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Abstract—The Internet is based on a single-path communi-
cations model. This model imposes significant constraints on
the ability of the Internet to satisfy the quality-of-service re-
quirements of network applications, and results in significant
inefficiencies in the use of network resources that are manifested
as congestion. The result has been the need to over-provision
Internet-based systems to meet the basic needs of modern com-
munications. With the adoption of the Internet as the converged
communication infrastructure for the 21st century, this is clearly
not an acceptable long-term solution.

One approach that has been identified to address these limita-
tions is to enhance the Internet routing architecture to support
multiple paths between a given source and destination. Significant
research has been done into multi-path solutions for QoS and
congestion, however a comprehensive solution for both QoS and
congestion that is compatible with the Internet’s datagram, hop-
by-hop model of communication is still elusive.

This paper reviews a solution presented in previous work,
called Dominant Set Multipath Routing (DSMR), that addresses
these requirements. The DSMR algorithm computes the best set of
routes between each source and destination that provides the full
range of performance available from the network. This set is used
to route flows over paths that both meet the QoS requirements of
the flow and minimize congestion in the network. Simulations are
then presented which show the effectiveness of DSMR to provide
3 to 11 times the capacity of single-path routing while meeting
QoS requirements and minimizing congestion.

I. INTRODUCTION

The Internet is based on a best-effort communication model

in which the “best” path is pre-computed by each router to

all destinations (triggered by topology changes), and packets

are forwarded on a best-effort basis (i.e. they may be dropped

or delivered out-of-order). Packet forwarding is implemented

on a hop-by-hop basis where forwarding tables are computed

independently at each router, and the forwarding decision is

done on a per-packet basis.

The current Internet uses a destination-based form of hop-

by-hop forwarding that only supports a single path to each

destination. Specifically, Internet forwarding state is composed

of a single entry for each destination in the internet, giving the

next-hop router on the best path to the destination. As a result,

only one path is supported to any given destination, and that

path is computed to optimize a single metric.

The use of single-path routing significantly compromises

the ability of a network to meet the quality-of-service (QoS)

requirements of diverse applications, and tends to result in

poor utilization of network resources.

Support for the QoS requirements of a diverse set of network

applications requires, in general support for multiple paths

between a given source and destination. A number of metrics

can be used to quantify the performance of a communications

network. For example latency is a measure of the delay traffic

experiences as it traverses a network, jitter is a measure of the

variation in that delay, bandwidth is a measure of the rate at

which data can pass through a point in a network, etc.

Many applications have special requirements of the network

they run on [1]. For example interactive audio (i.e. VoIP)

requires low latency and jitter of its communication channel

to support natural, conversational interaction, however it has

relatively minimal bandwidth requirements. In contrast, video

streaming requires high bandwidth and low jitter to provide a

smooth viewing experience, however it has relatively minimal

latency requirements (it’s OK if the video takes a number of

seconds to start, as long as it runs smoothly once it starts).

Satisfying constraints on multiple metrics requires, in gen-

eral, the use of multiple paths between any two nodes. For

example, given two paths between two nodes with the follow-

ing parameters: path 1 has bandwidth of 100Kbps, latency of

20ms, and low jitter; path 2 has bandwidth of 2Mbps, latency

of 200ms, and low jitter; which is the better path? Path 1

would be preferred for an interactive audio application while

path 2 would be preferred for video streaming. With multiple

metrics, the preferred path depends on the requirements of the

application.

Single-path routing has a similarly detrimental effect on the

utilization of network resources. As the load in a network

increases, sending all traffic between a given source and

destination over a single path tends to result in links on that

path becoming congested. The hop-by-hop style of packet

forwarding used in the Internet exacerbates this problem.

With destination-based forwarding each router forwards

packets by matching each packet’s destination address with a

single entry in the router’s forwarding table. This leads to the

constraint that all traffic forwarded through an intermediate

router to a destination must follow the same path used by

traffic sent from that router to the destination. This aggressive

tendency to concentrate traffic on a subset of a network’s

topology causes traffic to experience congestion while usable

network resources are left idle, resulting in poor utilization of

network resources.

The result is the Internet we have today, which is challenged
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to meet the QoS requirements of an increasingly diverse set of

network applications, requiring significant over-provisioning

to provide acceptable levels of service. As the foundation for

the converged communication infrastructure of the twenty-first

century [2], this is clearly not acceptable.

Single-path routing involves two processes: route com-
putation and packet forwarding. Multi-path routing requires

modifications to these processes to support multiple paths per

destination, and the addition of a path selection process to

choose a path to use for specific traffic.

