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ABSTRACT
In this paper, we present a framework, SocialWatch, to detect
attacker-created accounts and hijacked accounts for online services
at a large scale. SocialWatch explores a set of social graph prop-
erties that effectively model the overall social activity and connec-
tivity patterns of online users, including degree, PageRank, and
social affinity features. These features are hard to mimic and ro-
bust to attacker counter strategies. We evaluate SocialWatch using
a large, real dataset with more than 682 million users and over 5.75
billion directional relationships. SocialWatch successfully detects
56.85 million attacker-created accounts with a low false detection
rate of 0.75% and a low false negative rate of 0.61%. In addi-
tion, SocialWatch detects 1.95 million hijacked accounts—among
which 1.23 million were not detected previously—with a low false
detection rate of 2%. Our work demonstrates the practicality and
effectiveness of using large social graphs with billions of edges to
detect real attacks.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; K.6.5 [Security and
Protection]: Authentication

Keywords
SocialWatch, social graph, spam, PageRank, security

1. INTRODUCTION
Virtually all large-scale online services today (e.g., Hotmail, Face-

book) have become popular platforms for attackers to conduct a
wide range of nefarious activities. Although the precise methods or
scales of these attacks may differ, the common thread among them
is the requirement of a large number of malicious user accounts.
These accounts can be either created anew or obtained via compro-
mising real user accounts. They serve as the channels to propagate
spam, malware, social scam, or other malicious contents.
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Many existing security mechanisms to deal with malicious ac-
counts have extensively studied the attack characteristics [1, 2, 3,
4]. However, as attacks evolve over time, one has to constantly
adapt features for detection in the arms race. Thus, two important
questions naturally arise: Are there robust features for distinguish-
ing malicious accounts from legitimate ones? If so, are they practi-
cal to compute?

In this paper, we explore the use of social graph features for de-
tecting both attacker-created accounts and compromised accounts
at a large scale. The motivation is that a social graph describes not
just the behaviors of individual user accounts, but also the inter-
actions among them and the structures of their relationships. Al-
though attackers can easily adjust or adapt the behaviors of the ac-
counts that they control, they cannot change the behaviors of other
legitimate accounts. For example, most legitimate users do not
respond to spam emails and attackers cannot force them to reply.
Therefore, attackers will have limited effect on the local graph fea-
tures of legitimate users. Furthermore, it is fundamentally difficult
for them to change the overall communication patterns involving
other legitimate users. The larger the legitimate user population
is, the harder it is for attackers to influence the global social graph
structures.

We design and implement a framework called SocialWatch to
detect attacker-controlled accounts using social graphs. Unlike pre-
vious work that focuses on a specific feature, SocialWatch ex-
plores a set of graph properties. Some of them are local graph
features based on degree and PageRank. However, we show that
directly applying degree and PageRank to our context is not effec-
tive as legitimate users have diversified behaviors and attackers can
be stealthy. Therefore, we modify these well-known features and
use them in combination.

In addition, to address the challenges of detecting hijacked ac-
counts with mixed behaviors of normal and malicious activities, we
propose a set of social affinity features that not only describe indi-
vidual account behaviors, but also the behaviors of its contacts and
the community structures. We leverage these fine-grained social
features and use a Bayesian decision framework for detection. We
show that, despite the presence of noise and missing information
in the data set, the selected social affinity features can still effec-
tively differentiate hijacked accounts from normal ones. In sum-
mary, SocialWatch puts attack detection in a large social context
and hence is robust to attacker counter strategies.

To make our solution practical, all the graph features that we
select can be efficiently computed using the cloud computing tech-
niques today. We implement SocialWatch on a cluster of 240 ma-
chines using Dryad/DryadLINQ [5] and evaluate it using a large
dataset with more than 682 million users and 5.75 billion direc-
tional relationships. We demonstrate the practicality and effective-



ness of our approach by detecting real, large-scale attacks from the
dataset. We summarize our key results as follows:

• Using algorithms that combine degree and PageRank fea-
tures together, SocialWatch detects 56.85 million attacker-
created accounts, with a 0.75% false detection rate and a
0.61% false negative rate.

