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ABSTRACT
This paper presents a new protocol for certified email. The
protocol aims to combine security, scalability, easy imple-
mentation, and viable deployment. The protocol relies on
a light on-line trusted third party; it can be implemented
without any special software for the receiver beyond a stan-
dard email reader and web browser, and does not require
any public-key infrastructure.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
– Security and Protection; H.4.3 [Information Systems
Applications]: Communications Applications – Electronic
mail.

General Terms
Security

1. INTRODUCTION
Several protocols for certified email were developed re-

cently and several systems for certified email are being de-
ployed commercially (see references below). In general, their
main goal is to guarantee that the receipt of an email mes-
sage produces a receipt certificate whether the receiver is
honest and diligent or not. They sometimes have secondary
goals, such as authenticity of sender and receiver, and mes-
sage confidentiality.

In order to achieve their goals, the protocols and systems
often require some new assumptions and new software for
email senders and receivers. Most of them also rely on some
new infrastructure, and in particular on a trusted third party
of some sort that serves as a mediator. There are also pro-
tocols that do not use a trusted third party and operate by
having the parties do a bit-by-bit exchange of each message
against the corresponding receipt.

Despite their common objectives and their common tools,
theoretical and practical work on certified email tend to
adopt different approaches.
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In research papers, there is often an emphasis on reducing
the role and the expense of a trusted third party. This em-
phasis has led to clever protocols with mostly off-line trusted
third parties of limited power. Unfortunately, protocols that
use weak trusted third parties can be hard to deploy. In
particular, if the trusted third party is mostly off-line, then
the sender of a message may need to be on-line for some
long period after sending the message, and may need to run
special-purpose server code to respond to queries by the re-
ceiver. These protocols also incur a considerable overhead
on the parties that send and receive email messages.

In practice, a strong, on-line trusted third party is often
adopted. This is not necessarily problematic for all involved,
for it might provide good support for the business models of
the companies that sell certified email. Moreover, a strong,
on-line trusted third party can reduce the need for new as-
sumptions and new software for other parties. On the other
hand, on-line trusted third parties present scalability and
security problems. Their overhead is typically linear in the
size of the messages being emailed. Secondarily, they some-
times have access to the cleartext of all messages.

This paper presents a new protocol for certified email that
aims to combine the strengths of these two approaches while
addressing their shortcomings. Our approach uses an on-line
trusted third party that essentially acts as a web-based es-
crow server (specifically, an escrow server for the exchange of
an email message against a receipt for that message). The
trusted third party is designed so that it does work pro-
portional to the number of messages exchanged rather than
the number of bytes exchanged, and stores no per-message
state. Both of these properties contribute to the scalability
of our solution. Furthermore, our protocol integrates well
with the existing email and web infrastructure and is easy
to implement and deploy, in the following ways.

• Our protocol is designed so that no new software is
necessary for receiving a message; therefore, the re-
ceiver of a message need not take any special action in
advance.1

• In addition, our protocol does not require the sender
to run an on-line server. (Such a server is needed if a
protocol requires several rounds of interaction between

1However, the receiver may later load special software with
added features, perhaps including the sending software.
Thus, the software can spread through a group of users as
they receive certified email and decide to download the soft-
ware and send certified emails to others.



the sender and receiver.) Our protocol enables sending
messages in a send-and-forget manner.

• The trusted third party itself is fairly simple. In partic-
ular, it does not keep any per-message state. The com-
munication and computation overhead of the trusted
third party do not depend on the size of the email
messages, but rather on the number of messages.

• An implementation can primarily use standard web
software, such as Java-enabled browsers and SSL. We
describe an implementation of our protocol that uses
such components.

• Finally, our protocol supports several practical meth-
ods for authenticating the intended receiver of a mes-
sage. We recognize that the receiver probably does not
have a public-key pair, and do not propose to deploy a
public-key infrastructure (PKI). We accommodate the
common situations in which the receiver has a shared
secret with the sender or with the trusted third party.

Comparing our protocol to previous suggestions for cer-
tified email protocols (described in Section 1.1), we believe
that our protocol is particularly suitable for the existing web
and email infrastructure.

The rest of this introduction reviews some related work.
The following section, Section 2, further explains our as-
sumptions and goals. Section 3 presents our basic protocol,
along with an informal security analysis. Section 4 describes
our implementation.

1.1 Related Work
The related work can be divided into two categories: re-

search projects and commercial systems. We first describe
relevant research projects and then review some related com-
mercial systems.

