A Model of Cooperative Threads

Martin Abadi

Microsoft Research, Silicon Valley and
University of California, Santa Cruz

abadi@microsoft.com

Abstract

We develop a model of concurrent imperative programming with
threads. We focus on a small imperative language with cooperative
threads which execute without interruption until they terminate or
explicitly yield control. We define and study a trace-based denota-
tional semantics for this language; this semantics is fully abstract
but mathematically elementary. We also give an equational theory
for the computational effects that underlie the language, including
thread spawning. We then analyze threads in terms of the free alge-
bra monad for this theory.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Languages, Theory

Keywords denotational semantics, monad, operational semantics,
transaction

1. Introduction

In the realm of sequential programming, semantics, whether oper-
ational or denotational, provides a rich understanding of program-
ming constructs and languages, and serves a broad range of pur-
poses. These include, for instance, the study of verification tech-
niques and the reconciliation of effects with functional program-
ming via monads. With notorious difficulties, these two styles of
semantics have been explored for concurrent programming, and,
by now, a substantial body of work provides various semantic ac-
counts of concurrency. Typically, that work develops semantics for
languages with parallel-composition constructs and various com-
munication mechanisms.

Surprisingly, however, that work provides only a limited un-
derstanding of threads. It includes several operational semantics
of languages with threads, sometimes with operational notions of
equivalence, e.g., [7, 23, 20, 21]; denotational semantics of those
languages seem to be much rarer, and to address message passing
rather than shared-memory concurrency, e.g., [13, 19]. Yet threads
are in widespread use, often in the context of elaborate shared-
memory systems and languages for which a clear semantics would
be beneficial.

In this paper, we investigate a model of concurrent imperative
programming with threads. We focus on cooperative threads which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18-24, 2009, Savannah, Georgia, USA.
Copyright © 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

Gordon Plotkin

LECS, University of Edinburgh and
Microsoft Research, Silicon Valley

gdp@inf.ed.ac.uk

execute, without interruption, until they either terminate or else ex-
plicitly yield control. Non-cooperative threads, that is, threads with
preemptive scheduling, can be seen as threads that yield control at
every step. In this sense, they are a special case of the cooperative
threads that we study.

Cooperative threads appear in several systems, programming
models, and languages. Often without much linguistic support, they
have a long history in operating systems and databases, e.g., [22].
Cooperative threads also arise in other contexts, such as Internet
services and synchronous programming [4, 29, 9, 8, 5]. Most re-
cently, cooperative threads are central in two models for program-
ming with transactions, Automatic Mutual Exclusion (AME) and
Transactions with Isolation and Cooperation (TIC) [18, 28]. AME
is one of the main starting points for our research. The intended im-
plementations of AME rely on software transactional memory [27]
for executing multiple cooperative threads simultaneously. How-
ever, concurrent transactions do not appear in the high-level op-
erational semantics of the AME constructs [1]. Thus, cooperative
threads and their semantics are of interest independently of the de-
tails of possible transactional implementations.

We define and study three semantics for an imperative language
with primitives for spawning threads, yielding control, and block-
ing execution.

e We obtain an operational semantics by a straightforward adap-
tation of previous work. In this semantics, we describe the
meaning of a whole program in terms of small-step transitions
between states in which spawned threads are kept in a thread
pool. This semantics serves as a reference point.

We also define a more challenging compositional denotational
semantics. The meaning of a command is a prefix-closed set of
traces. Prefix-closure arises because we are primarily interested
in safety properties, that is, in “may” semantics. Each trace is
roughly a sequence of transitions, where each transition is a pair
of stores, and a store is a mapping from variables to values. We
establish adequacy and full-abstraction theorems with respect
to the operational semantics. These results require several non-
trivial choices in the definition of the denotational semantics.

Finally, we define a semantics based on the algebraic theory of
effects. More precisely, we give an equational theory for the
computational effects that underlie the language, and analyze
threads in terms of the free algebra monad for this theory.
This definition is more principled and systematic; it explains
threads with standard semantic structures, in the context of
functional programming. As we show, furthermore, we obtain
our denotational semantics as a special case.

Section 2 introduces our language and Section 3 defines its
operational semantics. Section 4 develops its denotational seman-
tics. Section 5 presents our adequacy and full-abstraction theorems
(Theorems 5.10 and 5.15). Section 6 concerns the algebraic theory

b € BExp =
e € NExp = ...
C,D € Com skip
x:=e (z € Vars)
C; D

while b do C
async C
yield

|
|
| if b then C else D
|
|
|
| block

Figure 1. Syntax.

of effects and the analysis of the denotational semantics in this
monadic setting (Theorem 6.3). Section 7 concludes. The appendix
outlines some of the more interesting proofs.

2. The Language

Our language is an extension of a basic imperative language with
assignments, sequencing, conditionals, and while loops (IMP [30]).
Programs are written in terms of a finite set of variables Vars,
whose values are natural numbers. In addition to those standard
constructs, our language includes:

e A construct for executing a command in an asynchronous
thread. Informally, async C' forks off the execution of C'. This
execution is asynchronous, and will not happen if the present
thread keeps running without ever yielding control, or if the
present thread blocks without first yielding control.

e A construct for yielding control. Informally, yield indicates
that any pending thread may execute next, as may the current
thread.

A construct for blocking. Informally, block halts the execution
of the entire program, even if there are pending threads that
could otherwise make progress.

Thus, we can for example write (Figure 2) a piece of code that

spawns the asynchronous execution of z := 0, then executes
z := 1 and yields, then resumes but blocks unless the predicate
x = 0 holds, then executes x := 2. The execution of x := 0

async z := 0;

T =1

yield;

if =0 then skip else block;
T:=2

Figure 2. Example command.

may happen once the yield statement is reached. With respect
to safety properties, the conditional blocking amounts to waiting
for z = 0 to hold. More generally, AME’s blockUntil b can be
written if b then skip else block.

More elaborate uses of blocking are possible too, and sup-
ported by lower-level semantics and actual transactional implemen-
tations [18, 1]. In those implementations, blocking may cause a
roll-back and a later retry at an appropriate time. We regard roll-
back as an interesting aspect of some possible implementations,
but not as part of the high-level semantics of our language, which
is the subject of this work.

I' e State = Store x ComSeq x Com
o € Store = Vars — Value

n € Value = Nat

T € ComSeq = Com”

Figure 4. State space.

We define the syntax of the language in Figure 1. We do not de-
tail the constructs on numerical expressions, nor those for boolean
conditions, which are as usual.

Thus, our language is basically a fragment of the AME cal-
culus [1]. It omits higher-order functions and references. It also
omits “unprotected sections” for non-cooperative code, particularly
legacy code. Non-cooperative code can however be modeled as
code with pervasive calls to yield. See Section 7 for further dis-
cussion of possible extensions to our language.

3. Operational Semantics

We give an operational semantics for our language. Despite some
subtleties, this semantics is not meant to be challenging. It is given
in terms of small-step transitions between states. Accordingly, we
define states, evaluation contexts, and the transition relation.

3.1 States

As described in Figure 4, a state I' = (0, T, C) consists of the
following components:

® a store ¢ which is a mapping of the given finite set Vars of
variables to a set Value of values, which we take to be the set
of natural numbers;

e afinite sequence of commands 7" which we call the thread pool,

e a distinguished active command C'.

We write o[z +— n] for the store that agrees with o except at z,
which is mapped to n. We write o (b) for the boolean denoted by b
in o, and o (e) for the natural number denoted by e in o, similarly.
We write T.T" for the concatenation of two thread pools 7" and T".

3.2 Evaluation Contexts

As usual, a context is an expression with a hole [], and an evaluation
context is a context of a particular kind. Given a context C and an
expression C, we write C[C]] for the result of placing C in the hole
in C. We use the evaluation contexts defined by the grammar:

& = [l1&¢C

3.3 Steps

A transition I' — I takes an execution from one state to the next.
Figure 3 gives rules that specify the transition relation. According
to these rules, when the active command is skip, a command from
the pool becomes the active command. It is then evaluated as such
until it produces skip, yields, or blocks. No other computation is
interleaved with this evaluation. Each evaluation step produces a
new state, determined by decomposing the active command into an
evaluation context and a subexpression that describes a computa-
tion step (for instance, a yield or a conditional).