• Using the fine-grained social affinity features, at a false de-
tection rate of 2%, SocialWatch identifies 1.95 million hi-
jacked accounts, among which 1.23 million were not de-
tected previously.

The rest of the paper is organized as follows. We discuss related
work in §2. We present our problem formulation in §3 and describe
the detection methodology in §4. We evaluate the evaluation results
in §5, before concluding in §6.

2. RELATED WORK
Detecting malicious accounts for online services has been an im-

portant problem in recent years. Existing studies have proposed to
identify correlated abnormal behaviors for detecting such attacks
at a large scale [4, 1]. Although these defense systems are demon-
strated to work effectively for existing attacks, attackers may evade
by modifying the behaviors of multiple malicious accounts simul-
taneously to make them look different. The goal of our study is
to design a more robust social framework by looking at not only
individual user behaviors, but also the interactions among all users.

Sybil attacks and defense in social networks have been exten-
sively studied [6, 7, 8, 9]. Most existing Sybil-defense solutions
are designed for distributed environments. Further, recent studies
show that some of the key assumptions required by Sybil solutions
may not hold on real social graphs [10]. In contrast, our approach
takes a centralized view of the entire social graph, allowing us to
explore more efficient and practical solutions. As we focus on at-
tack detection, our work is also different from the recent work that
focuses on identifying legitimate user populations early using so-
cial graphs [11].

With Online Social Networks (OSN) growing rapidly, there ex-
ist extensive studies for understanding their graph properties [12,
13, 14]. Their findings are important and complementary to our
work, where we focus on leveraging their findings and various
graph properties for improving security.

There also exist previous studies that explore social graph fea-
tures for attack detection [15, 16, 17, 18]. The early success of
these proposals motivate us to further explore richer graph proper-
ties and use them in combination. In addition, we also explore more
fine-grained graph features that capture community structures and
user social distances for detecting hijacked accounts.

3. PROBLEM FORMULATION
We leverage social graphs to detect both attacker-created ac-

counts and hijacked accounts. Although SocialWatch is a general
solution that is applicable to different types of online services, in
this paper, we use an email application to drive our presentation
due to the use of our dataset.

3.1 Input Dataset
We have access to a large data set collected from Microsoft Hot-

mail. The dataset contains coarse-grained communication informa-
tion of anonymized, sampled user accounts from October 2007 to
April 2010. Based on whether the email address is registered with
Hotmail, we classify accounts into internal accounts and external
accounts. Each entry in the data set contains the communication

history summary between a sampled internal user account and an-
other user (either internal or external), including the anonymized
email addresses of both users and the number of emails that the
two users have mutually sent to each other.

Note that the sampling method is user-based. In other words,
if an internal user is sampled, the dataset records all other users
that this sampled user has ever communicated with during the data
collection period. Thus for each sampled account, we have a com-
plete view of its communication patterns to construct graphs. For
other internal accounts and external accounts, we have only a par-
tial view of their communications, derived from the records of the
set of sampled internal accounts that they have communicated with.

In total, our dataset contains 5.745 billion directional records
involving more than 682 million unique accounts, among which
269.5 million are internal accounts.

3.2 Graph Construction
Given the input, SocialWatch builds two social graphs. On both

graphs, a node v corresponds to a unique user, but the edges are
defined differently.

The first graph is a directed email-communication graph Gd =
(V,Ed), which records the detailed email activities between users.
Each directed edge e(v1, v2) ∈ Ed represents that node v1 has sent
emails to v2, and the weight w of this edge indicates the number of
emails that v1 has ever sent to v2 during the data collection period.

