path extracted from the predecessor network information. The working of algorithms
of this type is described by Murthy and Garcia-Luna-Aceves [5, 13].

To secure distance-vector protocols the predecessor information defined above is

included in each update. Using this information a path traversal for each selected route is

then performed, verifying the integrity of the path and the distance reported for the route.

5.2.3 Add destination link cost to updates

To verify the distance advertised in a routing update it must be possible to compute
the length of the implied path during the path traversal described in the previous section.

For this purpose the cost of the destination link is included in the update by the originating
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router. This value should be interpreted as the cost for the originating router to reach a
node on the destination network. During the path traversal to validate a route these values

are totaled, and compared to the advertised distance as part of the validation.

5.2.4 Digitally sign updates.

To ensure the authenticity and integrity of the destination, sequence number, pre-
decessor, and destination link cost update fields described above the originating router
includes a digital signature of these fields in the update. Using the authenticated desti-
nation, predecessor, and link cost fields a recipient can then verify the distance field as
described above. To protect against falsification of destination and predecessor informa-
tion, and thereby false network topologies, some means of cross-checking the destination
and predecessor fields is needed. The following two solutions provide this cross-checking but
make different assumptions of the environment, and therefore are appropriate for different
routing protocols.

The first solution requires 1) the ability to establish connectivity of a node to
a network given only the address and mask of the network and the IP address of the
node’s interface which is claimed to connect it to the given network, and 2) the existence
of a network authority trusted to certify and distribute IP address to node name, and
node name to public key mappings (equivalent functionality of secure DNS). With these
requirements met, this solution works as follows. The originator of an update includes the
IP address of its interfaces to the destination and predecessor networks in the update, and
digitally signs these fields in addition to those listed above. A recipient verifies the update

by confirming that the given interface addresses belong to the corresponding networks,
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that both TP addresses map to the same public-key, and that the resulting public-key
validates the digital signature. If these tests are successful then, based on the trusted
association of interface addresses to networks and interface addresses to the same public-
key, the authenticity and integrity of the destination and predecessor networks can be
trusted. This solution is appropriate for routing among networks described by IP address
ranges, and where routers are directly connected to the networks they route between. This
is typical of today’s intra-domain routing protocols.

The second solution requires a network authority trusted to certify and distribute
router name to connected network associations. Given such an authority, this solutions
works as follows. The network authority generates a digital certificate for each router-to-
network link in an internet. The originator of a routing update includes the certificates for
it’s destination and predecessor connections in the update, and signs these fields in addition
to those listed above. A recipient verifies the update by verifying the digital certificates for
the destination and predecessor networks, and the digital signature using the originator’s
public-key. If these tests are successful then, based on the trusted certification of the
destination and predecessor network connectivity, the authenticity of the destination and
predecessor networks can be trusted. This solution is appropriate for environments where
either routers are not directly connected to the networks they route between, or where
networks are described with arbitrary identifiers (e.g. autonomous system numbers). This

is typical of today’s inter-domain, policy-based routing protocols.
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5.3 Countermeasure Effectiveness

The impact of each countermeasure on the threats described in Section 4 is now
analyzed. Table 5.2 summarizes this analysis. In the following it is assumed that the digital
signature countermeasure includes facilities for secure authentication and access control. In
broad terms, the message protection countermeasures provide protection against all nodes
which lack the necessary cryptographic keys, specifically unauthorized routers, masquerad-
ing routers, and subverted links. The digital signature of routing messages protects them
from fabrication, modification, and disclosure by these classes of intruders. The addition
of a sequence number to routing messages protects them from replay or deletion by these
intruders.

Similarly, the update protection countermeasures provide protection against the
compromise of those nodes that do have the cryptographic keys, specifically subverted
routers. The digital signature of each update protects them from fabrication or modification
by subverted routers. The addition of sequence number information to each update protects
against replay by a subverted router. The addition of the predecessor network to each update
provides the information needed to reconstruct and validate the path implied by a route,
the successor advertised for a route, and, with the addition of link cost information, the
distance advertised for a route.