1.1.1 Research Projects
Research projects can be classified according to their use

of the trusted third party. Some projects use an on-line
trusted third party, some use an “optimistic” approach that
only requires the trusted third party to intervene in case of
a dispute, and some do not involve a trusted third party at
all.

Several research projects designed protocols for certified
email that use a trusted third party that must be on-line
during the exchange of email messages. Bahreman and Ty-
gar [6] suggest a protocol which requires the exchange of six
messages. Zhou and Gollman [27] describe a protocol which
delivers the message through a trusted third party, or a se-
quence of trusted parties. The receiver should then sign a
receipt which is routed back by the trusted parties to the
server. Deng et al. [15] describe more efficient protocols that
have only four messages (and are optimal in this respect).
We note that all of these protocols suffer from the follow-
ing drawbacks: The entire message is sent to the trusted
third party (whereas in our protocol the work of the trusted
third party does not depend on the size of the message).
The trusted third party learns the message (which in our
protocol remains hidden from the trusted third party). The
protocols require the receiver, and sometimes the sender, to
sign messages, implying that a PKI must be deployed. (The
only requirement regarding public keys in our protocol is

that the sender knows the public key of the trusted third
party.)

Optimistic protocols use a trusted third party that is off-
line during the actual exchange of messages. The trusted
third party should operate only if there is a dispute between
the parties. The protocols usually have the parties first ex-
change messages encrypted with the trusted third party’s
public key, and then exchange the messages themselves. If
one of the parties defaults then the other party can contact
the trusted third party and ask it to decrypt the message
that was received in the first round. The main challenge is
to verify, without involving the trusted third party, that the
messages that are exchanged in the first round are indeed the
required messages encrypted under the trusted third party’s
public key. The resulting protocols exchange several mes-
sages and perform several exponentiations, and therefore
seem less efficient and more complicated to deploy than our
protocol. The initial work in the area was done by Asokan
et al. [1, 2]. Pfitzmann et al. [21] present another optimistic
protocol; their main emphasis is on finding the correct def-
initions for the problem. Franklin and Reiter [18] describe
a protocol with a semi-trusted third party that might mis-
behave on its own but would not collude with any of the
other parties. The Tricert system [3] is a hybrid system
that distributes the task of the trusted third party to less
trusted postal agents that perform the on-line work, and to
a trusted third party that is only involved in disputes. Ate-
niese and Nita-Rotaru [4] describe a design and a prototype
implementation of a certified email protocol with a mostly
off-line TTP. The protocol ensures that if the sender does
not follow the protocol then it does not get a receipt, so the
receiver never has to contact the TTP. If the receiver mis-
behaves then the sender can obtain a receipt by contacting
the TTP. The protocol consists of four rounds, and requires
changes in the email delivery systems of both sender and
receiver.

Protocols that do not involve a trusted third party date
back to Blum’s work [7], which uses oblivious transfer, and
the work of Even et al. [17], which introduced a generic
method in which the parties release one bit at a time of the
items they wish to exchange. (In most of the papers these
items are signatures, but in our case these items are the
email message and the receipt.) Improvements were sug-
gested by other researchers [12, 14, 20]. All these protocols
are fair in the sense that if one of the parties defaults then
it does not have a considerable advantage over the other
party, since it knows at most one more bit than the other
party. (The recent work of Boneh and Naor [9] provides
better fairness since it ensures that neither party can paral-
lelize its effort to compute the bits that are unknown to it.)
The main drawback of these protocols is the large number
of rounds that they require (approximately as many rounds
as the length of a security parameter, namely the length of
keys that encrypt the messages).

1.1.2 Commercial Systems
There is a considerable amount of commercial work on se-

cure and certified email. Most of this work is undocumented,
and the underlying architecture of most commercial systems
is not publicly available. Given the lack of information it is
hard to provide a comparison with that work. In fact, one
of the values of this paper may be in openly explaining one
solution to the certified email problem.



RFC2298 is a standard for Message Disposition Notifica-
tions [23]. It should run across platforms and be supported
by mail clients. Microsoft Outlook and Exchange server
have their own return receipt mechanism. These solutions
have several drawbacks: They depend on the security and
tamper resistance of the email client. A corrupt receiver
might break into the email client, use a filter that changes
the notification fields before the message arrives at the email
client, or block the return message that includes the receipt.
Corporate firewalls often do this filtering process, blocking
return receipts from being sent from within their corporate
network. Finally, there is a problem with fair notification.
If a user of Microsoft Outlook wishes to know that reading
a message will generate and send a return receipt, she must
either change the default settings or perform a complicated
operation, involving several mouse clicks, before reading ev-
ery message.

