
Guessing Attacks and the Computational
Soundness of Static Equivalence

Mart́ın Abadi1, Mathieu Baudet2, and Bogdan Warinschi3

1 University of California, Santa Cruz
2 LSV, CNRS & INRIA Futurs projet SECSI & ENS Cachan, France

3 Loria, INRIA, Nancy, France

Abstract. The indistinguishability of two pieces of data (or two lists of
pieces of data) can be represented formally in terms of a relation called
static equivalence. Static equivalence depends on an underlying equa-
tional theory. The choice of an inappropriate equational theory can lead
to overly pessimistic or overly optimistic notions of indistinguishability,
and in turn to security criteria that require protection against impossi-
ble attacks or—worse yet—that ignore feasible ones. In this paper, we
define and justify an equational theory for standard, fundamental cryp-
tographic operations. This equational theory yields a notion of static
equivalence that implies computational indistinguishability. Static equiv-
alence remains liberal enough for use in applications. In particular, we
develop and analyze a principled formal account of guessing attacks in
terms of static equivalence.

1 Introduction

In the study of security, it is frequent to reason about whether two pieces of
data can be distinguished by an observer. For example, the pieces of data might
be two encrypted messages, and the observer an attacker that attempts to learn
something about the underlying cleartexts by analyzing the encrypted messages.
The two encrypted messages are indistinguishable if, no matter how the attacker
operates on them, it cannot discern any meaningful difference. The encrypted
messages may however be different—for instance, they may look like different
random numbers.

Formally, indistinguishability can be represented in terms of a relation called
static equivalence [4]. Roughly, two terms (and, more generally, two lists of terms)
are statically equivalent when they satisfy all the same equations. This relation
is essentially a special case of the observational equivalence relation of process
calculi. It is simpler than observational equivalence in that it does not allow
for continued interaction between a system and an observer: the observer gets
data once and then conducts experiments on its own. Nevertheless, observational
equivalence can be reduced to a combination of static equivalence and usual
bisimulation requirements [4, 5, 15].

Static equivalence depends on an underlying equational theory. The choice of
an inappropriate equational theory can lead to overly pessimistic or optimistic

notions of indistinguishability, and in turn to security criteria that require pro-
tection against impossible attacks or—worse yet—that ignore feasible ones.

In this paper, we define an equational theory for standard, fundamental cryp-
tographic operations, and we justify and apply the resulting concept of static
equivalence. These operations include various flavors of encryption and decryp-
tion. Static equivalence in this theory implies computational indistinguishability.
In other words, if the formal notion of static equivalence indicates that two pieces
of data are indistinguishable, then no computationally feasible experiment can
tell those two pieces of data apart. (This property is a soundness theorem. Al-
though it is less important, we have also explored completeness, but we omit
its discussion here; see however [28, 9].) Our notion of computational feasibility
is based on the sorts of assumptions typically employed in complexity-theoretic
cryptography. It includes certain assumptions on the security properties of the
cryptographic operations; those assumptions appear reasonable and fairly stan-
dard, but so do others, and picking satisfactory ones is somewhat delicate.

While static equivalence is conservative enough to exclude feasible attacks,
it also remains liberal enough for use in applications. In particular, we develop
a formal account of guessing attacks (e.g., [23, 24, 13, 32, 31]) in terms of static
equivalence. Since guessing attacks constitute a significant threat against pro-
tocols that rely on passwords and other weak secrets, the recent literature con-
tains several studies of guessing attacks, with both formal and computational
approaches (e.g., [27, 19, 18, 17, 10, 12, 16, 22, 25, 21]). Formal approaches are at-
tractive because of their relative simplicity, which often enables automation. On
the other hand, formal approaches are rather varied and sometimes ad hoc. For-
tunately, it has been suggested that a formulation of guessing attacks could be
based on static equivalence [17, 20]. We believe that this idea has a number of
virtues. It leads to a crisp definition, it is fairly independent of specific choices
of cryptographic operations, and it extends nicely to general process calculi.
To date, however, this idea has not been worked out fully, in the setting of an
appropriate equational theory. We aim to address this gap.

A related, frequent shortcoming of formal analyses is the lack of computa-
tional justifications. This lack allows the possibility that a protocol is safe against
attacks formally, but that a feasible attack exists nonetheless. An active line of
recent work aims to address such shortcomings, by defining and proving com-
putational soundness results for formal methods (e.g., [6, 8, 29, 26]). That line
of research includes a computational study of static equivalence [11]; the the-
ories considered there do not include the one that we define in this paper (in
part because those theories do not model probabilistic encryption functions, nor
encryption under weak keys) and have not provided a satisfactory account of
guessing attacks, but they are an important piece of the context of this work.
That line of research also includes a study of guessing attacks, with an ad hoc
formal definition of those attacks [7]. In this paper we build on that previous
work, and go beyond it.