Destination-based forwarding can’t support multi-path rout-

ing, and therefore must be replaced by a more general forward-

ing mechanism. As will be discussed later, we propose the use

of tag-switching as the only solution that supports multi-path

routing while retaining the Internet’s distributed, hop-by-hop

forwarding architecture.

In previous work [3] we have presented a new multi-path

routing architecture based on the concept of a best set of routes
to each destination, and route computation algorithms that

efficiently compute this set. This architecture is compatible

with the Internet’s best-effort communication model, and pro-

vides a framework for delivering the full range of performance

available in a network.

In the remainder of this paper we review this architecture

and present the results of simulations that quantify the capacity

gains it provides. The primary goal of this work is to deter-

mine, to a first approximation, the benefits available from this

routing architecture. Section II presents previous work in the

use of multiple paths to improve support for QoS and min-

imize congestion. Section III presents the DSMR algorithm.

Section IV presents the simulations. Lastly, Section V presents

our conclusions.

II. PREVIOUS WORK

This section presents previous work on improving support

for QoS and the use of multiple paths for both QoS and

congestion control. Each solution is assessed in terms of

whether it addresses both QoS and congestion control, and

how compatible it is with the Internet architecture in terms

of implementing a best-effort communication model (pre-

computation of routes and hop-by-hop forwarding).

Two enhancements to the Internet architecture to support

QoS have been proposed representing fundamentally different

approaches to solving the problem of resource management

in the context of performance requirements, the Intserv and

Diffserv architectures.

The goal of the integrated services (Intserv) architecture [2]

is to define an integrated Internet service model that supports

best-effort, real-time, and controlled link sharing requirements.

Intserv makes the assumption that network resources must be

explicitly controlled, and defines an architecture where appli-

cations reserve the network resources required to implement

their functionality, and an infrastructure of admission control,

traffic classification, and traffic scheduling mechanisms which

implement the reservations. In the Intserv architecture resource

reservations are sent along paths computed by the existing

routing infrastructure. As a result, requests may be denied

when resources do not exist along the current route when in

fact paths exist that could satisfy the request. Intserv is based

on a virtual-circuit communications model and, therefore,

has all the limitations of that model relating to robustness,

efficiency, and responsiveness.

In contrast, the differentiated services (Diffserv) architecture

[4] provides resource management without the use of explicit

reservations. In Diffserv, a small set of per-hop forwarding
behaviors (PHBs) is defined within a Diffserv domain which

provide resource management services appropriate to a class

of application resource requirements. Traffic classifiers are

deployed at the edge of a Diffserv domain that classify

traffic for one of these PHBs. Inside a Diffserv domain,

routing is performed using traditional hop-by-hop, address-

based forwarding mechanisms.

Diffserv retains the best-effort, distributed, hop-by-hop,

datagram routing model of the Internet, and therefore retains

the robustness, efficiency, and responsiveness of the Internet.

However, similar to the Intserv model, communications re-

sources to a given flow in a Diffserv environment are limited

to those available along the paths computed by the existing

routing infrastructure. As a result QoS requirements may not

be satisfied when adequate resources are not available along

the current route when in fact paths exist that could satisfy the

requirements.

In addition, there has been extensive research into solutions

for reducing congestion through the use of multiple paths to

each destination.

Vutukury and Garcia-Luna [5] present an approximation to

Gallager’s minimum-delay routing algorithm [6]. The solution

pre-computes multiple paths of unequal length to each desti-

nation, along with an allocation of traffic to each path. The

primary goal of the algorithm is to minimize the delay traffic

experiences as it traverses the network. In this work traffic is

forwarded along different paths without regard to the flow it is

a part of. To address the problem this causes for TCP traffic a

later paper [7] presents a solution that allocates individual TCP

flows to a single path. This solution precomputes paths and

uses hop-by-hop forwarding, however its focus is minimizing

delay.

Taft-Plotkin et al [8] present a solution for using multiple

paths to meet the QoS requirements of flows. A fixed number

of paths are precomputed that include maximally disjoint paths

with minimum delay and maximum bandwidth. These paths

are sorted by available bandwidth, and paths are selected by

an ordered search of the list for the first path which satisfies

the QoS requirements of the flow. The solution depends on

per-flow path setup with admission control. The goal of the

algorithm is to satisfy the QoS requirements of flows while

minimizing congestion.