In all cases at most one rule applies. In two cases, no rule
applies. The first is when the active command is skip and the pool
is empty; this situation corresponds to normal termination. The
second is when the active command is blocked, in the sense that
it has the form & [block]; this situation is an abnormal termination.

(0, T,z :=€]) — (olz — n],T,E[skip]) if o(e)=n (Set)

(0, T, £[skip; C]) — {0, T,E[C)) (Seq)
(0,T,E[if b then C else D]) — (o0, T,&[C)) if o(b) = true (Cond True)
(0,T,E[if b then C else D]) — (0,T,&[D]) if o(b) = false (Cond False)
(0,T, E[while b do C]) — (0,T,E[if b then (C;while b do C) else skip]) (While)
(0,T,Easync C)) — (0,T.C, E[skip]) (Async)

(0, T, Elyield]) — (o0, T.E[skip], skip) (Yield)

(o, T.C.T', skip) — (o, T.T",C) (Activate)

Figure 3. Transition rules of the abstract machine.

We write ' —. IV when I' — I via the Activate rule, and
call this a choice transition. We write ' —, I'" when I' — I" via
the other rules, and call this an active transition. Active transitions
are deterministic, i.e., if ' —4 [V and ' —, I'” then IV = I'”".

4. Denotational Semantics

Next we give a compositional denotational semantics for the same
language. Here, the meaning of a command is a prefix-closed set
of traces, where each trace is roughly a sequence of transitions, and
each transition is a pair of stores.

The use of sequences of transitions goes back at least to Abra-
hamson’s work [3] and appears in various studies of parallel com-
position [2, 16, 10, 11]. However, the treatment of threads requires
some new non-trivial choices. For instance, transition sequences, as
we define them, include markers to indicate not only normal termi-
nation but also the return of the main thread of control. Moreover,
although these markers are similar, they are attached to traces in
different ways, one inside pairs of stores, the other not. Such de-
tails are crucial for adequacy and full abstraction.

Also crucial to full abstraction is minimizing the information
that the semantics records. More explicit semantics will typically be
more transparent, for instance, in detailing that a particular step in a
computation causes the spawning of a thread, but will consequently
fail to be fully abstract.

Section 4.1 is an informal introduction to some of the details of
the semantics. Section 4.2 defines transition sequences and estab-
lishes some notation. Sections 4.3 and 4.4 define the interpretations
of commands and thread pools, respectively. Section 4.5 discusses
semantic equivalences.

4.1 Informal Introduction

As indicated above, the meaning of a command will be a prefix-
closed set of traces, where each trace is roughly a sequence of tran-
sitions, and each transition is a pair of stores. Safety properties—
which pertain to what “may” happen—are closed under prefixing,
hence the prefix-closure condition. Intuitively, when the meaning
of a command includes a trace (o1, 01)(02,0%) . .., we intend that
the command may start executing with store o1, transform it to o/,
yield, then resume with store o2, transform it to o5, yield again,
and so on.

In particular, the meaning of block will consist of the empty
sequence €. The meaning of yield;block will consist of the
empty sequence ¢ plus every sequence of the form (o, o), where

o is any store. Here, the pair (o,0) is a “stutter” that represents
immediate yielding.

If the meaning of a command C'includes (o1,01) ... (0n,0},)
and the meaning of a command D includes (07,,07,) ... (Cm, Om)s
one might naively expect that the meaning of C'; D would con-
tain (01,01) ... (0n,00) ... (0m, oL,), which is obtained by con-
catenation plus a simple local composition between (o, 07,) and
(o7,,0u). Unfortunately, this naive expectation is incorrect. In a
trace (o1,01)(02,0%) ..., some of the pairs may represent steps
taken by commands to be executed asynchronously. Those steps
need not take place before any further command D starts to exe-
cute. Accordingly, computing the meaning of C'; D requires shuf-
fling suffixes of traces in C' with traces in D. The shuffling repre-
sents the interleaving of C”s asynchronous work with D’s work.
We introduce a special return marker “Ret” in order to indicate
how the traces in C' should be parsed for this composition. In par-
ticular, when C is of the form C1; async (Cb), any occurrence of
“Ret” in the meaning of C'2 will not appear in the meaning of C.
The application of async erases any occurrence of “Ret” from the
meaning of C'>—intuitively, because C does not return control to
its sequential context.

For example, the meaning of the command

T :=n;yield;x := n'
will contain the trace
(o,0[x — n])(c’,0'[x — n] Ret)
for every o and ¢’. On the other hand, the meaning of the command
x = n;async (x :=n');yield
will contain the trace
(o,0]x — n] Ret) (0, 0’ [z — n'])

for every o and o’. The different positions of the marker Ret
correspond to different junction points for any commands to be
executed next.

If the meaning of C contains u(ox, o, Ret)u’ and the mean-
ing of D contains (0,0,)v, then the meaning of C; D con-
tains u(on,, oy,)w, where w is a shuffle of «’ and v. Notice that
the marker from u(c.,, o, Ret)u’ disappears in this combination.
The marker in u(o,, oy,)w, if present, comes from (o;,, o,)v. An
analogous combination applies when the meaning of C' contains
u(on, 0y, Ret)u’ and the meaning of D contains (o7, oy, Ret)v
(a trace that starts with a transition with a marker). Moreover, if

[skip

[x:=e

[C; D

[if b then C else D
[while b do C'

I
—_——— %

Clo[D]

I
—_

|
Ui[(while b do C)4]

[async C] = async([C]?)
[yield] = d(x)
[block {e}

(0,0]x — n] Ret)Done | o € Store,o(e) =n}]

t | t € [C], non-empty, fst(t)(b) = true}| U{t | t € [D], non-empty, fst(¢)(b) = false}|

Figure 5. Denotational semantics.

the meaning of C' contains a trace without any occurrence of the
marker Ret, then this trace is also in the meaning of C'; D: the ab-
sence of a marker makes it impossible to combine this trace with
traces from D.

An additional marker, “Done”, ends traces that represent com-
plete normally terminating executions. Thus, the meaning of skip
will consist of the empty sequence € and every sequence of the
form (o, o Ret) plus every sequence of the form (o, o Ret)Done.
Contrast this with the meaning of yield;block given above.

It is possible for a trace to contain a Ret marker but not a
Done marker. Thus, the meaning of async (block) will contain
the empty sequence ¢ plus every sequence of the form (o, o Ret),
but not (o, ¢ Ret)Done.

More elaborately, the meaning of the code of Figure 2 will
contain all traces of the form

(o,01])(o[1], o[0])(c]0], 0[2] Ret)Done

where we write o[n] as an abbreviation for o[z +— n]. These
traces model normal termination after taking the true branch of the
conditional if z = 0 then x := 2 else block. The meaning
will also contain all prefixes of those traces, which model partial
executions—including those that take the false branch of the
conditional and terminate abnormally.

The two markers are somewhat similar. However, note that
(0,0’ Ret) is a prefix of (0,0’ Ret)Done, but (o,0”) is not a
prefix of (o, 0’ Ret). Such differences are essential.

4.2 Transition Sequences

A plain transition is a pair of stores (o, 0’). A return transition is
a pair of stores (o, 0’ Ret) in which the second is adorned with the
marker Ret. A transition is a plain transition or a return transition.

A transition sequence is a finite (possibly empty) sequence,
beginning with a sequence of transitions, of which at most one (not
necessarily the last) is a return transition, and optionally followed
by the marker Done if one of the transitions is a return transition.
We write T'Seq for the set of transition sequences.

A pure transition sequence is a finite sequence of plain transi-
tions, possibly followed by a marker Done. Note that such a se-
quence need not be a transition sequence in the sense above. It is
proper if it is not equal to Done. We write PSeq for the set of pure
transition sequences.

We use the following notation:

e We typically let u, v, and w range over transition sequences or
pure transition sequences, and let ¢ range over non-empty ones.

e We write u <, v for the prefix relation between sequences u
and v (for both kinds of sequence, pure or not).

¢ For a non-empty sequence of transitions ¢, we write fst(¢) for
the first store of the first transition of ¢.

e For a transition sequence u, we write u© for the pure transition
sequence obtained by removing the Ret marker, if present,
from u.

e We let 7 range over stores and stores with return markers.