The next section, Section 2, presents a formal model: it defines sorted terms,
an equational theory for them, and the corresponding notion of static equiva-

2

lence. Section 3 interprets the syntax of the formal model in a computational
universe; it includes cryptographic assumptions. Section 4 establishes the com-
putational soundness of static equivalence for the equational theory. Section 5
applies our results to the study of guessing attacks. Section 6 concludes. Because
of space constraints, we omit cryptographic constructions, a decision procedure
for static equivalence, proofs, and additional details; these are included in an
extended version of this paper [1].

2 Abstract Model

In order to represent cryptographic messages in an abstract way, we use terms
over a many-sorted signature, equipped with an equational theory.

2.1 Sorts and Terms

The set of sorts (or types) that we consider is defined by the following grammar:

τ ::=
| SKey symmetric keys
| EKey (public) encryption keys
| DKey (private) decryption keys
| Data passwords and other data
| Coins coins for encryption
| Pair [τ1, τ2] pairs of messages
| SCipher [τ] symmetric encryptions of messages of type τ
| ACipher [τ] asymmetric encryptions of messages of type τ

The set of (well-sorted) terms, written S, T , U , V , . . . , is built from an
infinite number of variables x, y, . . . and names a, b, n, r, k, sk, pk, . . . for each
sort, with the following function symbols:

encτ : τ ×Data → τ encryption under data
decτ : τ ×Data → τ decryption with data

pencτ : τ × EKey × Coins → ACipher [τ] public-key encryption
pdecτ : ACipher [τ]×DKey → τ private-key decryption

pub : DKey → EKey public-key extraction
pdec successτ : ACipher [τ]×DKey → Data domain predicate for

private-key decryption
sencτ : τ × SKey × Coins → SCipher [τ] symmetric encryption
sdecτ : SCipher [τ]× SKey → τ symmetric decryption

sdec successτ : SCipher [τ]× SKey → Data domain predicate for
symmetric decryption

pairτ1,τ2
: τ1 × τ2 → Pair [τ1, τ2] pairing

fstτ1,τ2 : Pair [τ1, τ2]→ τ1 first projection
sndτ1,τ2 : Pair [τ1, τ2]→ τ2 second projection

0, 1 : Data boolean constants
w, c0, c1 . . . : Data additional data constants

3

Encryption and decryption symbols may not be available for all sorts τ . We let
Tpenc be the set of types τ for which the symbols pencτ , pdecτ , and pdec successτ

are available, and define Tsenc and Tenc analogously. We assume that pairs are
not encrypted under data values, that is, Tenc∩{Pair [τ1, τ2]}τ1,τ2 = ∅; pairs may
however be encrypted with enc component by component.

Our function symbols represent encryption and decryption functions and
auxiliary operations. The first two functions (encτ and decτ) are to be used
with data values as keys; the data values may be the constant symbols of the
grammar, which may represent the passwords in a dictionary. (In contrast, fresh
names may represent strong keys; the scoping rules justify the respective uses
of constant symbols and names.) The fact that encτ does not take a parameter
of type Coins relates to the difficulties with probabilistic password-based en-
cryption [7]. Moreover, the language provides no direct way for the attacker to
check that a value results from applying encτ with a particular key. Such proper-
ties are essential for thwarting guessing attacks in practice (for example, in the
EKE protocol [13]). The remaining functions are fairly standard; they include
functions for public-key and symmetric encryption (pencτ and sencτ), which are
probabilistic in the sense that they take a parameter of type Coins.

We often omit type annotations on function symbols. For instance, provided
that S, T , and U have type Data, we may write pair(enc(S, T), U) instead of
pairData,Data(encData(S, T), U). In addition, we sometimes use the abbreviations
{S}T for enc(S, T), {S}rpub(sk) for penc(S, pub(sk), r), and {S}rk for senc(S, k, r).

We write var(T) and names(T) for the sets of variables and names that occur
in a term T . We extend the notation to tuples and sets of terms. A term T is
ground or closed when var(T) = ∅. We write σ = {x1 7→ T1, . . . , xn 7→ Tn}
for a substitution, and let dom(σ) = {x1, . . . , xn}, var(σ) = var(T1, . . . , Tn),
and names(σ) = names(T1, . . . , Tn). A substitution σ is ground or closed when
var(σ) = ∅. We consider only well-sorted substitutions (that is, for each i, Ti =
xiσ has the same sort as xi).

2.2 Equational Theory

We model the semantics of the cryptographic primitives by equipping terms with
an equational theory, that is, a reflexive, symmetric, transitive relation, stable
by (well-sorted) substitutions of terms for variables and (in this case) for names,
and stable by application of contexts. Specifically, we consider the equational
theory =E generated by the following equations:

decτ (encτ (x, y), y) = x encτ (decτ (x, y), y) = x
pdecτ (pencτ (x, pub(y), z), y) = x pdec successτ (pencτ (x, pub(y), z), y) = 1

sdecτ (sencτ (x, y, z), y) = x sdec successτ (sencτ (x, y, z), y) = 1
fstτ1,τ2(pairτ1,τ2

(x, y)) = x sndτ1,τ2(pairτ1,τ2
(x, y)) = y

pairτ1,τ2
(fstτ1,τ2(x), sndτ1,τ2(x)) = x

where the symbols x, y, and z represent variables of the appropriate sorts. Most
of the equations are fairly standard. The only surprise may be the inclusion of

4

encτ (decτ (x, y), y) = x, without which an attacker that sees x and guesses y
might confirm whether x is a ciphertext encrypted under y by decrypting x
with y, reencrypting with y, and comparing the result to x; the equation implies
that the comparison always succeeds, whether the guess was correct or not. So,
for instance, encτ (n, c0) and encτ (n, c1) are indistinguishable when n is a fresh
name of sort τ . Such consequences of the equation are important for the security
of protocols that rely on weak secrets. Moreover, the equation holds in many
reasonable implementations, in particular those based on keyed permutations.