The second graph is an undirected friendship graph Gu = (V,Eu),
which records only the mutual relationship between users. The
edges in Eu are extracted from the friendship patterns of Ed, i.e.,
if both e(v1, v2) ∈ Ed and e(v2, v1) ∈ Ed, and the weight of
the two edges are at least 2, we define an undirected edge e′ that
connects v1 and v2 in Gu. By requiring mutual email exchanges
on the undirected graph, SocialWatch attempts to exclude connec-
tions from malicious accounts to legitimate accounts, as legitimate
users usually do not reply to spam emails. The edge weight repre-
sents the strength of the connection between two accounts. By re-
quiring an edge to have a weight of at least 2, SocialWatch prunes
weak connections due to occasional or accidental email exchanges
(e.g., accidentally reply to a malicious account). The constructed
Gd has 682 million nodes with degree ≥ 1 and 5.745 billion edges,
and Gu includes 255 million nodes and 436.9 million edges.

3.3 Problem Statements and Challenges
Given both the directed email-communication graph and the undi-

rected friendship graph, our goal is to develop methods to detect
the set of nodes tat correspond to either attacker-created accounts
or hijacked accounts. In [19], we investigate in detail the adversary
behaviors of these two types of accounts on the social graphs that
we created. We aim to maximize detection coverage while min-
imizing the false detection rates, i.e., the percentage of legitimate
users that are mistakenly marked as malicious over the total number
of users that are marked as malicious by our methods. Selecting ro-
bust and effective graph properties for malicious account detection
is challenging, especially under our practical settings:

• Incomplete graph. Any large graphs constructed in prac-
tice have only a partial view based on the specific set of ac-
counts (either due to sampling or the limited view from one
provider). Therefore, the graph-based detection algorithms
must be robust to missing data.

• Large-scale graph. As our graph is huge with billions of
edges, the selected graph properties need to be computed ef-
ficiently on large graphs.

• Legitimate accounts have diverse behaviors. Given our
graphs have hundreds of million users, the behaviors of legit-
imate accounts can be highly diversified. For example, some



legitimate accounts, such as mailing-lists, may have thou-
sands of contacts. On the other hand, attackers could choose
to send spam to only tens of victims from each malicious ac-
count to evade detection. Our method needs to distinguish
both aggressive and stealthy malicious accounts from the re-
maining ones.

• Hijacked accounts have mixed behaviors. Traditional graph
properties such as PageRank and degrees may not able to
provide strong signals. Hence, more fine-grained graph prop-
erties are required to detect the subtle differences between
hijacked accounts and the remaining legitimate ones.

Due to the above challenges, there is no single graph property
that can distinguish malicious accounts from legitimate ones. There-
fore, SocialWatch resorts to a set of complementary graph proper-
ties. For each account, we are interested in not only its own be-
haviors, but also the behaviors of its contacts, or even all the other
accounts to some extent. Putting the detection in a large social con-
text is the key for the social graph based detection.

4. DETECTION METHODOLOGY
In this section, we present our detection methodology for attacker-

created accounts and hijacked accounts.

4.1 Detecting Attacker-created Accounts
There are two most prominent and easy-to-compute graph prop-

erties that are widely used for detection: node degree and PageRank.
Degree is a local graph feature that captures the aggressiveness of
an account. PageRank is a global graph feature that calculates the
weights of the nodes on the overall graph. We next discuss how we
modify these two properties in the social context for detection.

4.1.1 Defense Using Degree
The straightforward degree-based method of disallowing any ac-

count sending emails to more than N recipients may affect the us-
ability of active legitimate users. Therefore, we introduce the re-
sponse rate of an account, i.e., the ratio between the number of
replied recipients to the total number of recipients. Note that we
use the number of recipients rather than the number of emails be-
cause a friend would typically reply to at least one emails sent over
the entire history, but may not respond to all emails. Therefore,
the number of recipients is a better metric to quantify friendship
than using the number of emails. For spam emails, most users do
not reply to any of them, so spammers typically have low response
rates.

4.1.2 Defense Using PageRank
PageRank is widely used for ranking Web pages and recently

has been applied to social graphs to detect spammers [17]. Each
node is assigned a uniform reputation score initially. In each it-
eration of the PageRank computation, each node propagates its
reputation to neighbors. After the ith iteration, the node A’s new
reputation score RA,i+1 is given as

RA,i+1 = 1− d+ d
∑

{X:eXA∈E}

RX,i

outdegree(X)
(1)

where d is the damping factor usually set to 0.85 [20]. RX,i is the
reputation score of node X after the previous iteration, and {X :
eXA ∈ E} is the set of nodes in the graph that have directed edges
pointing to A.