4.3 Interpretation of Commands

Preliminaries We let Proc be the collection of the non-empty
prefix-closed sets of transition sequences, and let Pool be the
collection of the non-empty prefix-closed sets of pure transition
sequences, where a set P is prefix-closed if whenever v <, v € P
then v € P. We write P | for the least prefix-closed set that
contains P. Under the subset partial ordering, Proc and Pool are
both w-cpos (i.e., partial orders with sups of increasing sequences)
with least element {¢}. We interpret commands as elements of
Proc. We use Pool as an auxiliary cpo; below it also serves for
the semantics of thread pools.
We define a continuous clean function

—“:Proc — Pool
by:

P ={u°|ue P}
(Continuous functions are those preserving all sups of increasing
sequences.)

We define the set of shuffles of a pure transition sequence u with
a sequence v as follows:

o If neither finishes with Done, their set of shuffles is defined as
usual for finite sequences.

o If u does not finish with Done, then a shuffle of © and v Done
is a shuffle of v and v. Similarly, if v does not finish with Done,
then a shuffle of « Done and v is a shuffle of v and v.

e A shuffle of u Done and v Done is a shuffle of u and v followed
by Done.

We write u < v for the set of shuffles of u and v.
We define a continuous composition function

o : Proc® — Proc
by:

Po@ = {u(o,7)v]| 3o’ w,w'.
u(o, 0’ Ret)w € P,
(o), v € Q,
vEwN W}
U {u | uw € P with no return transition}

Composition is associative with two-sided unit, given by:
x = {(o,0 Ret)Done | o € Store}|
We also define a continuous delay function

d : Proc — Proc

by:

d(P) = {(o,0)u|o € Store,u € P}|
Thus, d(P) is P preceded by all possible stutters (plus £). Simi-
larly, we define a continuous function

async : Pool — Proc
by:
async(Q) = {(o,0 Ret)u|o € Store,u € Q}|

Thus, for P € Proc, async(P¢) differs from d(P) only in the
placement of the marker Ret.

Interpretation The denotational semantics
[[]:Com — Proc

maps a command to a non-empty prefix-closed set of transition
sequences. We define it in Figure 5. There, the interpretation of
loops relies on the following approximations:

(while b do C')o = block

(while b do Cni+l = if b
then (C;(while b do C);)
else skip

The 0-th approximant corresponds to divergence, which here we
identify with blocking.
We straightforwardly extend the semantics to contexts, so that

[C] : Proc — Proc

is a continuous function on Proc. This function is defined by
induction on the form of C, with the usual clauses of the definition

of [] plus [[]](P) = P.

PROPOSITION 4.1. [C[C]] = [CI([C]). Therefore, if [C] C [D]
then [C[C]] C [C[D]].

4.4 Interpretation of Thread Pools

As an auxiliary definition, it is important to have also an interpre-
tation of thread pools as elements of Pool. We develop one in this
section.

Preliminaries We define a continuous shuffle operation
: (Pool)? — Pool

at this level by:
Px<Q=

U s

uEP,vEQ

The shuffle operation is commutative and associative, with unit
I =g4et {€, Done}.

We define the (left) action u-v of a pure transition sequence
on a transition sequence v, by setting

u-(o,7)v={(o,7)w | w € uxiv}

and
u-e={e}
We then define
async: Pool x Proc — Proc
by:

async(P, Q) = U u-v
ueEPveEQR

The use of the notation async for both a unary and a binary
operation is a slight abuse, though in line with the algebraic theory
of effects: see the discussion in Section 6. In this regard note
the equality async(P) o @ = async(P,Q) (and the equality
[yield] o P = d(P) points to the corresponding relationship
between d and [yield]).

Interpretation We define the semantics of thread pools by:
HCl,...,Cn]]:[[01]]CD<1...D<I|ICn]]C (nZO)

intending that [¢] = I. For any thread pool T, Done € [T]
iff T = e (because, for all C, Done ¢ [C]° and, for all P
and Q, I C Pt Qiff I C Pand I C (). Further, we set
[T, C] = async([T7], [C]).

LEMMA 4.2. Forall P,Q € Pool and R € Proc we have:

1. async(P > @, R) = async(P,async(Q, R))
2. async(I,R) = R

4.5 Equivalences

An attractive application of denotational semantics is in proving
equivalences and implementation relations between commands.
Such denotational proofs tend to be simple calculations. Via ade-
quacy and full-abstraction results (of the kind established in Sec-
tion 5), one then obtains operational results that would typically be
much harder to obtain directly by operational arguments.

As an example, we note that we have the following equivalence:

[async (C;yield; D)] = [(async (C;async (D))]
This equivalence follows from three facts:
® We have:
[yield; D] = [async (D)]°
= {(o,0)u° | o € Store,u € [D]}|;
o whenever [D:1]° = [D2]°, [C; D1]° = [C; D2]%;
e whenever [D1]° = [D:]°, [async (D1)] = [async (D2)].
This particular equivalence is interesting for two reasons:

e [t models an implementation strategy (in use in AME) where,
when executing C;yield; D, the yield causes a new asyn-
chronous thread for D to be added to the thread pool.

It illustrates one possible, significant pitfall in more explicit
semantics. As discussed above, such a semantics might detail
that a particular step in a computation causes the spawning of
a thread. More specifically, it might extend transitions with an
extra trace component: a triple (o, u, 7) might represent a step
from o to 7 that spawns a thread that contains the trace wu.
With such a semantics, the meanings of async (C;yield; D)
and async (C; async (D)) would be different, since they have
different spawning behavior.

Many other useful equivalences hold. For instance, we have:
[t :=n;z:=n"] = [z :=n']
trivially. For every C, we also have:
[async (C);z := n] = [z := n;async (C)]
and, for every C and D, we have:
[async (C); async (D)] = [async (D);async (C)]
Another important equivalence is
[while (0 =0) do skip] = [block]

Thus, the semantics does not distinguish an infinite loop which
never yields from immediate blocking. On the other hand, we have:

[while (0 =0) do yield] # [block]

The command while (0 = 0) do yield generates unbounded
sequences of stutters (o, o). Alternative semantics that would dis-
tinguish while (0 = 0) do skip from block or that would
identify while (0 = 0) do yield with block are viable, how-
ever. We briefly discuss those variants and others in Section 7.

5. Adequacy and Full Abstraction

In this section we establish that the denotational semantics of Sec-
tion 4 coincides with the operational semantics of Section 3, and is
fully abstract.

The adequacy theorem, which expresses the coincidence, says
that the traces that the denotational semantics predicts are exactly
those that can happen operationally. These traces may in general
represent the behavior of a command in a context. As a special case,
the adequacy theorem also applies to runs, which are essentially
traces that the command can produce on its own, i.e., with an empty
context.

The full-abstraction theorem implies that, if two commands C
and D have the same set of traces denotationally, then they produce
the same runs in combination with every context. In other words,
observing runs, we cannot distinguish C' and D in any context.
We comment on other possible notions of observation, and the
corresponding full-abstraction results, below.

Section 5.1 defines runs precisely. Sections 5.2 and 5.3 present
our adequacy and full-abstraction results, respectively.

5.1 Runs

A pure transition sequence generates a run if, however it can

be written as u(o,0’)(c”, 0")v, we have 0/ = o&”. For such
a pure transition sequence w = (01,02)...(0n-1,0n), We set
run(w) = o1...0, and run(w Done) = o1...0,Done. A

transition sequence u generates a run if u¢ does, and then we set
run(u) = run(u®).
If a pure transition sequence u generates a run, then it can be
easily be recovered from run(u): the run o1 . . . o, maps back to
(01,02)...(0n=1,0n)
and the run o . .. o, Done maps back to
(01,02)...(0n=1,0r)Done

Since each non-empty run contains at least two elements, this
definition applies when n = 0 and n > 2. We write runs(P)
for the set of runs generated by (pure) transition sequences in P.

5.2 Adequacy

LEMMA 5.1. The following equalities hold:

. [E]block]] = [block]

- [skip; C] = [C]

. [E[async D]] = async([D]°, £[skip])

. [E]yield]]® = async([€[skip]]°, [skip])®
. For all T # ¢ (equivalently Done ¢ [T7]),

[T] = [[T'.T".Cl° | T =T".C.T"}

L AN W~

LEMMA 5.2. If C is blocked then, for all T, [T, C] = {e}.
LEMMA 5.3. [T, skip] = {(0,0 Ret)v | v € [T]}].
The next lemma applies when C' is neither skip nor blocked.