When oriented from left to right, the equations above form a convergent
rewriting system that we call R.

2.3 Frames and Static Equivalence

Frames represent sets of messages available to an observer (for example, because
they were sent over a public network) [4]. More precisely, a frame is an expression
ϕ = νñ.{x1 = T1, . . . , xn = Tn} where ñ is a set of restricted names, and each Ti

is a closed term of the same sort as xi. For simplicity, we require (without loss of
generality) that every name in use be restricted, that is, ñ = names(T1, . . . , Tn).
A name k may still be disclosed explicitly, for instance by a dedicated mapping
xi = k. Therefore, we tend to omit the binders νñ, and identify a frame ϕ with
its underlying substitution {x1 7→ T1, . . . , xn 7→ Tn}.

A closed term T is deducible from a frame ϕ if there exists a term M with
var(M) ⊆ dom(ϕ) and names(M) ∩ names(ϕ) = ∅ such that Mϕ =E T [2, 3].

Two frames ϕ1 and ϕ2 such that dom(ϕ1) = dom(ϕ2) are statically equivalent
(written ϕ1 ≈E ϕ2) if, for every pair of terms (M,N) such that var(M,N) ⊆
dom(ϕ1) and names(M,N) ∩ names(ϕ1, ϕ2) = ∅, it holds that Mϕ1 =E Nϕ2 if
and only if Mϕ2 =E Nϕ2. Proving static equivalence may not be easy. Fortu-
nately, efficient methods exist in many cases (e.g., [2, 14]). In particular, static
equivalence is decidable in polynomial time for unsorted convergent subterm
theories [2]; we expect that this result carries over to sorted convergent subterm
theories such as =E . We have an alternative decision procedure for the static
equivalences that are the subject of our main theorem (see Section 4).

We close this section with a few examples of equivalences and inequivalences
under the theory E:

{x = {0}rk} ≈E {x = {1}rk} (1)

{x = {0}rk, y = {0}r
′

k } ≈E {x = {1}rk, y = {0}r
′

k′} (2)
{x = {n}w, y = {m}w} ≈E {x = a1, y = a2} (3)

{x = {{n}w}w, y = {m}w} ≈E {x = a1, y = a2} (4)
{x = {{0}r1

pub(sk)}w, y = {0}r2
pub(sk)} ≈E {x = a1, y = a2} (5)

{x = {{0}r1
pub(sk)}w, y = {0}r1

pub(sk)} ≈E {x = {a1}w, y = a1} (6)

{x = {{n}r1
k }w, y = k} 6≈E {x = a1, y = k} (7)

Examples (1) and (2) are simple examples about symmetric encryptions under
strong keys, illustrating that those encryptions hide plaintexts and also equalities

5

of plaintexts or keys across encryptions. Examples (3) and (4) illustrate that
encryptions of fresh names under a constant w (intuitively, under a weak secret)
can look like fresh names. The values of x and y are two such encryptions—
and the former is in fact a double encryption in example (4)—with unrelated
underlying names. Example (5) resembles example (4); it illustrates that an
encryption of a public-key ciphertext {0}r1

pub(sk) under w can look like a fresh
name. In examples (3)–(5), the plaintexts being encrypted are not otherwise
available to the observer, though somewhat related plaintexts may be (as the
values of the variable y). Example (6) treats a case in which the observer also
obtains the plaintext being encrypted, through y; in that case, the observer can
see a relation between the value of x and the value of y, namely that the former
is an encryption of the latter under w. Example (7) indicates that the observer
that is given k can distinguish {{n}r1

k }w from a fresh name; intuitively, after
decrypting with w, the adversary can tell if what it sees is a ciphertext under k
or not, since the success of shared-key decryption is detectable.

3 Implementation

In this section we interpret the syntax of the formal model in a computational
universe. We also discuss cryptographic assumptions on which the implementa-
tion relies.

3.1 Interpreting the Syntax

Next we detail the mapping from terms to distribution ensembles over bit-strings.