One method is to directly apply PageRank to the directed Gd,
where the PageRank scores propagate along directed edges. Intu-
itively, the PageRank of a node models the goodness of the user,

(a) goodness score (b) badness score
Figure 1: Goodness and badness score propagation. The box
size is in proportion to the edge weight1.

and we call it the goodness score. However, even with a response
rate as low as 1%, an aggressive spammer who sent thousands of
emails may still receive emails from legitimate accounts (e.g., ac-
cidental replies) and get a high goodness score. On the other hand,
inactive, legitimate accounts who do not receive many emails may
have a low goodness score.

To mitigate this problem, we introduce two modifications to this
approach. The first is that we adjust edge weights based on email
exchange patterns. We use the number of emails exchanged be-
tween two accounts to infer this relation. Assume that an account
A has n contacts (Ci, 1 ≤ i ≤ n), and A sends si emails to Ci,
while receiving ri emails from Ci. The percentage ωi of the good-
ness score that A should propagate to Ci is defined by

ωi =

(
si + 1

ri + 1

)/
n∑

k=1

(
sk + 1

rk + 1

)
(2)

Here, we add 1 to si and ri to avoid the divided-by-zero problem.
As in Figure 1(a), A would propagate more fraction of her score
to friends who have “balanced” mutual email exchanges with her,
while less to the spammers who send multiple emails to A with few
or zero replies.

The second modification we adopt is the reverse PageRank [21],
calculated by running the PageRank algorithm on the social graph
obtained by reversing the directions of all edges as illustrated in
Figure 1. We name the score of a node obtained in this way a
badness score. The intuition behind the badness score is that bad
accounts normally send many emails, so if we propagate badness
scores from recipients to senders, bad accounts would receive high
badness scores. Similarly, the edge weight is adjusted based on
email exchange patterns so that a node would propagate more of
her badness score to spammers and less to her friends.

We compute the ratio of goodness to badness scores by PageRank
computation and use this ratio to detect spammers. We further
combine the modified PageRank and degree-based approaches to
achieve better detection results using the following steps:

• Identify aggressive spamming accounts with high out de-
grees (≥ N ′) and low response rates (≤ θ).

• Identify less aggressive spamming accounts using the badness-
goodness PageRank ratio (≥ α).

The settings of N ′, θ, α are based on a small set of known good
and bad accounts [19].

4.2 Methods for Hijacked Account Detection
The communication patterns of hijacked accounts are different

from attacker-created ones, e.g., hijacked accounts will continue to
receive emails from their contacts, while attacker-created accounts
often do not receive emails from legitimate users. The degree and
PageRank-based approaches in §4.1 thus may not catch hijacked
accounts. Instead, we explore fine-grained graph properties and use
two social-affinity features to detect hijacked accounts.
1Circles in the graph represent user nodes. Boxes denote the propagation of
goodness/badness score and the box size is proportional to the edge weight.



4.2.1 Social-Affinity Features
We introduce social-affinity features defined for each user v,

aiming to capture the subtle differences between hijacked accounts
and legitimate accounts.

Recipient connectivity r: A legitimate user usually belongs to
one or a few communities in the real world based on geographic lo-
cations, working connections, or interest, and so are her recipients.
For example, we have observed strong evidence of geographic lo-
cality in communication patterns—80.7% of communication edges
are between users within a same country.

In contrast, spam emails are often sent to users who are not so-
cially connected. It is difficult for attackers to identify community
patterns and mimic normal user behaviors. Thus, how well the
email recipients of a given user v are socially connected can be
defined as a social affinity feature for hijacked account detection.