LEMMA 5.4. Suppose that (o, T,C) — (o', T',C"). Then, for
any o, (0,0 v € [T, C]° iff (o', 0")v € [T, C']".

LEMMA 5.5. Suppose that {(o,T,C) —,* some (o', T, skip)
withwu € [T']°. Then (0,0)u € [T, C]°.

For the proof of the converse of this lemma, we proceed by an
induction on the size of loop-free commands. We then extend to
general commands by expressing their semantics in terms of the
semantics of their approximations by loop-free commands. The size
of a loop-free command is defined by structural recursion:

|skip| = |block| =1 |z :=e| = |async C| = |yield| =2
|if b then C else D|=|C;D|=|C|+ |D|

Note that if (o, T', C) —¢ (¢’, T", C") and C'is loop-free, then so
is ¢’ and, further, |C’| < |C|.

The approximation relation C' < D between loop-free com-
mands C' and general commands D is defined to be the least such
relation closed under all non-looping program constructs and such
that, for any b, C, D, and i > 0:

Cc<D

block I D
ok = (while b do C); < (while b do D)

This relation is extended to thread pools and contexts in the obvious
way: we write T <{ T" and C < C’ for these extensions.

LEMMA 5.6. Suppose that T < U, C < D, and, further, that
(0, T,C) —q (o', T',C"). Then, for some U', D’ with T' Q U’
and C' A D', {0, U, Dy —o* (', U", D'} .

Next we define the approximants C @ of a command C by
induction on 4 and structural recursion on C, beginning with the
case where C has one of the forms skip, block, z := e, or yield,
when C¥) = (, and continuing with:

(async C)® = async ¢
(if b then C else D)(i) —if b then CW elgse DW
(C; D) =cW; pW
(while b do C’)(i> = (while b do C’(i))i

For any C' one shows that cH gt g .

LEMMA 5.7. 1. If C < D then [C] C [D].
2. For any command D:

We can now establish the converse of Lemma 5.5.

LEMMA 5.8. Suppose that (o,0")u € [T, C]°. Then. for some T",
(0,T,C) —4* (¢, T', skip) withu € [T']".

LEMMA 5.9. 1. For any proper non-empty pure transition Se-
quence u, (o,0"Yu € [T,C]° holds iff for some T, C",
(0,T,C) —o* —c{o’, T',C"y withu € [T, C']".

2. Foranyo,d’, T, C, (6,0")Done € [T, C]¢ holds iff (o, T, C)
—4* (o', &, skip).

The following Adequacy Theorem for pure transition sequences
is an immediate consequence of Lemmas 5.8 and 5.9:

THEOREM 5.10. 1. Forn > 0, (01,01)...(on,0y,) € [T,C]°
iff there are T;, C;, (i = 1,n) such that Ty =T, Ch = C, and
(04, T3, Ci) —a™ —c{o], Tiy1,Cig1), for 1 <i<n—1,
and {0y, Ty, Cr) —o* some (o, T’ skip).

2. Forn > 0, (01,01)...(0n,00)Done € [T,C]° iff there
are T;,C;, (i = 1,n) such that Ty = T, C1 = C, and
(04, T;, Ci) —o* —clo), Tit1,Ciz1), for 1 <i < n—1,
and {0y, Ty, Cr) —o* (om, €, skip).

As a corollary we obtain an adequacy theorem for runs:

COROLLARY 5.11. 1. Forn > 2, 01...0, € runs([T,C]) iff
there are T;,C;, (i = 1,n — 1) such that Ty =T, C; = C,
(04, T3, Cs) —a" —c{0ix1, Tig1, Cig1) (1 < i < n—2),
and (op—1,Tyn—1,Cn_1) —a* some (o, T’ skip).

2. Forn > 2, 01...0n,Done € runs([T,C]) iff there are
T:,Ci, (i = 1,n — 1) such that Ty = T, C1 = C, and
(04, T5,Cs) —a™ —e(oit1Ti41,Ciy1) (1 < i < n—2),
and (on—1,Tn—1,Cn—1) —4a" {on, &, skip).

5.3 Full Abstraction

The first lemma in the proof of full abstraction bounds the nonde-
terminism of commands in semantic terms.

LEMMA 5.12. For all C, u, and o, the set {7 | u(o,7) € [C]} is
finite.

Intuitively, Lemma 5.12 is useful because it implies that, at any
point, there are certain steps that a command cannot take, and in
proofs those steps can be used as unambiguous, visible markers of
activity by the context. This lemma is somewhat fragile—it does
not hold once one adds certain nondeterministic choice operators
to the language. An alternative argument that does not use the
lemma relies on fresh variables instead. The fresh variables permit
an alternative definition of the desired markers.

Full-abstraction results invariably require some notion of obser-
vation. Let us write obs(P) for the observations that we make on
P € Proc. Equational full abstraction is that [C] = [D] if and
only if, for every context C, obs([C[C]]) = obs([C[D]]). In other
words, two commands have the same meaning if and only if they
lead to the same observations in every context of the language. The
stronger inequational full abstraction is that [C] C [D] if and only
if, for every context C, obs([C[C]]) C obs([C[D]]). The diffi-
cult part of this equivalence is usually the implication from right to
left: that if, for every context C, obs([C[C]]) C obs([C[D]]), then
[€] € [D].

One possible candidate for obs(P) is P¢. This notion of obser-
vation can be criticized as too fine-grained. Nevertheless, we find it
useful to prove full abstraction for this notion of observation, with
the following lemma.

LEMMA 5.13. If [C[C]]® C [C[D]]° for every context C, then
€] c [D].

Another possible candidate for obs(P) is runs(P). Runs record
more than mere input-output behavior, but much less than entire
execution histories. We therefore find them attractive for our pur-
poses. The following lemma connects runs to cleaning.

LEMMA 5.14. If runs([C[C]]) C runs([C[D]]) for every con-
text C, then [C]° C [D]°.

We obtain the following Full-abstraction Theorem:

THEOREM 5.15. [C] C [D] iff, for every context C, runs([C[C]])
C runs([C[D]])-

One direction of the theorem follows from Lemmas 5.13 and 5.14.
The other is an immediate consequence of the compositionality of
the semantics (Proposition 4.1).

Coarser-grained definitions of obs(P) may sometimes be ap-
propriate. For those, full abstraction will typically require addi-
tional closure conditions on P, such as closure under stuttering and
closure under mumbling, much as in our work and Brookes’s on
parallel composition [2, 10].

6. Algebra

The development of the denotational semantics in Section 4 is ad
hoc, in that the semantics is not related to any systematic approach.
In the functional programming approach to imperative languages,
commands have unit type, 1. Then, taking the monadic point of
view [6], they are modeled as elements of 7'(1) for a suitable
monad 7" on, say, the category of w-cpos and continuous functions.
For parallelism one might look for something along the lines of
the resumptions monad [15, 12, 17]. In the algebraic approach to
computational effects [24, 17], one analyses the monads as free
algebra monads 77, for a suitable equational or Lawvere theory L

(meaning in the enriched sense, so that inequations are allowed, as
are families of operations continuously parameterized over a cpo).

As discussed in [15], resumptions are generally not fully ab-
stract when their domain equation is solved in a category of cpos.
If, instead, it is solved in a category of semilattices, increased ab-
straction may be obtained. The situation was analyzed from the al-
gebraic point of view in [17]. It was shown there that resumptions
arise by combining a theory for stores [24] with one for nonde-
terminism, one for nontermination, and one for a unary operation
d thought of as suspending computation. The difference between
solving the equation in a category of semilattices or cpos essentially
amounts to whether or not one asks that d, and the other operations,
commute with nondeterminism.

In [10], Brookes, using an apparently different and mathemati-
cally elementary trace-based approach, succeeded in giving a fully
abstract semantics for a language of the kind considered in [15].
However, in [19], Jeffrey showed that trace-based models of con-
current languages can arise as solutions to domain equations in a
category of semilattices, thereby relating the two approaches.