Encryption schemes. The mapping uses a public-key encryption scheme Πp =
(Kp, Ep,Dp) and a symmetric encryption scheme Πs = (Ks, Es,Ds). It also uses
a symmetric, deterministic, type-preserving encryption scheme Π = (K, E ,D).
(The definition of type preserving is given below.) In each of these triples, the first
component is a key-generation function, the second an encryption function, and
the third a decryption function. We write η for a security parameter. For each η,
we write k

R←− Kη and k
R←− Ks

η for the process of generating an encryption key k

for Π and Πs, respectively, and similarly we write (pk, sk) R←− Kp
η for the process

of generating a pair (pk, sk) of encryption and decryption keys for Πp. As usual,
the encryption functions Ep and Es are randomized; we write Ep(m, k, r) and
Es(m, k, r) for public-key and symmetric encryptions, respectively, of message
m under encryption key k with random coins r. We write c

R←− Ep(m, k) and
c

R←− Es(m, k) for the corresponding encryption processes, using fresh random
coins. We assume that the set of keys for Π is of the form {0, 1}α1(η), and that
the set of coins for Πs and Πp is {0, 1}α2(η), where the functions α1(η) and
α2(η) are polynomially bounded and at least linearly increasing.

We say that Π is type-preserving when, for every τ ∈ Tenc, encryption and
decryption by Π map [[τ]]η—the set of bit-strings that corresponding to the type
τ—to itself.

6

Sorts, functions, and random drawings. For each value of the security
parameter η, the concrete meaning of sorts and terms is characterized (much as
in [11]) by:

– for each sort τ , a carrier set [[τ]]η;
– for each function symbol f : τ1× . . .× τn → τ , a function [[f]]η : [[τ1]]η× . . .×

[[τn]]η → [[τ]]η;
– for each sort τ , a procedure written e

R←− [[τ]]η for drawing a random element

e from [[τ]]η, according to a distribution written (R←− [[τ]]η).

We require that no element in [[τ]]η has probability 0 according to (R←− [[τ]]η), that

the probability of collision for (R←− [[τ]]η) is negligible (that is, asymptotically
smaller than any inverse polynomial), and that all the operations mentioned
are computable in probabilistic polynomial time (PPTIME) in the complexity
parameter. These conditions are ensured by the construction below and the
properties of secure encryption schemes (defined in the next subsection).

The carrier set [[τ]]η of a type τ is defined inductively:

[[SKey]]η = “SKey” ‖ {symmetric keys for Πs(η)}
[[EKey]]η = “EKey” ‖ {public keys for Πp(η)}
[[DKey]]η = “DKey” ‖ {private keys for Πp(η)}
[[Data]]η = “Data” ‖ {0, 1}α1(η)

[[Coins]]η = “Coins” ‖ {0, 1}α2(η)

[[Pair [τ1, τ2]]]η = “Pair” ‖ [[τ1]]η ‖ [[τ2]]η
[[SCipher [τ]]]η = “SCipher” ‖ τ ‖ {ciphertexts of Πs(η)}
[[ACipher [τ]]]η = “ACipher” ‖ τ ‖ {ciphertexts of Πp(η)}

where ‖ denotes the concatenation of bit-strings (applied by extension on sets of
bit-strings), and we assume an encoding of identifiers for types τ into bit-strings.

The meaning of function symbols is as follows:

– Symbols pairτ1,τ2
, fstτ1,τ2 , and sndτ1,τ2 are implemented on bit-strings by

tagged concatenation and projections, as one might expect.
– Constants w, c0, c1, . . . are mapped to arbitrary PPTIME-computable se-

quences of bit-strings of length α1(η), prefixed with the tag “Data”; 0 and
1 are mapped respectively to “Data” ‖ 0α1(η) and “Data” ‖ 1α1(η).

– For every τ ∈ Tpenc, the implementations of pencτ , pdecτ , and pdec successτ

are defined by:

[[pencτ]]η(m, “EKey”||pk, “Coins”||r) = “ACipher”‖τ‖Ep
τ (m, pk, r)

[[pdecτ]]η(m, “DKey”||sk) =


Dp(c, sk) if m = “ACipher”‖τ‖c and the

decryption Dp(c, sk) succeeds
〈any value〉 otherwise

[[pdec successτ]]η(m, “DKey”||sk) = “Data” ‖{
1α1(η) if m = “ACipher”‖τ‖c and the decryption Dp(c, sk) succeeds
0α1(η) otherwise

7

The implementations of sencτ , sdecτ , and sdec successτ , for τ ∈ Tsenc, are
defined similarly.

– For every τ ∈ Tenc, the implementations of encτ and decτ are defined by:

[[encτ]]η(m, “Data”‖k) = E(m, k)
[[decτ]]η(c, “Data”‖k) = D(c, k)

We assume that E(·, k) and D(·, k) are inverse bijections from [[τ]]η to itself.
In particular, tags are left unchanged by these functions.

The drawing of random values of type τ (e R←− [[τ]]η) is defined by induction
on τ (with, in addition, the appropriate tags in each case):

– When τ is one of SKey , EKey , and DKey , use the dedicated key generation
algorithm, respectively Ks, fst(Kp), and snd(Kp).

– When τ is Data or Coins, use the uniform distribution over [[τ]]η.
– When τ = Pair [τ1, τ2], recursively draw random elements in [[τ1]]η and [[τ2]]η,

then tag and concatenate them.
– When τ is SCipher [τ] or ACipher [τ], encrypt a random element in [[τ]]η with

a fresh random key of the appropriate kind.