The recipient connectivity for a user v is defined based on how
well R(v), the recipients of v, are connected in the undirected
friendship graph Gu. SocialWatch computes the fraction of such
connected recipients among R(v). For each account v, R(v) forms
a subgraph Gu(v). Note that Gu(v) does not include v. SocialWatch
then identifies all the connected components C1 · · ·Ck with size of
at least two on the subgraph Gu(v). Let Ri(v) denote the set of re-
cipients in Ci (1 ≤ i ≤ k). Then the recipient connectivity feature
r(v), the fraction of socially connected recipients, is defined as:

r(v) =

∑k
i=1 |Ri(v)|
|R(v)| (3)

Social distance l: In practice, the email communication graph
is only a sub-graph of the real-world communication graph. For
example, we may not be able to observe the connections among
accounts whose communication records are not included in our
dataset (e.g., accounts external to the service that we are protect-
ing). Such incomplete graph may lead to incorrect measurements
in the recipient connectivity feature r(v), because two external re-
cipients of v that are socially connected in the real world are now
disconnected (not belonging to the same connected component) in
our observed graph Gu.

We use a social distance d(v1, v2) on the friendship graph Gu to
describe how close two users v1 and v2 are on the social graph. It
is defined by the distance of the shortest path between v1 and v2
on G′

u, where G′
u is defined by removing v (and edges connected

with v) from Gu.
We define the second social feature l(v) for user v as the mean

of all pairwise social distances between any two users in R(v):

l(v) =
1

N

∑
vi,vj∈R(v),i<j

d(vi, vj) (4)

where N = |R(v)| ∗ |R(v) − 1|/2 is the number of all possible
user pairs.

In the case of missing observations mentioned above, the social
distance defined by the shortest-path distance is an upper-bound
approximation of the real social distance on the complete graph.
l(v) is robust to missing data and complementary to the recipient-
connectivity feature r(v).

The social affinity features r(v) and l(v) exploit the structure of
the subgraph defined by the email recipients of the user v. We use
r(v) and l(v), combined with node out-degree (denoted as D(v)),
for hijacked account detection. Previous work has leveraged clus-
tering coefficients for similar purposes [16]. We do not use clus-
tering coefficients because they only account for direct connections
between pair-wise accounts and are thus sensitive to missing data.
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Figure 2: Social affinity features for detecting hijacked ac-
counts.

4.2.2 Computing Social Affinity Features
The recipient connectivity feature r(v) is relatively easy to com-

pute in parallel for all accounts. However, the social-distance fea-
ture l(v) requires computing shortest-path distances on the large
graph Gu for all user pairs in R(v), which is computational expen-
sive and hard to parallelize. SocialWatch adopts a sketch-based ap-
proach to compute an approximate shortest-path distance between
a pair of nodes using sampled landmark nodes [22]. Using this al-
gorithm, the estimated path length is slightly larger than the actual
value with provable bounds. We find that the approximation works
well in practice for our purpose of detecting hijacked accounts.

Figure 2 shows the distributions of the two social-affinity fea-
tures for a set of known hijacked accounts and another set of sam-
pled legitimate accounts, both labeled by the email provider. As
we can see, for each feature, the distribution of hijacked accounts
is significantly different from that of legitimate accounts. The dis-
tribution of r(v), the recipient-connectivity feature, is relatively
even between 0 and 1 for legitimate users, but is heavily peaked
at zero for hijacked users, which means that the email recipients
of a hijacked user are mostly disconnected. The average pairwise
shortest-path distance l(v) follows a normal distribution with a
mean of about 7 for legitimate accounts, but is peaked at about
12 for hijacked accounts.

These two social-affinity features are complementary to each
other as they capture different social graph properties of a user.
In the following we present two scenarios for using these features
together to detect hijacked accounts. The first scenario is when we
do not have pre-labeled hijacked accounts, i.e., we want to detect
hijacked accounts based on the properties of legitimate accounts.
The second scenario is a refined approach when we are provided
with a set of known hijacked accounts.