We propose here to identify the suspension operation d with the
operation of the same name introduced in Section 4.3; indeed this
identification was the origin of the definition of yield given there,
and it is natural to further identify yield as the generic effect [25]
corresponding to the suspension operation. These identifications
are justified by Theorem 6.3, below, and the discussion following it.

In Section 6.1 we carry out an algebraic analysis of resump-
tions. We show in Theorem 6.1 that, imposing the commutations
with nondeterminism just discussed, they do indeed correspond to
a traces model, provided one uses the Hoare or lower powerdomain.
(This powerdomain is a natural choice as we consider only “may”
semantics in this paper, and elements of such powerdomains are
Scott closed, so downwards-closed, a natural generalization of our
prefix-closedness condition.) In [10] Brookes imposed further clo-
sure conditions on his sets of traces, viz under stuttering and under
mumbling, but these are not needed for our full-abstraction result.

The missing ingredient in an algebraic analysis of Proc is
then an account of async. In the denotational semantics of any
command of the form async C, all Ret marking is lost from the
meaning of C, because of the application of the clean function,
—¢; further all the sequences in [C]° are proper. We propose to
treat async as a generic effect, parameterized by an element of
AProc, which we define to be the sub-w-cpo of Pool of all non-
empty prefix-closed sets of proper pure transition sequences. We
think of such sets as modeling asynchronous threads, spawned by
an active thread; the difference from Pool is that the latter also
contains an element that models the empty thread pool.

In order to give the equations for the async operation it will,
as one may expect, be useful to first have an algebraic analysis of
AProc; we carry out this analysis in Section 6.2. It turns out, as
detailed in Theorem 6.2, that AProc is similar to, but not quite,
a resumptions cpo. Finally, we analyze processes in Section 6.3,
showing, in Theorem 6.3, that a process is a kind of “double-
thread”—more precisely, a resumption that returns not only a value
but also an element of AProc.

6.1 Resumptions

Our theory Lgres for resumptions follows [17] but is somewhat
modified, as we are interested only in “may” semantics and as
we wish to allow infinitely proceeding processes. The theory is
a combination of several constituent theories which we consider
successively.

The Lawvere theory Ls of stores can be presented via a family
of unary operations update, , and a family of “Nat-ary” oper-
ations lookup, (x € Vars, n € Nat). (A Nat-ary operation is
a countably infinitary operation whose arguments are indexed by

elements of Nat.) For any computation -, updatem,n(fy) is read as
the computation that first updates x to n and then proceeds as -y; for
any Nat-indexed collection (v,) of computations, lookup,, (7n)n
is read as the computation that proceeds as 7, if x has value n.

The Lawvere theory L i for nondeterminism is that of the lower
(aka Hoare) powerdomain, presented using a binary operation U;
the Lawvere theory Lo for nontermination is the theory of a least
element, presented using a constant {2; and the Lawvere theory Lq
for suspension is that of a unary operation d, with no equations. See
[24, 17] for more details of these theories, including an account of
the equations for stores and for Hoare powerdomains.

For resumptions, continuing to follow [17], we wish the oper-
ations of Lg to commute with those of Ly and Lo (which auto-
matically commute with each other) and it is also natural to have d
commute with nondeterministic choice, but not with the operations
of Lg, as we wish to model interruption points, and not with €2, as
we want to be able to model infinitely proceeding processes. We
therefore define:

Lres = L ® ((Ls ® La) + Lq)

and let Tres be the associated monad. (For any two theories L
and L’ presented with disjoint signatures, the theories L + L’ and
L ® L’ are presented with the union of the signatures of L and
L’ and, in the former case, with the union of their equations and,
in the latter case, with the union of their equations together with
additional equations that say that each operation of the one theory
commutes with each operation of the other.)

We now give an elementary trace-based picture of Tres(P) for
moderately general P. Let () be a partial order. A Q-transition is
a pair of states (0,0’ x) in which the second is marked with an
element x of @); we let T range over stores and stores marked with
an element of Q. A basic Q-transition sequence is a non-empty
sequence consisting of plain transitions optionally followed by a
Q-transition. Let < be the least preorder on the set of basic Q-
transition sequences which contains the prefix relation <, and is
such that, for any z, y in Q, if z < y then u(o, o’'z) <g u(o,o'y).
One can show that < is a partial order and that u <g v holds iff:

either u <,
orelse Jw,z <y.u <p w(o,0'z) Av=w(o,0'y)

We need a few notions concerning ideals in partial orders. An
ideal in a partial order @ is a downwards-closed subset of Q; for
any subset X of Q we write X | for {z € Q | Jy € X.z < y},
the least ideal including X; and for any x € @Q we write x |
for {z} |. Downwards-closed sets, i.e., ideals, provide a suitable
generalization of prefix-closed sets when passing from sequences
to general partial orders.

An ideal [is directed if it is nonempty and any two elements of
the ideal have an upper bound in the ideal. An ideal is denumerably
generated if I = X | for some denumerable X C . We write
T1,(Q), respectively Z.,(Q), for the collection of all denumerably
generated directed ideals of @, respectively all denumerably gener-
ated ideals of @, and we partially order them by subset; Z.,(Q) is
an w-cpo, indeed it is the free such over Q; and Z* (Q) is the free
w-cpo with all finite sups over Q.

Let Q-BTrans be the set of basic (Q-transition sequences, par-
tially ordered as above. One can view Z,,(Q-BTrans) as an Lres-
model with the following definitions of the operations:

(updateg)z,n (1)

{(0,7)u| (o — n],T)u e I}

(lookupgeJa(Tn)a = U, {(520')u € I | 0(x) = n}
TUResJ = TUJ
QRes - @
dres(I) = {(o,0)u|o € Store,u € I}

U ({7(o)lo € Store}

(We skip over the difference between the notion of an Lres-model
and of an algebra satisfying equations.)

The next theorem shows that the algebraic notion of resump-
tions can indeed be characterized in trace-based terms, specifically
as ideals of basic @-transition sequences.

THEOREM 6.1. Viewed as an Lres-model, I,(Q-BTrans) is
Tres(ZL(Q)). The unit i : IT,(Q) — T.,(Q-BTrans) is given
by:

nI) ={(o,0z) |z €I}
and, for any continuous f :I,,(Q) — I, (R-BTrans), its Kleisli
extension f1:7,,(Q-BTrans) — Z,,(R-BTrans) is given by:

i) = {u(o,m)v| 3o,z u(o,0’ z) €1,
(o', T)v € fz])}

U {u | w € I with no Q-transition}

One can go further and obtain a closely related, if less elemen-
tary, picture of Tres (P) for arbitrary P: one needs a notion of ideal
that takes the w-sups of P into account.

6.2 Asynchronous Processes

One might hope that AProc can be understood as a cpo of resump-
tions, and, indeed, proper pure non-empty transition sequences
and basic {Done}-transition sequences are very similar. One can
associate to every pure transition sequence u(c,o’)Done (re-
spectively non-empty pure transition sequence u not containing
Done) the basic {Done}-transition sequence u (o, o’ Done) (re-
spectively u). Unfortunately, while the association is a bijection
between proper pure non-empty transition sequences and basic
{Done}-transition sequences, it does not respect the order, since
u(o,0") <p u(o, o’)Done but u(o, 6") L (poneyu(c, o’ Done).

There is a related programming language phenomenon. Deno-
tationally, we have the inclusion:

[(async (yield;block)); C] C [(async skip); C]

but not the inclusion:
[yield;block] C [skip]

Operationally, as in the proof of the full-abstraction theorem, one
can distinguish [yield;block] from [skip] using a sequential
context which, however, is not available when the command is
within an async.

To solve this difficulty we take the theory of asynchronous
threads Laproc to be Lres extended by a new constant halt with
an equation:

d(2) < halt
accounting for the additional inequalities discussed above.

We can turn AProc into a model of Laproc by defining opera-
tions as follows:

(upda’teAProc)T "() {(0’, /)’U, |/(0-[‘7j = n]a O'/)’LL S X}l
(ookupagr)= (¥), = (U, {701 € Xo [() =)]
X UAProc Y=XU
QAProc = {5}
daproc(X) = {(0,0)u | 0 € Store,u € X}|
haltaproc = {(0, 0)Done}|

Note that halt Aproc = [skip]“.
The next theorem shows that the variant theory Laproc indeed
captures AProc.