Interpreting terms and frames. Given η, we associate with each frame ϕ =
νñ.{x1 = T1, . . . , xn = Tn} a distribution [[ϕ]]η defined by the following procedure

for computing a sample φ
R←− [[ϕ]]η:

1. for each name of sort τ that occurs in ϕ, draw a value â
R←− [[τ]]η;

2. compute the value T̂i of each closed term Ti, recursively:

for every function symbol f, ̂f(S1, . . . , Sn) = [[f]]η(Ŝ1, . . . , Ŝ1)

3. let the resulting concrete frame be φ = {x1 = T̂1, . . . , xn = T̂n}.

We define the notation [[]]η for closed terms and tuples of closed terms similarly.
We may write [[ϕ]]η, a1 7→e1, ..., an 7→en so as to specify the values for names, and
[[ϕ]]η, c1 7→e1, ..., cn 7→en so as to specify the values of the constants c1, . . . , cn. We
write [[ϕ]] for the ensemble (family of distributions) ([[ϕ]]η)η. We identify a single-
valued (Dirac) distribution with its unique value.

Indistinguishability. Two ensembles D1 = (D1
η)η and D2 = (D2

η)η are in-
distinguishable, written D1 ≈ D2, when, for every PPTIME adversary A, the
function

AdvA(η) = P
[
e

R←− D1
η : A(e) = 1

]
− P

[
e

R←− D2
η : A(e) = 1

]
is negligible.

8

3.2 Cryptographic Assumptions

We use symmetric and asymmetric encryption schemes that satisfy a notion of
security related to type-0 and type-1 security [6]. Essentially, we require that
for each type τ , the encryption function restricted to elements of [[τ]] reveal no
information about the key used for encryption and hide all partial information
about underlying plaintexts—except for their belonging to the carrier set [[τ]].

Definition 1. Let Πs = (Ks, Es,Ds) be a symmetric encryption scheme. For
each security parameter η and type τ ∈ Tsenc, we consider the following experi-
ment, with a two-stage PPTIME adversary A = (A1, A2):

– a key k is generated via k
R←− Ks(η);

– A1 is provided access to an oracle Es(·, k), that is, A1 may submit messages
m to the oracle and receives in return corresponding encryptions Es(m, k);

– then A1 outputs a challenge message m∗ ∈ [[τ]]η together with some state
information st;

– a bit b
R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged)

encryption of m∗ under k, that is, c
R←− “SCipher”‖τ‖Es(m∗, k); otherwise,

we let c be a (tagged) encryption of a random element of τ under a random
key, that is, c

R←− [[SCipher [τ]]]η;
– A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b. The advantage of A is defined by
Advτ

Πs,A(η) = Pr[A is successful] − 1
2 . We say that Πs is Tsenc-secure if for all

PPTIME adversaries A and all τ ∈ Tsenc, the function Advτ
Πs,A(·) is negligible.

Definition 2. Let Πp = (Kp, Ep,Dp) be an asymmetric encryption scheme.
For each security parameter η and type τ ∈ Tpenc, we consider the following
experiment, with a two-stage PPTIME adversary A = (A1, A2):

– a pair of encryption/decryption keys (pk, sk) is generated via (pk, sk) R←−
Kp(η), and A1 is given pk;

– A1 outputs a challenge message m∗ ∈ [[τ]]η together with some state infor-
mation st;

– a bit b
R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged) en-

cryption of m∗ under pk, that is, c
R←− “ACipher”‖τ‖Ep(m∗, pk); otherwise,

we let c be a (tagged) encryption of a random element of τ under a random
public key, that is, c

R←− [[ACipher [τ]]]η;
– A2 is given c and st, and outputs a bit b′.

The adversary A = (A1, A2) is successful if b′ = b. The advantage of A is defined
by Advτ

Πp,A(η) = Pr[A is successful]− 1
2 . We say that Πp is Tpenc-secure if for all

PPTIME adversaries A and all τ ∈ Tpenc, the function Advτ
Πp,A(·) is negligible.

Our notion of security for encryption schemes that use data values (such as
passwords) as keys is less standard—and there is not yet a standard notion in
the area:

9

Definition 3. Let Π = (K, E ,D) be a symmetric, deterministic, type-preserving
encryption scheme such that the set of keys is {0, 1}α1(η) for each η.

1. Real-or-Random security (Tenc-RoR): For each security parameter η
and type τ ∈ Tenc, we consider the following experiment, with a two-stage
PPTIME adversary A = (A1, A2):
– a key k is generated via k

R←− K(η);
– A1 is provided access to an oracle E(·, k), that is, A1 may submit (tagged)

messages m to the oracle and receives in return corresponding (tagged)
encryptions E(m, k);

– then A1 submits a challenge message m∗ ∈ [[τ]]η and some state infor-
mation st;

– a bit b
R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged)

encryption of m∗ under k, that is, c = E(m∗, k); otherwise, we let c
R←−

[[τ]]η be a random element from [[τ]]η;
– A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b and the challenge message m∗ is
different from all the messages m submitted by A to the encryption oracle.
The advantage of A is Advτ

RoR,Π,A(η) = Pr[A is successful]− 1
2 . We say that

Π is Tenc-RoR secure if for all PPTIME adversaries A and all τ ∈ Tenc, the
function Advτ

RoR,Π,A(·) is negligible.