Nelakuditi and Zhang [9] present a solution for minimizing

congestion in a network by forwarding traffic over multiple

paths. The solution computes a set of widest-shortest paths to

each destination, where the size of the set is a parameter of

the computation. Traffic is then allocated to these paths based
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on the offered load and blocking probability observed locally

for each path. This solution pre-computes paths, but depends

on path-setup for forwarding traffic, and does not attempt to

satisfy QoS requirements of flows. One interesting result from

the simulations presented in the paper is that only a small

number of paths are needed for near optimal call blocking

performance.

There has been extensive research into the use of multiple

paths for a TCP flow [10], [11]. While the goal of these efforts

is similar to that of DSMR, to exploit bandwidth available

along multiple paths in a network between a source and

destination, the approach is both different and complimen-

tary to that of DSMR. The challenge addressed by multi-

path TCP is to enhance TCP to allow traffic for a single

flow to be sent over multiple paths to a destination, while

avoiding the penalties incurred by existing TCP congestion

avoidance mechanisms in response to the increased likelihood

of segments being delivered out of order. As implemented in

the simulations presented here, DSMR assigns one flow to a

single path, and exploits multiple paths by assigning multiple

flow between a given source and destination to different paths.

DSMR is complimentary to the multi-path TCP solutions in

that a DSMR environment would provide multiple paths to

the multi-path TCP mechanisms that simultaneously meet the

QoS needs of the application, and minimize congestion. This

integration is an area for future research.

There has also been extensive research into mechanisms

for selecting one path among a candidate set of paths with

the goal of minimizing congestion in the network [12], [13],

[14]. These solutions use different techniques for detecting

increasing congestion along different paths in a network.

This information is used at path selection time to favor less-

congested paths for new traffic. These solutions are compli-

mentary to DSMR in that DSMR computes a comprehensive

set of routes (in terms of QoS) for use by these path selection

mechanisms.

A characteristic shared by these solutions is they all imple-

ment a distributed solution to path selection. An alternative

approach, used in the simulations presented here, is centralized

path selection where information is maintained describing the

bandwidth available on each link in the network and flows are

assigned to paths with adequate capacity whenever possible.

The effectiveness of this centralized approach is limited by the

fidelity of its link state information. This centralized approach

is used in the simulations to provide an accurate, best-case

scenario for the DSMR architectural model. This centralized

architecture can be implemented in practice using the software

defined networking model implemented in OpenFlow [15],

where a centralized network controller maintains a global view

of the current network state. This is another area for further

research.

In summary, there has been extensive research into the

use of multiple paths to minimize congestion, satisify QoS

requirements of flows, and occasionally to do both. However

there appears to be no work that addresses the need for

a comprehensive, multipath solution to congestion and QoS

that is consistent with the Internet architecture’s use of pre-

computed routes and hop-by-hop forwarding. The remainder

of this paper evaluates a general approach to such a solution.

To characterize the potential of this approach we present the

results of high-level simulations where routes are computed

using the DSMR algorithm, presented below, based on static

link metrics (specifically total bandwidth and fixed link delay).

These simulations assume a centralized route computation

with knowledge of the topology and loads on the links.

III. DOMINANT SET MULTIPATH ROUTING

As discussed in the Introduction, satisfying constraints on

multiple metrics requires, in general, the use of multiple paths

between any two nodes in a network. This correspondence

between multiple metrics and multiple paths can be described

formally by representing the set of metrics used to describe

the performance of paths from a given source and destination

pair as points in a multidimensional space. We’ll call such a

set of multiple metrics a link or path weight. Figure 1 plots the

weights of 9 paths between a specific source and destination in

an example network where the metrics composing the weights

are bottleneck bandwidth and latency. “Better” values of these

metrics are towards the origin of the graph (i.e. a perfect path

would have infinite bandwidth and 0 latency).

These points can be interpreted as representing a region, up

and to the right (away from the origin) of QoS values that

each weight satisfies in the sense that the path represented by

the weight would satisfy any QoS requirement in that region

of the graph. Figure 2 depicts the regions satisfied by each

path. Note that regions satisfied by some of the paths are fully

contained in the regions of other paths. In the figure these

dominated regions are represented with dashed lines.

A best set of paths to the destination can be identified as

the set of paths that are not dominated by another path. This

set of paths is best in the sense that any QoS requirement that

is satisfiable by an existing path between the given source and

destination, is satisfiable by a path in this set. We call these

regions the performance classes available from the network

for the destination. Figure 3 shows the performance classes

for the example network.