4.2.3 Detection Without Known Hijacked Accounts
For legitimate accounts, the distributions of their graph features

are usually stable over time and can be estimated accurately. With-
out known hijacked accounts, we can use one-tailed hypothesis
testing [23] to detect hijacked accounts. The null hypothesis is:

H0 : ω = W0 (5)

where ω denotes the unknown account label, and W0 denotes the
normal account label. Given the observed features x0 of a user
v (in our case x0 = {D(v), r(v), l(v)}), and assuming the null
hypothesis is true, we can estimate the one-tailed critical p-value
(the statistical significance level):

P0 = P (x > x0|ω = W0) =

∫
p(x > x0|ω = W0)dx (6)

For simplicity, we assume that the social features are independent.
Equation 6 becomes:

P0 =

3∏
i=1

∫
p(xi > x0

i |ω = W0)dxi (7)



Symbol N N ′ θ α

Description Inactive Aggressive Response Badness/
limit limit rate goodness ratio

Value 5 500 5% 4.5

Table 1: Selected values for detection thresholds.
If P0 is less than a predefined statistical significance level t, then
we reject the hypothesis. The significance level t is a parameter to
control the potential false detection rate of such detection. Specif-
ically, given t, SocialWatch computes a threshold along each fea-
ture dimension based on data. We classify an account as a hijacked
account if one of its feature values violates the computed threshold.

4.2.4 Detection With Known Hijacked Accounts
In practice, a service provider can often identify a subset of hi-

jacked accounts based on user reports, or manual examination, etc.
Although the distribution of hijacked accounts is not as stable as
normal accounts, we can still leverage the knowledge of known
hijacked accounts to detect remaining ones. SocialWatch uses
a Bayesian decision framework to detect additional hijacked ac-
counts using the known ones as training data.

Given the learned probability distributions of both normal and
hijacked accounts, the Bayesian decision theory [24] gives the fol-
lowing decision boundary:

p(x|W1)

p(x|W0)
>

c0
c1

P (W0)

P (W1)
(8)

where W1 denotes the class of hijacked accounts. Here c0 rep-
resents the cost (i.e., penalty) of labeling a normal account as a
hijacked account, and c1 the cost of labeling a hijacked account as
a normal account. Assuming that features are independent, the de-
cision ratio can be directly computed from the learned probability
density functions shown in Figure 2(a)-(c). If the above inequality
holds, x is classified as hijacked, otherwise it is classified as nor-
mal. P (W0) is the prior of a given account to be a normal account
and P (W1) the prior of being a hijacked accounts. Both P (W0)
and P (W1) can be estimated by the fraction of normal and hijacked
accounts in the training set. The only parameter to set is the ratio
of c0

c1
, which is independent of the observed data, and is intuitive

thus easier to understand and control by the service providers.

5. EVALUATION
We implement SocialWatch using Dryad/DryadLINQ [5] and it

processes data in parallel on a 240-machine cluster. In this section,
we evaluate SocialWatch on the large graphs that we build (see
Section 3.2). We describe how we label the ground-truth of data
for validation in the longer version of this paper [19].

5.1 Degree and PageRank Based Detection
After filtering inactive users, we first detect all the active users

using degree and PageRank based method as described in §4.1.
We pick a small set of labeled accounts as training data to derive

the threshold parameters (listed in Table 1) and we exclude them
from our evaluation.

Using the degree-based method alone, SocialWatch detects a
vast majority of the attacker-created accounts with a low false de-
tection rate (1.06%) and a low false negative rate (1.19%). Indeed,
legitimate and malicious accounts exhibit very different patterns in
their email response rates. In our data set, more than 95% of the
bad accounts have 0 in-degrees on the directed graph, meaning they
receive no replies. In contrast, the median response rate of good ac-
counts is over 50% and only 5% of them receive no replies (most
of them are actually inactive users with small out-degrees).

We further apply PageRank-based detection to increase the de-
tection coverage and reduce the false detection rate. It takes about
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Figure 6: Detection coverage vs. the upper bound of false detection
rate for hijacked users (the newly detected users are all regarded as
false positives in this figure).

30 iterations for the goodness and badness scores of all the nodes
to converge (≤ 1% difference between two consecutive iterations).