THEOREM 6.2. AProc is the initial Laproc-model, i.e., it is
TAProc(O)-

Here Taproc is the free algebra functor associated to the theory
AProc. It is not hard to go on and obtain a general view of the
monad Taproc Using a suitable notion of (proper) pure Q-transition

sequences; however we omit the details as they are not needed for
an account of processes.

6.3 Processes

We turn to our algebraic account of Proc. The signature is that
for Lres together with two families of unary operation symbols
asyncp and yield_top, where P € AProc. The first of these
corresponds to the function of the same name defined above, but
restricted to asynchronous threads. The second corresponds to a
slightly different version of async in which the first action is that
of the thread spun off, rather than that of the active command.
We often find it convenient to write asyncpt and yield_topt as,
respectively, P -tand t - P.

We begin with a theory Lspawn for async and yield_to which
involves the other operations. The first group of equations for
Lspawn concerns commutation with U:

(PUapProc P)-z = (P-z)U(P -x)

P-(zUy) = P-zUP-y
(zUy)-P = z-PUy-P
x- (PUAProc P') = x-PUz-P

The second group of equations is for async:

P - update; , (z) update; ,(P - x)

P -lookup,(zn)n = lookup,(P - zn)n
P-Q = Q
P-d(z) = d(P-z)Ud(z-P)
P.(P-z) = (PxP)-=z

The first three state that P-— commutes with another operation; the
next concerns the interaction of async with suspension and brings
in yield_to; the last reduces two async’s to one. The third, and last,
group of equations is for yield_to:

z - (updatepp,oc)io(P) = update, ,, (z-P)
€ - (IOOkupAProc)l(Pn)n = 1OOkupl (37 : Pn)n
& + Y. AProc - Q
x'dAProc(P) = d(.TP)Ud(PQZ’)
z - haltaproc = d(z)

The first three assert that « - — acts homomorphically with respect
to an operation; the next concerns the interaction with suspension;
and the last concerns what happens when asynchronous threads
halt. We take Lproc to be Lres + Lspawn, i.€., the equations are
the ones just given for async and yield_to, together with those for
Res-

One might have expected to see an equation with left-hand side

P . (z - P'); indeed, we could have added the equation:

P.(z-P)Y=(P-z)-P'U(z-P)-P

However this equation is redundant, and can be proved from the
others using the algebraic induction principle of “Computational
Induction” described in [26]. (One proceeds by such an induction
on P’, with a subinduction on P.)

We now aim to give a picture of Tproc(Zw(Q)) like that of
TRes(Zo(Q)). Take the partial order Q-Trans of the Q-transition
sequences to be that of the basic (Q x PSeq)-transition sequences.
Note that one can regard Q-transition sequences as elements of a
kind of “double thread” in which the first thread returns a value
together with a second (asynchronous) thread.

We show that Q-Proc =4er Zo(Q-Trans) carries the free
model of Lpyoc on Z,, (Q). We view Q-Proc as a Lres-model as in
Section 6.1. In order to give async and yield_to we define, abusing
notation, left and right actions of PSeq on Q-Trans:

-:PSeq x @Q-Trans — Q-Proc -:Q-Trans x PSeq — Q-Proc

The definitions are by mutual induction on the length of the se-
quences involved. For all u € PSeq and v € Q-Trans, we put:
{(o,0")u}l

{(o,0"(w,w)) | w € upav} |
{(o,0"Yw|weu-vUv-u}|

u[Done] - (¢,0") =
u- (07 O',(l', ’U))
u- (0,0)v

where [Done] indicates an optional occurrence of Done, and:
v-e = 0
v-(o,0")Done = {(o,0")v} |
v- (0,0)u {(o,0Yw|weu-vUwv-u}]

where, in the last line, u is required to be proper. For P € AProc
and I € Q-Proc, we put:

(a‘synCProc)P(I) = UuEP,vEI u-v
(yiEId—tOProc)P(]) = U

With these additional operations, QQ-Proc is a model of Lpyoc.

Our main algebraic theorem characterizes free models of a
natural equational theory for resumptions with thread-spawning in
terms of a kind of double-thread. The cpo of processes Proc is
the free model over 1; this places cooperative threads within the
monadic approach to effects.

ueP,vel v-u

THEOREM 6.3. Viewed as an Lproc-model, Z,(Q-Trans) is the
free model over T.,(Q). The unit n: I,(Q) — Z,,(Q-Trans) is
given by:

n(I) = {(o,0 (x,Done)) | z € I}
and, for any continuous f : T),(Q) — ZI,(R-Trans), its Kleisli
extension f1:7,,(Q-Trans) — Z,,(R-Trans) is given by:

fa) = A{u(o,m)v| 3o, z,w. ulo,o (z,w)) €I,

(o, T)vew]| -f(z])}
U {u | u € T withno (Q x PSeq) transition}

As in the case of resumptions, one can go further and obtain a
closely related, if less elementary, picture of Tproc(P) for arbi-
trary P.

We are finally in a position to give our algebraic account of
Proc. There is an isomorphism 6 : Q-Trans — TSeq\ {¢},
where) = {Ret}, sending u = (01,01) ... (on,07,) toitself and
u(o, 0’ (Ret, v)) to u(o, o’ Ret)v. One then has an isomorphism
Z.,(Q-Trans) = Proc, given by: I — 6(I) U{e}. So Proc can be
seen as the free model of Lp,oc on {Ret}.

This algebra determines the semantics of our language, and, in
that sense, justifies the previous, more ad hoc, account. First, we
have [skip] = n({Ret}) and I o J = ({Ret} > J)T(I), so the
Kleisli structure determines the semantics of skip and composi-
tion, as one would expect from the monadic point of view. Next, the
update and lookup operations, together with the assumed primi-
tive natural number and boolean functions, determine the semantics
of assignment and conditionals; the d operation is that of the alge-
bra; and block is modeled by (2. The semantics of spawning is de-
termined by async together with the function —“: Proc — AProc,
and it turns out that the latter is also determined by algebraic means.
Specifically, one can regard AProc as a model of Lpyoc, setting:

asyncp(Q) = {(0,0)w | Ju € P,(5,0" v € Quw € uxav} |

and yield-top(Q) = asyncy(P), and then —* is the extension of
Ret — haltaproc to Proc.

In the converse direction one can consider adding missing al-
gebraic operations to the language, for example adding U and
yield_to via constructs C' or D and yield_to C. The latter con-
struct is to the binary yield_to as async is to the binary async.
It generalizes yield, which is equivalent to yield_to skip. Its
operational semantics is given by the rule:

(0,T,&[yieldto C]) — (o, T.E[skip|,C)

One may debate the programming usefulness of such additional
constructs, but they do allow one to express the equations used
for the algebraic characterizations at the level of commands. For
example, the equation P - d(z) = d(P -) Ud(z - P) becomes:

(async C); yield; D
(yield; (async C); D) or (yield; (yield_to C); D)

7. Conclusion

A priori, the properties and the semantics of threads in general,
and of cooperative threads in particular, may not appear obvious. In
our opinion, a huge body of incorrect multithreaded software and
a relatively small literature both support this point of view. With
the belief that mathematical foundations could prove beneficial,
the main technical goal of our work is to define and elucidate
the semantics of threads. For instance, semantics can serve for
validating reasoning principles; our work is only a preliminary but
encouraging step in this respect.

Our initial motivation was partly practical—we wanted to un-
derstand and further the AME programming model and similar
ones. We also saw an opportunity to leverage developments in
trace-based denotational semantics and in the algebraic theory of
effects, and to extend their applicability to threads. As our results
demonstrate, the convergence of these three lines of work proved
interesting and fruitful.

We focus on a particular small language with constructs for
threads. Several possible extensions may be considered. These in-
clude constructs for parallel composition, nondeterministic choice,
higher-order functions, and thread-joining. More speculatively,
they also include generalized yields, of the kind that arise in the
algebraic theory of effects, as discussed in Section 6. Importantly,
our monadic treatment of threads indicates how to add higher-order
functions to the semantics.