2. Encryption under passwords or other data values (Tenc-Pwd): For
each security parameter η and type τ ∈ Tenc, we consider the following ex-
periment, with a two-stage PPTIME adversary A = (A1, A2):
– A1 outputs a key k ∈ {0, 1}α1(η) and some state information st;
– a bit b

R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged)
encryption of some random element under k, that is, m

R←− [[τ]]η and

c = E(m, k); otherwise, we let c
R←− [[τ]]η be a random element from [[τ]]η;

– A2 is given c and st, and outputs a bit b′.
The adversary A is successful if b′ = b. The advantage of A is defined by
Advτ

Pwd,Π,A(η) = Pr[A is successful]− 1
2 . We say that Π is a Tenc-Pwd secure

if for all PPTIME adversaries A and all τ ∈ Tenc, the function Advτ
Pwd,Π,A(·)

is negligible.

Finally, Π is Tenc-secure if it is both Tenc-RoR and Tenc-Pwd secure.

Condition 1 (Tenc-RoR security) is a variant of IND-P1-C0 security [30, 11].
We require it because we allow enc to be used as a first-class encryption algo-
rithm, that is, with strong keys (not just passwords). Without this condition,
our main result remains true on frames which use only constants as keys for enc
(much as in [7]).

Condition 2 (Tenc-Pwd security) addresses the security of passwords (or other
data) when used as keys. Intuitively, it states that the encryption of a random
value must be distributed like the value. A related previous condition [7] allows
a possibly different distribution for the encryptions of random values and the

10

values themselves. This difference is mostly due to the fact that we authorize
multiple layers of encryptions with passwords (see example (4)).

Finally, an implementation with (Πs,Πp,Π) is (Tsenc, Tpenc, Tenc)-secure (or
simply secure) if the three schemes Πs, Πp, and Π are, respectively, Tsenc-secure,
Tpenc-secure, and Tenc-secure.

A possible secure implementation, using standard cryptographic tools, is out-
lined in the extended version of this paper [1].

4 Soundness of Static Equivalence

In this section we present our main soundness result. As usual (following [6]),
this result requires a hypothesis that excludes encryption cycles, and also some
other well-formedness conditions.

A key position in an expression is a position that corresponds to the argument
U of a subterm of the form pub(U), or to the second argument V of a subterm
encτ (U, V), pencτ (U, V,W), or sencτ (U, V,W). An encryption cycle of a frame ϕ
is a sequence of names k0, k1, . . . , kn of sort Data, DKey , and SKey such that
kn = k0 and

for each 0 ≤ i ≤ n−1, there exists a subterm of ϕ of the form encτ (U, V),
pencτ (U, V,W), or sencτ (U, V,W) such that ki is a subterm of U not in
key position and ki+1 is a subterm of V .

For instance, the frame ϕ1 = {x = {sk1}r1
k2

, y = {k2}r2
pub(sk1)

} has an encryption
cycle, while ϕ2 = {x = {pub(sk1)}r1

k2
, y = {k2}r2

pub(sk1)
} does not.

A frame ϕ is well-formed if it satisfies the following conditions:

(i) ϕ is R-reduced, that is, in normal form with respect to the rewriting sys-
tem R;

(ii) ϕ does not contain the symbols dec, pdec, sdec, pdec success, sdec success,
fst, and snd;

(iii) terms in key position in ϕ are of the following forms, depending on their
sort:
– sorts DKey and SKey : names,
– sort EKey : names and terms of the form pub(a),
– sort Data: names and constants;

(iv) terms of type Coins may only be names, and appear as the third argument
of an encryption; moreover, if such a name appears twice in ϕ then the
encryption terms in which it appears are identical;

(v) ϕ has no encryption cycles;
(vi) for every subterm of ϕ of the form enc(T, k) where k is a name, T contains

none of the constants w, c0, c1, . . . , and T has no subterm of the form
enc(S, 0) or enc(S, 1).

Condition (ii) indicates that we focus on the indistinguishability of expressions
built from constructors; it does not preclude using other functions in the obser-
vations that may distinguish frames. Condition (iii) says that keys are atomic

11

terms for symmetric encryptions, and terms of the form pub(a) for public-key
encryptions. Similarly, condition (iv) says that coins are names and are used
only for encryptions, with different coins in each encryption. Condition (v) is
the acyclicity requirement. Finally, condition (vi) restricts the occurrences of
constants within plaintexts for deterministic encryption under strong keys (rep-
resented by names). For instance, this condition excludes the frame νk.{x1 =
enc(c1, k), x2 = enc(c2, k)}, which is equivalent to νa1, a2.{x1 = a1, x2 = a2}
formally but not computationally if c1 and c2 happen to have the same bit-
string implementations. More generally, when T1 and T2 are two terms such
that T1 6=E T2, the encryptions enc(T1, k) and enc(T2, k) may behave like dis-
tinct fresh names formally but not computationally, unless the bit-string values
of T1 and T2 collide with negligible probability.