There were a few vulnerabilities not addressed. Specifically, a subverted router is
still able to falsify destination link cost information, delete routing updates, and disclose
routing information. If only unit link costs are used (i.e. hop counts) then the path traversal
performed using the predecessor information provides complete protection from the first

vulnerability. If however, a wider range of link costs are supported, then it is possible for
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an originating router to “sweeten” a a route by advertising an artificially low cost for it’s
link in the path, thereby making the overall costs seem lower than they actually are. Short
of using only hop count metrics, there is no way to fully protect against this threat. If a
wider range of link costs is needed than hop counts, the best rule of thumb for minimizing
exposure to this threat is to keep link costs as low as possible. This leaves the least head-
room for intruders to exploit this vulnerability. The source of this vulnerability is the basic
assumption stated earlier that routers can be trusted regarding information describing links
incident on them. The second and third vulnerabilities are inherent in the requirements
of routing protocols to trust routers in their handling of routing updates. It is likely,
due to the high degree of connectivity in most operational internets, that the deletion of
routing updates will be at worst ineffective in cutting off access to destinations, and at
best detectable through the correlation of received routing information. Further research is
needed into the possibility of detecting such intrusions.

In addition, it is still possible for any class of intruder to disclose routing infor-
mation. Due to the multicast nature of these protocols it is not possible to address the
threat of the disclosure of routing messages in an efficient manner. To provide this protec-
tion would require replacing the routing message digital signature with encryption of the
routing message. However, since each message is received by a number of routers this would
require sending out a copy of each update encrypted for each recipient router. This requires
a significant change in the protocol, and invokes a significant additional cost in both traffic

and CPU time for the encryptions. Further research is needed in this area.
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5.4 Cost Analysis

The costs for these countermeasures are in the space for new fields, in time for
computing the new fields, and in time for performing the path-traversal. Following is a rough
summary of these costs. This summary assumes the first solution for digital signatures
presented in Section 5.2.4 (that is including the IP addresses for the router’s interfaces
on both the predecessor and destination networks in the update, and in the update digital
signature), IPv4 IP addresses (4 octets), 64 octet digital signatures, a single octet destination

link cost, and 4 octet sequence information (timestamps or sequence numbers).

Space per message: Each routing message grows by a 4 octet sequence number and a 64
octet digital signature. This is comparable to security mechanisms currently proposed

for some protocols (e.g., RIPv2).

Space per update: Each routing update grows by a 4 octet timestamp, a 1 octet destina-
tion link cost, 8 octets for the predecessor network address and mask, 8 octets for the
IP addresses of the router’s interfaces on the predecessor and destination networks,

and a 64 octet digital signature. The total cost per update being 85 octets.

Time per message: A digital signature and sequence number must be computed once for

each routing message generated by a router, and verified once per receiving router.

Time per update: The predecessor field of an update differs for each interface of the
originating router it is sent over. Therefore, the digital signature of an update must
be computed once for each link of the originating router. Conversely, each update
digital signature is verified once by each router which selects one or more routes

whose implicit paths include the link represented by the update.



33

Time per destination: Each selection of a new path to a destination requires a path-
traversal. The frequency of such changes is dependent on network topology and
link change events. However, as has been demonstrated by Garcia-Luna-Aceves and

Murthy, efficient path traversal algorithms add minimal overhead [5].

Note that hash chain authentication [6] may be usable for the update digital signature,
which would decrease the digital signature space cost to 16 octets, and the time cost to an
MD5 calculation. Further research is needed into this option. In addition, the validation
actions, which will likely account for a large share of these costs, can be done on a statistical

basis to contain time costs.
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Destination Distance Successor Predecessor

A 1 - -
B 2 a A
C 3 b D
D 2 b E
E 1 — -
F 1 — —
G 2 d F
H 3 b D
I 1 - -
J 3 d G

Table 5.1: Routing Table at node %

Fabrication Modification Replay Deletion Disclosure
Unauthorized router A A A A
Masquerading router A A A A
Subverted link A A A A
Subverted router C,D,E* CD,E B,C,D.E

Except destination link cost information.