Our results mostly carry over to these extensions. In some cases,
small changes or restrictions are required. In particular, the full-
abstraction proof with nondeterministic choice would use fresh
variables; the one for higher-order functions might require standard
limitations on the order of functions, cf. [19]. Thus, our approach
seems to be robust, and indeed—as in the case of higher-order
functions—helpful in accounting for a range of language features.

Another possible direction for further work is the exploration
of alternative semantics. For instance, we could switch from the
“may” semantics that we study to “must” semantics. We could
also define alternative notions of observation. As suggested in Sec-
tion 5.3, some of the coarser notions of observation might re-
quire closure conditions, such as closure under stuttering and under
mumbling. It would also be interesting to consider finer notions of
observation that distinguish blocking from divergence. To this end
we could add constructs such as orElse [14] and, in the seman-
tics, treat blocking as a kind of exception. Finally, we could revisit
lower-level semantics with explicit optimistic concurrency and roll-
backs, of the kind employed in the implementation of AME.

Acknowledgments

We are grateful to Martin Escard6 and Martin Hyland for comments
on this work.

References

[1] Martin Abadi, Andrew Birrell, Tim Harris, and Michael Isard.
Semantics of transactional memory and automatic mutual exclusion.
In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 63—74, 2008.

[2] Martin Abadi and Gordon D. Plotkin. A logical view of composition.
Theoretical Computer Science, 114(1):3-30, June 1993.

[3] Karl Abrahamson. Modal logic of concurrent nondeterministic
programs. In Gilles Kahn, editor, International Symposium on
Semantics of Concurrent Computation, volume 70 of Lecture Notes
in Computer Science, pages 21-33. Springer, 1979.

Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and
John R. Douceur. Cooperative task management without manual
stack management. In Proceedings of the General Track: the 2002
USENIX Annual Technical Conference, pages 289-302, 2002.

Roberto Amadio and Silvano Dal Zilio. Resource control for
synchronous cooperative threads. Theoretical Computer Science,
358:229-254, 2006.

[6] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects.
In Gilles Barthe, Peter Dybjer, Luis Pinto, and Jodo Saraiva, editors,
Advanced Lectures from International Summer School on Applied
Semantics, volume 2395 of Lecture Notes in Computer Science,
pages 42—122. Springer, 2002.

Dave Berry, Robin Milner, and David N. Turner. A semantics for ML
concurrency primitives. In Proceedings of the 19th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
119-129, 1992.

Gérard Boudol. Fair cooperative multithreading. In Luis Caires and
Vasco Thudichum Vasconcelos, editors, Concurrency Theory, 18th
International Conference, volume 4703 of Lecture Notes in Computer
Science, pages 272-286. Springer, 2007.

[4

=

[5

=

[7

—

[8

—_

[9

—

Fréderic Boussinot. Fairthreads: mixing cooperative and preemptive
threads in C. Concurrency and Computation: Practice and
Experience, 18(5):445-469, April 2006.

[10] Stephen Brookes. Full abstraction for a shared-variable parallel
language. Information and Computation, 127(2):145-163, June
1996.

[11] Stephen Brookes. The essence of parallel Algol. Information and
Computation, 179(1):118-149, 2002.

[12] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to
modularity in denotational semantics. In Proceedings of the 5th
Biennial Meeting on Category Theory and Computer Science, 1993.

[13] William Ferreira and Matthew Hennessy. A behavioural theory of
first-order CML. Theoretical Computer Science, 216(1-2):55-107,
1999.

[14] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice
Herlihy. Composable memory transactions. In Proceedings of
the 10th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 48—60, 2005.

[15] Matthew Hennessy and Gordon D. Plotkin. Full abstraction for a
simple programming language. In J. Bedvit, editor, 8" Symposium
on Mathematical Foundations of Computer Science, volume 74 of
Lecture Notes in Computer Science, pages 108—120. Springer, 1979.

[16] E. Horita, J. W. de Bakker, and J. J. M. M. Rutten. Fully
abstract denotational models for nonuniform concurrent languages.
Information and Computation, 115(1):125-178, 1994.

[17] Martin Hyland, Gordon Plotkin, and John Power. Combining effects:
Sum and tensor. Theoretical Computer Science, 357(1-3):70-99,
2006.

[18] Michael Isard and Andrew Birrell. Automatic mutual exclusion.
In Proceedings of the 11th USENIX workshop on Hot Topics in
Operating Systems, pages 1-6, 2007.

[19] Alan Jeftrey. A fully abstract semantics for a concurrent functional
language with monadic types. In Proceedings, Tenth Annual IEEE
Symposium on Logic in Computer Science, pages 255-264, 1995.

[20] Alan Jeffrey. Semantics for core Concurrent ML using computation
types. In Higher order operational techniques in semantics, pages
55-90. Cambridge University Press, 1997.

[21] Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics
for concurrent objects. Theoretical Computer Science, 338(1-3):17—
63, June 2005.

[22] Microsoft. SQL Server 2005 books online. CLR Hosted Environment,
at http://msdn.microsoft.com/en-us/library/ms131047.
aspx, September 2007.

[23] Prakash Panangaden and John H. Reppy. The essence of Concurrent
ML. In Flemming Nielson, editor, ML with Concurrency, chapter 1,
pages 5-29. Springer, 1997.

[24] Gordon Plotkin and John Power. Notions of computation determine
monads. Lecture Notes in Computer Science, 2303:373-393, 2002.

[25] Gordon D. Plotkin and John Power. Algebraic operations and generic
effects. Applied Categorical Structures, 11(1):69-94, 2003.

[26] Gordon D. Plotkin and Matija Pretnar. A logic for algebraic effects.
In Proceedings, Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, pages 118—129, 2008.

[27] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, pages 204-213, 1995.

[28] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal
Young. Transactions with isolation and cooperation. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 191—
210, 2007.

[29] J. Robert von Behren, Jeremy Condit, Feng Zhou, George C. Necula,
and Eric A. Brewer. Capriccio: scalable threads for Internet services.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pages 268-281, 2003.

[30] Glynn Winskel. The Formal Semantics of Programming Languages.
The MIT Press, 1993.

Appendix: Proofs

This appendix gives some proofs of interest, to the extent that space
permits.

We begin with the proof of two main lemmas used in the proof
of full abstraction. Given two stores o and o, we define a boolean
expression check(o) as the conjunction of the formulas = n for
every variable z, where n is the natural number o () (so check (o)
is true in o and false elsewhere). We also define commands:

e goto(o) as the sequence of assignments x := n for every
variable z, where n is the natural number o (z);

o (0~ o')asif check(c) then goto(c’) else block;

o (0~ o'~ o")as (0 ~ o');yield; (o' ~ o”);yield.

Proof of Lemma 5.13: Letting P = [C] and Q = [D], we as-
sume that P Z @ and prove that there exists C such that [C](P)° €
[C](Q)€. For this, choose a sequence w in P but not in Q. If
w = w°, then we can take C to be []. Therefore, for the rest of
the proof, we consider the case w # w°.

If w # w then w is of the form u(o, o’ Ret)v. We let
C = [];(¢" ~ &") where ¢” does not appear in u or v and
u(o,0”") € Q (so, by prefix-closure, u(o,0”)v € Q). Such a
choice of o’ is always possible by Lemma 5.12. Thus, [C](P)
contains u(o, " Ret)v, and [C](P)€ contains u(c, o’)v.