We obtain:

Theorem 1 (≈E-soundness). Let ϕ1 and ϕ2 be two well-formed frames such
that ϕ1 ≈E ϕ2. In any secure implementation, [[ϕ1]] ≈ [[ϕ2]].

The proof of this theorem (in the extended version of this paper [1]) relies on
a detailed formal analysis of static equivalence, and in particular on a decision
procedure for the static equivalences under consideration. The theorem follows
from a step-by-step complexity-theoretic validation of the decision procedure.

5 Application to Security against Guessing Attacks

Weak secrets such as PINs and passwords sometimes serve as encryption keys.
Their safe use is challenging because of the possibility of guessing attacks, in
which data that depends on a weak secret allows an attacker to check guesses
of the values of the weak secret. For example, if a message contains a fixed
cleartext Hello, and it is encrypted under a password pwd drawn from a small
dictionary, then an attacker that sees the message can try to decrypt it with
all values in the dictionary until one yields the cleartext Hello, thus discovering
a probable value for the password. The attacker may mount this attack off-
line, avoiding detection. The attack is made possible by the fact that, given
the data available to the attacker, pwd can be distinguished from another value
pwd’: encstring(Hello, pwd)6≈Eencstring(Hello, pwd’). Conversely, immunity to such
guessing attacks can be formulated as a static equivalence between two frames,
one that corresponds to what is actually available to the attacker and the other
to a variant in which the weak secrets are replaced with fresh keys or with
arbitrary other keys [17, 20].

We believe that, as suggested in the introduction, the treatment of guessing
attacks in terms of static equivalence is attractive in several respects. This section
shows that this treatment can be computationally sound. In comparison with the
only previous computational justification for a formal criterion against guessing
attacks [7], the present results have several strengths. First, they apply to a
criterion formulated in terms of standard notions, rather than an ad hoc criterion.
Consequently, they fit into a standard analysis method which can also deal with

12

other properties and other kinds of attacks. In addition, they are more general,
in that they immediately apply to scenarios with multiple weak secrets. Finally,
it is satisfying that these results follow from theorems of somewhat broader
interest.

In our formalism, modeling a password as a constant w of sort Data, we may
say that the password is not revealed by a frame ϕ if ϕ{w 7→ c0} ≈E ϕ{w 7→ c1}.
The substitutions {w 7→ c0} and {w 7→ c1} correspond to instantiations of the
password with distinct actual values; each of the frames represents what an
attacker may obtain in the course of a protocol execution and then analyze
off-line. The soundness of this formal notion is a corollary of Theorem 1, as
is a generalization to multiple passwords. The formal notion can be applied to
some examples from the literature (such as the EKE protocol [13, 7]), and the
corollaries then yield computational guarantees for those examples.

Corollary 1 (Single password). Assume a secure implementation. Let ϕ be
a well-formed frame, let w be a constant of sort Data, and let c0, c1 be two
fresh, distinct constants of sort Data. If ϕ{w 7→ c0} ≈E ϕ{w 7→ c1} then w
is computationally hidden in ϕ: for all PPTIME-computable sequences of bit-
strings κ0, κ1 with κi(η) ∈ {0, 1}α1(η),

[[ϕ]]η,w 7→κ0(η) ≈ [[ϕ]]η,w 7→κ1(η)

Corollary 2 (Multiple passwords). Assume a secure implementation. Let ϕ
be a well-formed frame, let w1, . . . , wn be n constants of sort Data, and let c0,
c1, . . . , cn be n+1 fresh, distinct constants of sort Data. If ϕ{w1 7→ c1, . . . ,wn 7→
cn} ≈E ϕ{w1 7→ c0, . . . ,wn 7→ c0} then w1, . . . , wn are computationally hidden
in ϕ: for all (not necessarily pairwise distinct) PPTIME-computable sequences
of bit-strings κ1 . . . κn, κ′1 . . . κ′n with κi(η), κ′i(η) ∈ {0, 1}α1(η),

[[ϕ]]η,w1 7→κ1(η),...,wn 7→κn(η) ≈ [[ϕ]]η,w1 7→κ′
1(η),...,wn 7→κ′

n(η)

6 Conclusion

In this paper we investigate the computational foundations of a formal notion
of data indistinguishability, static equivalence. We define a particular equational
theory for which we can obtain a computational soundness result. Although
they are largely based on ideas common in previous work, neither the equational
theory nor our computational assumptions are straightforward. The main diffi-
culties that we address relate to encryption under data values. Correspondingly,
we obtain a soundness result for a formal criterion of protection against guessing
attacks on those data values.