A) Message protection countermeasures
B) Update sequence number
) Destination link cost

C
D) Predecessor
E) Update digital signature

Table 5.2: Summary of Countermeasure Effectiveness
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Chapter 6

Related Work

Kumar [9] analyzes the security requirements of network routing protocols, and
discusses the general measures needed to secure the distance-vector and link-state routing
protocol classes. He identifies two sources of attacks: subverted routers, and subverted
links. Since attacks by subverted routers are seen as difficult to detect, and of limited value
to the intruder, he focuses his attention on securing protocols from attacks by subverted
links. For distance-vector protocols this translates to the modification or replay of routing
updates. The specific countermeasures he proposes are neighbor-to-neighbor digital signa-
ture of routing updates, the addition of sequence numbers and timestamps to the updates,
and the addition of acknowledgments and retransmissions of routing updates. These results
are similar to those presented here with the exception that the countermeasures presented
here explicitly assume the existence of subverted routers, and provide countermeasures to
protect against them. This is important as routers are potentially vulnerable to attack from

a number of sources, with potentially catastrophic results from success.
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Murphy [12] outlines a solution for securing distance-vector protocols that involves
including the information used to select a route, signed by the neighbor it received it from,
in the routing update it then signs and transmits to its neighbors. She points out that this
requires the validation of a number nested signatures equal to the number of routers in the
path. This results in both update size and validation computation time problems as the size
of the network grows. These problems result, fundamentally, from the redundant signing of
link information for paths that are supersets of paths used to reach destinations traversed
in the longer path. The countermeasures presented here avoid these problems by signing
only the component link information, in the form of predecessors, and performing a path
traversal to validate full paths. This results in the use of constant space, and significantly
reduced computation time.

Smith and Garcia-Luna-Aceves [20] have analyzed the Border Gateway Routing
Protocol (BGP) in a manner similar to the analysis presented here. BGP is a member of
the path-vector class of routing protocols, which carry full path information in the rout-
ing updates to allow loop detection, and the use of non-uniform route selection metrics.
The solutions developed for BGP are similar to the ones presented here in that they use
the cryptographic protection of the first hop information in the path by the destination

(originating) router.
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Chapter 7

Concluding Remarks

This document presents an analysis of the security of distance-vector routing pro-
tocols. It identifies vulnerabilities in this class of protocols that could potentially result in
the deception or disruption of the routing computation, or the disclosure of sensitive routing
information. It then presents a set of countermeasures which is the first solution known
to protect these protocols at a cost and level of effectiveness equivalent to that of current
link-state security proposals. Specifically, this solution protects the distance-vector routing
protocols from all classes of intruders — masquerading routers, unauthorized routers, sub-
verted links, and subverted routers — at a constant cost per destination in an internet. This
solution introduces the innovation of using authenticated predecessor information to recon-
struct the path implied by an update. In summary, the solution presented here shows that
distance-vector protocols can be secured at levels of efficiency and effectiveness equivalent

to current proposals for link-state protocol security.



A number of data structures are defined for use in the pseudo-
code for the distance-vector algorithms defined below.

Sequence Number (segNum): The number

maintained by each router.

sequence

Sequence Number Table (SN;:m):
table maintained at node i contains the largest se-
quence value seen in a routing update with originating
router m for destination network j.

The Sequence Number

Link-Cost Table (L;): The Link-Cost table maintained at
node i describes the networks node i is attached to.
Each entry includes the following information:

ln — the cost of the link to the attached network n.
The cost of a failed link or a link to a failed
network is infinity.

Imodn — a boolean indicating whether this entry
has been modified

Update Message (Uy): Each update, Uy, from received by
router ¢ from neighboring router k is a column vector
of update entries with the following fields:

Jj — destination

UD;C — distance from k to j
'u.p;C — predecessor network

'u.s’n;.c — update sequence number

ul;? — link cost of j

uds;-“ — digital signature information protecting the
destination, predecessor, destination link cost,
and sequence number information as com-
puted by the originator — this will be a com-
plex data structure including information ap-
propriate to the digital signature solution im-
plemented (see Section 5.2.4)

Distance Table (DT;): The Distance Table at router i is
a matrix containing, for each destination network j
and neighboring router k, the following information
regarding the route reported by k:

D;:k — distance from k to j

p;'.k — predecessor network
snj,c — update sequence number
l;'.k — link cost of j

ds;.,C — digital signature information protecting the
destination, predecessor, destination link cost,
and sequence number information as com-
puted by the originator — this will be a com-
plex data structure including information ap-
propriate to the digital signature solution im-
plemented (see Section 5.2.4)
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Routing Table (RT;): The Routing Table at router i is a
column vector of entries for each known destination
network j which specify the following regarding the
routes chosen by i:

D;: — distance from ¢ to j

p;. — predecessor network

S} — successor router

sn} — update sequence number

1i — link cost of j

dsj- — digital signature information protecting the
destination, predecessor, destination link cost,
and sequence number information as com-
puted by the originator — this will be a com-
plex data structure including information ap-
propriate to the digital signature solution im-
plemented (see Section 5.2.4)

RTmod} — a boolean indicating whether this entry
has been modified

In addition a number of routines are called in the pseudo-code,
but not defined.

DigSig(j, p, sn,l,z): This routine returns the digital signa-
ture information for the destination network j, prede-
cessor router p, sequence information sn, and destina-
tion link cost ! for originating router . The specific
digital signature algorithms used and information re-
turned depends on the specifics of the particular im-
plementation, as described in the text.

Network(z): This routine returns the attached network from
L; that is shared with the neighboring router with
address z.

Originator(ds): Extracts and returns the id of the originat-
ing router from the digital signature information.

SelectRoute(,j): This routine picks the preferred route
from router ¢ to destination network j among the
available routes with the highest sequence number.
The specifics of how this decision is made depends on
the particular implementation.

TransmitUpdate(k, U): This routine transmits the update
U to neighbor k.

Figure 7.1: Definition of Primitives for Secure Distance-Vector Processing
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procedure LinkChange(i, n, c)
when router ¢ detects a change of its link to network n to cost ¢
begin
In < c;
Imodn < true;
call UpdateRT(z);
end

procedure ReceiveUpdate(Uy)
when router ¢ receives an update Uy from router k

begin
for each update entry (j, UD;?, up;‘, usn;-c, ul;c, uds?) in Uy do
begin
o < Originator(ds);
if ((usn;? > SN;-O) and (ds = DigSig(j, p, sn, [, 0)))
then begin
D;_k — UD;-“;p;,c “ up;-c;sn;k — u..‘n'l,;‘-’;l_’i,c — ul;-c;
ds;.k — uds;?;SN;o — usn;.“;
end
end
call UpdateRT(¢);
end

function ValidatePath(i, k,d,p,!) — boolean;
begin
tj + p;p — pz.’k;td — 1
while ((p not in L;) and (p # null)) do
begin
td td+l:j)k;tj — pip p:j,k;
end
if (p in L;)
then return ((td +1lp) = d);
else return false;
end

procedure UpdateRT(4)

begin
for each destination j in DT; do
begin
repeat . . . .
(D;.ac ) p}m ) sn}m ) l;m ) ds;m) — Select'Rouﬁe(i,_j);
until ((z = null) or Vz'ilidate'Path(i, z, D;m , p;.m , l;'z s ]
if ((z # null) and ((D; # D;m) or (s; # x) or (ds; # ds;m)))
then begin
D; «— D;m + ll\f'etwo'r*k'(m);s;‘ — m;p;- — P;z;
sn;- — s'n;-m;ds; — ds;m;
RTmod} «— true;
end
else if (z = null) then error “No valid route to destination j.”;
end
call SendUpdates(i);
end

procedure SendUpdates(i)
begin
for each destination j in RT; where RTmodj- = true do
begin
Utmp < UtmpU (4, D}, p},sn}, 15, ds});
RTmod;- <« false;
end
for each attached network j in L; do
call TransmitUpdate(Uimyp);
sn < seqNum;seqNum <« seqNum + 1;
for each attached network j in L; where Imod; = true do
begin
for each attached network p in L; where p # j do
call TransmitUpdate(p, (j,1;,», sn, l;, DigSig(j, p, sn,1,1)));
Imod; « false;
end
end

Figure 7.2: Pseudo-code for Secure Distance-Vector Processing
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