The goal of QoS routing is to compute paths in a network

that satisfy the performance requirements, expressed in terms

of constraints on multiple metrics, of applications commu-

nicating across the network. The formalism presented above

shows that, by definition, QoS routing must support the use

of multiple paths between a source and destination.

Based on this notion of a dominant set of routes we can

articulate a comprehensive multipath solution as one where

flows are forwarded over paths in the dominant set that both

meet their QoS requirements and avoid creating congestion in

the network, if such paths exist.

This is the first routing solution that can make this com-

mitment to avoid congestion and satisfy QoS requirements, if

at all possible in the network. The primary insight motivating

this new routing architecture is viewing weights of the set of

paths to a destination as a partially ordered set, and computing
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the dominant set of weights for this partial order as the

foundation of a forwarding table. We call this model Dominant
Set Multipath Routing.

One challenge of this solution is the need to forward traffic

over multiple paths between a given source and destination in

a hop-by-hop manner. Alternatives include source routing and

tag-switching [16]. Source routing is an inherently centralized

packet forwarding mechanism, therefore we propose the use

of tag-switching to provide this capability. However, due to

space constraints we don’t describe this solution here. See [3]

for details.

A. The DSMR Algorithm

As described above, path weights are composed of multi-

component metrics that capture all important performance

measures of a link such as delay, delay variance (“jitter”),

available bandwidth, etc. The best set of paths to a destination

is defined using an enhanced version of the path algebra

defined by Sobrinho [17].

Formally, the path algebra P = < W,⊕,�,�, 0,∞ > is

defined as a set of weights W , with a binary operator ⊕, and

two order relations, � and �, defined on W . There are two

distinguished weights in W , 0 and ∞, representing the least

and absorptive elements of W , respectively. Operator ⊕ is

the original path composition operator, and relation � is the

original total ordering from [17], which is used to order the

paths for traversal by the path selection algorithm. Operator

⊕ is used to compute path weights from link weights. The

routing algorithm uses relation � to build the forwarding

set, starting with the minimal element, and by the forwarding

process to select the minimal element of the forwarding set

whose parameters satisfy a given QoS request.

A new relation on routes, �, is added to the algebra and

used to define classes of comparable routes and select maximal

elements of these classes for inclusion in the set of forwarding

entries for a given destination. Relation � is a partial ordering

(reflexive, anti-symmetric, and transitive) with the following,

additional property:

Property 1: (ωx � ωy)⇒ (ωx � ωy).

A route rm is a maximal element of a set R of routes in

a graph if the only element r ∈ R where rm � r is rm
itself. A set Rm of routes is a maximal subset of R if, for all

r ∈ R either r /∈ Rm, or r ∈ Rm and for all s ∈ R − {r},

Queue

B P

T

i i

Balanced Tree

H
e
a
p

Fig. 5. Data structures for the DSMR Algorithm

P ≡ Queue of permanent routes to all nodes.
Pn ≡ Queue of permanent routes to node n.
T ≡ Heap of temporary routes.
Tn ≡ Entry in T for node n.
Bn ≡ Balanced tree of routes for node n.
En ≡ Summary of traffic expression for all routes

in Pn.
A(i) ≡ The set of edges adjacent to i in the graph.

TABLE I
NOTATION.

¬(r � s). The maximum size of a maximal subset of routes

is the smallest range of the components of the weights. The

following path algebra, based on weights composed of delay

and bottleneck bandwidth, implements what is commonly

called widest-shortest routing where the path with the most

bandwidth is selected from the set of paths with the least delay:

ωi ≡ (di, bi)

0 ≡ (0,∞)

∞ ≡ (∞, 0)

ωi ⊕ ωj ≡ (di + dj ,Min(bi, bj))

ωi � ωj ≡ (di < dj) ∨ ((di = dj) ∧ (bi ≥ bj))

ωi � ωj ≡ (dj ≤ di) ∧ (bj ≥ bi)

Figure 4 is a graphical depiction of the relation � on

the set of weights used as a example in Section III where

x � y is depicted as x → y. The � relation, illustrated by

Figure 2, formalizes the dominates notion presented above.

And, lastly, Rm formalizes the notions of performance classes

in a graph, and is the best set of routes we are looking for.

Rm is illustrated in Figure 3.