Suppose that u(c, o’)v is also in [C](Q), and that this is
because some sequence w’ is in [C](Q) and w'® = wu(c, o’)v.
By the definition of the semantics of sequential composition, this
could arise in one of the following ways:

e w' = u(o,0” Ret)v, withw € Q. This contradicts w € Q.

e w' = (0,0")v’, where v’ and v’ are of the same length as u
and v, respectively, and 0" occurs marked with Ret in either u’
or v'. This contradicts the requirement that ¢” does not appear
inu or v.

o w =wu(o,0”)v,w € Q,and w’ does not have a Ret marker.
This contradicts the requirement that u(o, c”) € Q.1

Proof of Lemma 5.14: Letting P = [C] and Q = [D], we
assume that P¢ Z Q° and prove that there exists C such that
runs([C](P)) € runs([C](Q)). For this, choose a sequence w
in P but not in Q°.
First, suppose that w is of the form (o1, 01) ... (0n,0y,), with

n > 0. We let C be async []; mesh(w), where mesh(w) is the
command

yield;

(01~ 01 ~ 02);

(On—1~ On_1 ~ On);

(07~ om)
where the stores o are all different from one another and from all
other stores in w, and are such that

(0'17 0’1) s (0i7 0’7?)(0'270'?) g Qc
and
(01,01) ... (0i1,0i_1)(0i_1,0:)(04,07) (07, 07) € Q°

Such a choice of stores o’ is always possible by Lemma 5.12. Since
[mesh(w)] contains the transition sequence:

(o1,01)(01,07) (07, 02) ... (6n_1,00) (00, 00 Ret)Done
we obtain that [C](P) contains the transition sequence:

(017 01)(017 0’1)(017 Ui’)(O’f, 02)(027 Ué) s (O'.Z,h Un)
(Un7 U;L)(O-’nm Onp Ret)

which generates the run 10101070205 ...00_10n0h0m. Sup-
pose that this run is also in runs([C](Q)). Therefore, there exists
w’ € Q° such that

Eah Ui))((UL Ui/))(Ui', 02)(02,0%) ... (0n_1,00)
0n70n Un70-n

is a shuffle of w’ with
(0'17 Ui’)(O’f, 02) LR (0'::717 Un)(o-;u O"Z)Done

which we call w”, or with a prefix of w'’. We analyze the origin of
the transitions in the shuffle:

e The transitions (o, 0;) must all come from w’, since each of
the transitions in w” contains one of the stores o and, by
choice, these are different from o; and 0.

Suppose that, up to some i — 1 < n, w’ starts like w, in other
words as (o1,01) ... (0i—1,0}_1). Suppose further that, in the
shuffle up to this point, each transition (o5, o'}) is followed im-
mediately by the corresponding transitions (¢, o) (o, 0j41)
from w’’. We argue that this remains the case up to n.

= We consider the next possible transition in the shuffle,
namely (oj_,0;_1). This transition cannot come from w’

because, by the choice of o}, we have that

(01,01) .. (Gi-1,0(_1)(0i_1,0(1) € Q°
So this transition comes from w”’.

* One step further, in order to derive a contradiction, we
suppose that the transition (o} _;, ;) comes from w’. So
w’ starts (o1,01)...(0i—1,05_1)(0i_1,0;), and in fact
(01,01)...(0i—1,0i_1) (01, 0:)(0i, 0%), since, as noted
above, the last transition here must come from w’. The next
transition in the shuffle is (o}, o}'). By the choice of o', we
have that

(01,01) ... (0i-1,0i-1)(0i_1,0i)(04,07) (07, 07) € Q°

So the transition (o}, o) cannot come from w’. Therefore,

it must come from w’” . However, the next available transi-
tion in w” is (01, 0:), and (o}, 07) and (o}, 0;) must

be different because o _; and o, are different, by choice,
from o} and o;.

Thus, the assumption that the transition (o_;, ;) comes
from w’ leads to a contradiction. This transition must come
from w”’.

e Finally, suppose that, up to n, w’ starts like w, in other words
as (01,01)...(on,0y,), and that, in the shuffle, each transi-
tion (oj,0%) is followed immediately by the corresponding
transitions (07,07)(0},0541) from w”. By the choice of o,
we have that (o1,071) ... (on, a;)(an,an) ¢ Q°so (o, 00)
comes from w’’, not from w’.

In sum, w’ = w, and therefore w € Q°, contradicting our assump-
tion that w &€ Q°.

Next, suppose that w is of the form (o1, 01) ... (0n, 0},)Done.
With the same C, we obtain that [C](P) contains:

(01,01)(01,01) (01, 07)(0),02)(02,0%) ... (0n_1,0n)

(0n,00)(0on,0n Ret)Done

which generates the run 101010y 0205 ...00_10n0,0nDone.
Suppose that this run is also in runs([C](Q)). Again, by the choice
of o, ..., oy, this can be the case only if w is in Q°. (The
argument for the contradiction may actually be simplified in this
case, because of the marker Done.)

We continue with proofs of algebraic characterization theorems.
We write wCpo, wSL, and wCpoz, for, respectively, the cate-
gories of w-cpos, w-cpos with all finite sups, and the Kleisli cat-
egory of Z,,. The latter two have countable biproducts, given by
cartesian product in the first case, and the sum of posets in the sec-
ond; in particular, the copower Store x P is the usual cartesian
product of posets and we identify PSt°* with Store x P.

LEMMA 7.1. Suppose that R carries the free structure over P in
wCpog which is a model of Ls in wCpoz and which has a map
dr : R1 — R. Then Z,,(R) carries the free structure over L., (P)
in wSL which is a model of Ls in wSL, and which has a map
d: M, — M and:

(updatez, z))z.n (1) Uuer(updater)a,n(u)
(IOOkupr(R))l(f) zENat,u€ f(z) (lookupg): (v, z)
dz (1) = Uyerdr(u) Udr(L)

Proof of Theorem 6.1: By Corollary 2 of [17], the free model
(R, updateg, lookupg)

of Ls in wCpog, together with a morphism R, — R over a
poset @ has carrier the solution of the following domain equation
inwCpoyr :

R2(Sx (R. +Q))°

by which we mean the initial such R, and where we abbreviate
Stores to S. Since countable copowers and powers coincide in
wCpog_, this can be rewritten as:

R=(SxS)x(RL+Q)

As the left adjoint Pos — wCpoz preserves all colimits we can
solve this domain equation by solving it instead in Pos and that can
be done by taking R to be the least set such that

= (S x8) x(RL+Q)

and then imposing the evident inductively defined partial order. It
is not hard to see that R is Q-BTrans. Themapdr: R, — Rin
wCpor, i
inl R +Q
—>

RJ_%RJ_‘FQ (SX(RJ_+Q))S:

and is given by:
dr(z) ={((0,0),inl(z)) | 0 € S} |
The map (updatey);,: R — Ris:

updateRL +Q

R=Ts(R1+Q)

and is given by:

Ts(Ri+@Q) =

((o,0(l = v]),) |
Similarly (lookupy);: RY — R is given by:

(lookupg)i(v, ((0,0),2)) = {((0;0),2) [o(l) = v} |
By Lemma 7.1 Z,, (R) then carries the free structure M over Z., (Q))
in wSL which is a model of Lg in wSL and which has a map
M, — M. By Theorem 8 of [17], to have a model of Lres is
to have such a structure, so Z,, (R) carries the free model of Lres
over Z,,(Q).

There is an evident isomorphism Q-BTrans = R, so the free
such model is also carried by Z,(Q-BTrans). Using the above and
Lemma 7.1 one then verifies that the operations are as required. For
the formula for the Kleisli extension, that fTn = f is evident and
that the purported extension is a morphism of models of Lges is a
calculation.

(updateg)i,v((o,0),2) =

Proof of Theorem 6.2: To have a model of Laproc in wCpo is to
have a model M of Lg in wSL together withamapd: M, — M
and an element halt € M such that d(2) < halt. Further, to
have such a map and element is to have a map (M + 1), — M.
With these observations the proof proceeds analogously to that of
Theorem 6.1.1

Proof of Theorem 6.3: To show that Z,(Q-Trans) is the free al-
gebra over Z),(Q) with unit 7 as above, we must show that for any
Lproc-model A and any continuous function f T (Q) — A there
is a unique morphism h : Z,,(Q-Trans) — A of models of Lproc
such that hn = f.

We begin by showing uniqueness. To this end, suppose we
are given such an A, f, and morphism h such that hn = f.
Then for uniqueness it suffices to prove that hnrg.. = ¢ where
g((z,u)]) = u-a f(x), as h is a morphism of models of Lproc.
We calculate:

h(n1qe. ((g;u) 1)) = h({(0,0(q,u)) | o € Stores})
=h(u | {(0,0(q,Done)) | o € Stores})
=h(ul n(ql))
=u | -h(n(ql))
=ul-af(ql)

For existence we are again given A and f and wish to construct a
suitable h. To this end, with g as before, take h to be the Tres-
extension of g. Then hn = f and it remains to prove that h
preserves async and yield_to. It suffices to prove this for individual
transition sequences, by induction invoking Lpyoc equations on A
as necessary. The formula for the Kleisli extension follows using
the Kleisli formula of Theorem 6.1. 8