A direction for further work is the generalization of our results to other
cryptographic primitives. For instance, certain password-based protocols make
a sophisticated use of exponentiation, which we do not include in our equational
theory. Yet other primitives, such as digital signatures, are important for trace
properties and for process equivalences (more so than for static equivalences).
We hope that, perhaps with these extensions, the present work may serve as a
component of an eventual computational justification of process equivalences.

13

Acknowledgments. We thank Steve Kremer and the anonymous referees for help-
ful comments. This research was partly carried out while Mathieu Baudet was
visiting the University of California at Santa Cruz and Bogdan Warinschi was at
Stanford University. It was partly supported by the National Science Foundation
under Grants CCR-0204162, CCR-0208800, CCF-0524078, and ITR-0430594,
and by the ARA SSIA Formacrypt and ACI Jeunes Chercheurs JC9005.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attack and the computational
soundness of static equivalence (extended version). Manuscript, 2006.

2. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. In Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), volume 3142 of LNCS, pages 46–58. Springer, 2004.

3. M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many
more) equational theories. In Proc. 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 62–76, 2005.

4. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115, 2001.

5. M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

6. M. Abadi and P. Rogaway. Reconciling two views of cryptography (The compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

7. M. Abadi and B. Warinschi. Password-based encryption analyzed. In Proc. 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05),
volume 3580 of LNCS, pages 664–676. Springer, 2005.

8. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations. In Proc. 10th ACM Conference on Computer and Com-
munications Security (CCS’03), pages 220–330, 2003.

9. G. Bana. Soundness and completeness of formal logics of symmetric encryption.
PhD thesis, University of Pensilvania, 2004.

10. M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
12th ACM Conference on Computer and Communications Security (CCS’05),
pages 16–25, Alexandria, Virginia, USA, Nov. 2005.

11. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations
of equational theories against passive adversaries. In Proc. 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580
of LNCS, pages 652–663. Springer, 2005.

12. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology – EUROCRYPT’00, volume
1807 of LNCS, pages 139–155. Springer, 2000.

13. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In Proc. 1992 IEEE Symposium on Security and
Privacy (SSP’92), pages 72–84, 1992.

14. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. In Proc. 20th IEEE Symposium on Logic in Computer
Science (LICS’05), pages 331–340, 2005.

14

15. M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic pro-
cesses. In Proc. 14th IEEE Symposium on Logic in Computer Science (LICS’99),
pages 157–166, 1999.

16. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT’00,
volume 1807 of LNCS, pages 156–171. Springer, 2000.

17. R. Corin, J. M. Doumen, and S. Etalle. Analysing password protocol security
against off-line dictionary attacks. Technical report TR-CTIT-03-52, Centre for
Telematics and Information Technology, Univ. of Twente, The Netherlands, 2003.

18. R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool
that finds some new guessing attacks (extended abstract). In IFIP WG 1.7 and
ACM SIGPLAN Workshop on Issues in the Theory of Security (WITS’03), pages
62–71, 2003.

19. S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity.
In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW’04), pages
2–15, 2004.

20. C. Fournet. Private communication, 2002.
21. R. Gennaro and Y. Lindell. A framework for password-based authenticated key

exchange. In Advances in Cryptology – EUROCRYPT’03, volume 2656 of LNCS,
pages 524–543. Springer, 2003.

22. O. Goldreich and Y. Lindell. Session key generation using human passwords only.
In Advances in Cryptology – CRYPTO’01, volume 2139 of LNCS, pages 403–432.
Springer, 2001.

23. L. Gong. Verifiable-text attacks in cryptographic protocols. In Proc. 9th IEEE
Conference on Computer Communications (INFOCOM’90), pages 686–693, 1990.

24. L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly
chosen secrets from guessing attacks. IEEE Journal on Selected Areas in Commu-
nications, 11(5):648–656, 1993.

25. J. Katz, R. Ostrovsky, and M. Yung. Practical password-authenticated key ex-
change provably secure under standard assumptions. In Advances in Cryptology –
EUROCRYPT’01, volume 2045 of LNCS, pages 475–494. Springer, 2001.

26. P. Laud. Symmetric encryption in automatic analyses for confidentiality against ac-
tive adversaries. In Proc. 2004 IEEE Symposium on Security and Privacy (SSP’04),
pages 71–85, 2004.

27. G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer
Security, 12(1):83–98, 2004.

28. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

29. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of
active adversaries. In Proc. Theory of Cryptography Conference (TCC’04), volume
2951 of LNCS, pages 133–151. Springer, 2004.

30. D. H. Phan and D. Pointcheval. About the security of ciphers (semantic secu-
rity and pseudo-random permutations). In Proc. Selected Areas in Cryptography
(SAC’04), volume 3357 of LNCS, pages 185–200. Springer, 2004.

31. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Oper. Syst. Rev., 29(3):22–30, 1995.

32. G. Tsudik and E. V. Herreweghen. Some remarks on protecting weak secrets
and poorly-chosen keys from guessing attacks. In Proc. 12th IEEE Symposium on
Reliable Distributed Systems (SRDS’93), 1993.

15