Figure 6 presents the DSMR algorithm, which is a modified
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Notation Description
Queue

Push(r,Q) Insert record r at tail of queue Q (O(1))
Tail(Q) Return record at tail of queue Q (O(1))

d-Heap
Insert(r,H) Insert record r in heap H (O(logd(n)))

IncreaseKey(r, rh) Replace record rh in heap with record r
having greater key value (O(d logd(n)))

DecreaseKey(r, rh) Replace record rh in heap with record r
having lesser key value (O(logd(n)))

Min(H) Return record in heap H with smallest
key value (O(1))

DeleteMin(H) Delete record in heap H with smallest
key value (O(d logd(n)))

Delete(rh) Delete record rh from heap
(O(d logd(n)))
Balanced Tree

Insert(r,B) Insert record r in tree B (O(log(n)))
Min(B) Return record in tree B with smallest key

value (O(log(n)))
DeleteMin(B) Delete record in tree B with smallest key

value (O(log(n)))

TABLE II
OPERATIONS ON DATA STRUCTURES [18].

algorithm DSMR
begin

1 Push(<s, s, 0>, Ps);
2 for each {(s, j) ∈ A(s)}
3 Insert(<j, s, ωsj >, T );
4 while (|T | > 0)

begin
5 <i, pi, ωi> ← Min(T );
6 DeleteMin(Bi);
7 if (|Bi | = 0)
8 then DeleteMin(T )
9 else IncreaseKey(Min(Bi), Ti);
10 if (ωi �/ Tail(Pi).ω)

then begin
11 Push(<i, pi, ωi>, Pi);
12 for each {(i, j) ∈ A(i) | ωi ⊕ ωij �/ Tail(Pi).ω}

begin
13 ωj ← ωi ⊕ ωij ;
14 if (Tj = ∅)
15 then Insert(<j, i, ωj >, T )
16 else if (ωj ≺ Tj .ω)
17 then DecreaseKey(<j, i, ωj >, T );
18 Insert(<j, i, ωj >, Bj);

end
end

end
end

Fig. 6. DSMR.

Dijkstra SPF algorithm that computes the maximal set of

routes to each destination subject to multiple metrics. The

notation used in the algorithm presented below is summarized

in Table I. In addition, the maximum number of distinct

performance classes is denoted by W , and the maximum num-

ber of adjacent neighbors by amax = max{|A(i) | | i ∈ N}.
Table II defines the primitive operations for queues, heaps,

and balanced trees used in the algorithm, and gives their time

complexity used in the complexity analysis.

The algorithm presented in this section is based on the data

structure model shown in Figure 5. In this structure, a balanced

tree (Bi) is maintained for each node in the graph to hold

newly discovered, temporary labeled routes for that node. The

heap T contains the lightest weight entry from each non-empty

Bi (for a maximum of n entries). A queue, Pi, is maintained

for each node which contains the set of permanently labeled

routes discovered by the algorithm, in the order in which they

are discovered (which will be in increasing weight).

The general flow of the algorithm is to take the minimum

entry from the heap T , compare it with existing routes in the

appropriate Pi, if it is incomparable with existing routes in Pi

it is pushed onto Pi, and “relaxed” routes for its neighbors

are added to the appropriate Bx’s. See [19] for a full proof of

correctness.

B. Benefits of DSMR

DSMR has a number of features that make it particularly

well suited to the dual challenges of QoS routing and minimiz-

ing congestion. The set of routes computed by DSMR provides

the full range of performance available from a network. This

provides the assurance, lacking in other proposals (e.g. [8])

that if paths exist in a network that satisfy a given flow’s QoS

requirements, one of them is in the set computed by DSMR.

In general, multiple routes will satisfy the QoS requirements

for any given flow. This can be seen from Figure 3 in

that the four paths computed by DSMR all overlap. This

overlap presents the opportunity to further distribute traffic

over multiple paths.

DSMR can be used with either link-state or distance-

vector information. Therefore, it can be implemented as an

enhancement to either link-state or distance-vector routing

protocols.

Lastly, DSMR computes routes that support hop-by-hop

forwarding.

IV. SIMULATIONS

This section presents simulations of the dominant set multi-

path routing solution for network congestion and QoS routing.

Experiments proceed by running twenty trials for a given

pair of graph size and average degree. Each trial proceeds

by generating a random graph with random link weights,

computing both single- and multi-path routing tables for all

nodes in the graph, and then processing a random stream of

flow requests for 3000 seconds.

Random network topologies are generated using the GT-

ITM package [20] with a target graph size and degree. Link

metrics include delay and bandwidth which are uniformly

distributed between 1 and 5ms for delay and 1Mbps and 1Gbps

for bandwidth.

Random flows are generated with an exponential inter-

arrival time with a mean defined by the target flow rate.