After obtaining the badness-goodness PageRank ratio, we need
to select a cutoff threshold. To do so, we leverage the training
data mentioned earlier. Figure 3 shows the CDF of their badness-
goodness ratio. We find good and bad accounts in the training data
have clear distinctions. Accordingly, we select α = 4.5 as the
threshold for detection on the entire graph. In total, among all 269.5
million internal accounts, we detect 56.85 million bad accounts by
combining degree and PageRank in detection and reduce the false
detection rate to 0.75%. Among the falsely detected accounts, we
find some of them have a high badness score because they sent
emails to a few very large mailing-list addresses (which typically
have high badness scores). Thus we can potentially improve our
detection further by removing large mailing lists from detection.
Our false negative rate is as low as 0.61%. Among those false neg-
ative users, 38.88% are actually known hijacked accounts that we
fail to detect using degree and PageRank.

The above results suggest that degree and PageRank can effec-
tively detect attacker-created accounts accurately. For the set of de-
tected accounts, service providers can apply more strict policies to
further validate them (e.g., giving more CAPTCHA or asking secu-
rity questions) while throttling their attack behaviors substantially
(e.g., by limiting the email-sending rates aggressively).

5.2 Social Affinity Based Detection
After applying the combined degree and PageRank algorithm to

the email graph to detect attacker-created accounts, we apply the
social-affinity based method on the remaining users to detect hi-
jacked accounts. In particular, we leverage the two detection meth-
ods, namely hypothesis testing and Bayesian decision introduced
in §4.2.1. The hypothesis testing does not need known hijacked
accounts, so we use the labeled good accounts to build normal ac-
count distributions and use the remaining users as testing data. For
the Bayesian decision method, we use half labeled good accounts
and half known hijacked accounts for training, and the remaining
data for testing.

Figure 6 shows the detection coverage vs. false detection rate
from hypothesis testing (solid curve) and Bayesian decision (dashed
curve). We vary the false detection rate from 0 to 6%. The detection
results are compared to the labels provided by the email provider.
We observe that Bayesian decision performs slightly better. At
a 6% false detection rate, hypothesis testing detects about 70%
of the hijacked accounts, while Bayesian decision detects about
72%. At a false detection rate of 2%, using hypothesis testing,
SocialWatch detects 53.3% hijacked accounts. One advantage of
using the Bayesian approach is that the parameter has an intuitive
meaning, and is easier to understand and control.
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Figure 5: Social distance among recipients Eq 4.

Our method also flags 1.53 million additional accounts as being
hijacked. These accounts are our new findings, which have not
been reported by the existing system yet. Similarly, using Bayesian
decision, SocialWatch detects 54.6% known hijacked accounts as
well as 1.23 million additional ones.

For the newly detected accounts, the question is “are they in-
deed hijacked users that were not detected yet?” We study them
using two approaches. First, we submitted these accounts to the
email provider for manual verification based on sampling. They
confirmed that the sampled accounts exhibit suspicious email ac-
tivities. After a year, most of them were either reported by the
users or captured by content-based detection. Second, we compare
two social-affinity features of these accounts with the overall good
account population (Figure 4, 5). These two features describe the
community structures of the accounts. We observe that the newly
detected accounts have clearly different feature distributions from
the good account population, i.e., with smaller ratios of recipient
connectivity r(v) and larger social distances l(v). In fact, their dis-
tributions are similar to the set of known hijacked accounts. These
accounts thus may already have started spamming activities at the
time of our detection.

On the other hand, for the false negative accounts, i.e., the set
of hijacked accounts that we fail to detect, we find that they have
similar social feature distributions to the known good ones. These
may be more stealthy accounts or the set of accounts not actively
misbehaving yet, making it inherently challenging to detect them.

6. CONCLUSION
In this paper, we present an online service protection frame-

work, SocialWatch, that uses social connectivity features to detect
attacker-created accounts and hijacked accounts at a large scale.
We explore a rich set of graph properties including degree and
PageRank that are effective for detecting aggressive attack behav-
iors, as well as social affinity metrics that capture the subtle dif-
ferences between the stealthy hijacked accounts and the remaining
legitimate users. We show that SocialWatch can effectively detect
tens of millions of malicious accounts in the wild. Since the social
connectivity features that we rely on can be derived from a wide
class of applications, we believe that SocialWatch is general and
promising for protecting both the providers and the online users of
many services.
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