Flows are categorized as elastic or real time, with 75% of

the flows being real-time. The QoS requirements for elastic

flows are 35Kbps of bandwidth, 400ms delay, and the duration

of elastic flows is Poisson distributed with a mean of 30

seconds. The QoS requirements of real-time flows are 2Mbps

of bandwidth and 200ms delay, and the duration of real-time

flows is Poisson distributed with a mean of 120 seconds. The

QoS requirements of flows were are obtained from [1]. The
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source and destination of a flow are randomly selected, with a

uniform distribution across all nodes in the graph. The average

call acceptance ratio (CAR) of the twenty trials is reported for

each experiment for both single- and multii-path solutions.

Routing tables are computed once at the start of a trial using

the DSMR algorithm presented above for the multi-path case.

Paths are selected in a centralized manner where available

bandwidth is monitored for the links in the graph and paths

are selected only if they have adequate bandwidth and satisfy

the QoS requirements of the flow. Call failures occur when

there were no paths that both satisfy the QoS requirements

of the flow and have adequate bandwidth available for the

flow. The bandwidth available on each link is tracked in the

simulation, and updated as accepted flows are initiated and

terminated.

Given these basic CAR numbers, the imporant question is

what return does DSMR routing provide for a given alloca-

tion of network resources. To answer this, Figures 7 and 8

present results showing, for each experiment, the flow rate

that supports a 95% CAR. The significance of the 95% flow

rate is as a measure of how congested the network is. The

ideal value to use for this cutoff is the CAR at which users

begin to experience degraded performance of their network

applications. It is an area for future work to determine a

realistic number for this measure of congestion. For this

study we use it as a mechanism for measuring the relative

performance of the DSMR algorithm vs. traditional single-

path routing.

Figure 7(a) graphs the 95% CAR flow rate for both single-

path and DSMR routing for the range of graph sizes with an

average degree of 32. The important result from this graph

is how much faster the capacity of the network grows with

increases in graph size using DSMR as compared with single-

path routing. Figure 7(b) shows the full range of results for

DSMR.

Lastly, Figure 8 graphs the ratio of DSMR to single-path

routing 95% CAR flow rates for the full range of graph sizes

and average degrees. This provides a measure of how much

more capacity DSMR provides over single-path routing for a

given network. The primary message here is how dramatically

the capacity of a network improves when moving from single-

path to DSMR routing, ranging from greater than a 300%

improvement at the low end to greater than 1100% at the high

end, with typical improvement in the range of 500% to 800%.

One interesting observation is how graphs with higher

degree perform worse in this measure; from Figure 8 the

optimal degree of a network, in terms of relative gain of

DSMR vs. single-path routing, is in the range of 8 to 16.

Note this this is only relative to single-path routing; from

Figure 7(b) we can see that increases in average degree provide

significant increases in capacity.

V. CONCLUSION

In this paper we have identified the need to address the

limitations of single-path routing on congestion and QoS in

the Internet. We have reviewed the datagram and hop-by-hop
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communication model used in the Internet, and the importance

of retaining this model in a multi-path routing soltution for the

Internet. We reviewed previous work in this area, identifying

the absence of solutions for the use of multipath routing to

address congestion and QoS that are compatible with the

Internet’s datagram, hop-by-hop communications model.

We then reviewed a solution based on the DSMR algorithm

that satisfies all of these requirements. For this solution the

metrics used in the routing computation are assumed to have

multiple components such as delay, available bandwidth, jitter,

etc. The metrics for the set of routes between a given source

and destination are seen as a partially ordered set in this multi-

dimensional metric space. The DSMR algorithm computes the

dominant set of metrics for this partial ordering, representing

a best set of routes between the source and destination that

provide the full range of performance in the network. A traffic

classification function is then defined for assigning new flows

to paths that meet the QoS requirements of the flow and have

capacity for the new flow.
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Lastly, we presented simulation results using centralized

path selection where, among the paths that satisfy the QoS

requirements of the flow, a path is selected that has adequate

bandwidth, if such a path exists, to quantify the potential gains

from this solution. The results showed significant potential

gains ranging from 3 to 11-fold increases in call rates relative

to single-path routing while maintaining 95% or better call

acceptance ratios.

A number of next steps are needed to explore the potential

of this solution. Higher fidelity, protocol-based simulations are

needed to determine the CAR at which the user’s experience

begins to degrade. And an OpenFlow-based implementation

of DSMR must be done to explore the design parameters of

this architecture.
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