Several companies offer certified email services including
Authentica [5], Certifiedmail.com [11], Zixit [28], Postx [22],
ZeroGravity [26], and Sigaba [25]. Their solutions use a
combination of a trusted server and a secure client. Not all
of the technical details are publicly available. We note that
one approach is to store the message as a web page on the
trusted server and send an email to the receiver, asking it
to go a URL to retrieve the message. We also note that
in Authentica, as in our protocol, the trusted third party
stores a decryption key rather than the entire message. We
do not, however, have other substantial information about
this solution.

2. ASSUMPTIONS AND REQUIREMENTS
The desired protocol should allow a sender, S, to send an

email message to a receiver, R, so that R reads the message
if and only if S receives the corresponding return receipt.
The main emphasis of our work is on ensuring the atomicity
of this operation, namely ensuring that either both S and R
receive their corresponding outputs, or neither of them does.
Other properties of the protocol, for example the confiden-
tiality and authenticity of the messages, are also discussed
but are not the focal point of this work.

The protocol is allowed to use an on-line trusted third
party, TTP. All three parties are capable of basic cryptog-
raphy (both public and symmetric encryption and decryp-
tion, secure hashing, signature generation and verification).
To simplify the exposition of the protocol we assume that
the channels between TTP and the other parties are reli-
able. This property can be achieved using the communica-
tion protocol, or using specific methods that were suggested
for certified email delivery by Deng et al. [15]. Furthermore,
we assume that R and TTP have a secure channel between
them that provides secrecy and possibly authentication of
TTP to R. (This is needed when R gives secrets to TTP
in order to authenticate itself.) In practice such a channel
might be an SSL connection or, more generally, a channel
authenticated and encrypted using symmetric keys estab-
lished via a suitable protocol (e.g., Diffie-Hellman), perhaps
relying on public keys.

While we assume that TTP has public keys and that these
keys are known to both S and R, we do not assume that ei-
ther S or R have public keys or that there is any public-key
infrastructure (PKI). This means that there is an authen-
tication problem: if TTP receives a request from a party
claiming to be R and claiming it is about to read the mes-

sage, how does TTP know this is really R? We assume ei-
ther or both of the following authentication mechanisms: a
shared secret between R and TTP and a shared secret be-
tween R and S. The former occurs when R has an account
with TTP and the shared secret is the PIN number or pass-
word for the account. This mechanism allows TTP to certify
that R received the email, since TTP is able to authenti-
cate R independently of S or any other party. The latter
mechanism might be based on something known through a
personal or business relationship between S and R. It does
not allow TTP to assert that R received the email, but only
that the email was received by someone S authorized—note
that S could impersonate R under this mechanism.

Turning to a more precise definition of the security re-
quirements, the natural definition seems to be a comparison
to the ideal model. This approach for defining security is a
common strategy in many papers on cryptographic proto-
cols. The security definition usually defines a protocol that
operates in an augmented scenario, one with an additional
player—the trusted party. Typically the protocol operates
in the following way:

• The original parties send their respective inputs to the
trusted party.

• The trusted party observes the inputs and computes
the function that is defined by the original protocol.

• The trusted party sends to each of the other parties
the respective output of the function that it should
receive.

When applied to the certified email context, the ideal
model protocol operates in the following way: The trusted
party receives the email message from the sender, as well
as a cleartext message that invites the receiver to read the
message. The trusted party delivers this invitation to the
receiver and obtains from it a request either to read or not to
read the email. If the request is to read the email, then the
trusted party sends the email to the receiver and a return
receipt to the sender, otherwise the request is denied.

A protocol is defined to be secure if any information ob-
tainable from the actual protocol could also have been ob-
tained in the ideal model. In our scenario this corresponds
to limiting the possible output of the protocol to one of two
possibilities: either the receiver obtains the message and the
sender obtains the return receipt, or neither of them receive
the corresponding outputs.

The protocol that we suggest uses a trusted third party,
TTP, and therefore it seems that it can trivially satisfy the
above requirements. There are, however, several subtle is-
sues that must be considered.

First, as discussed above, TTP must authenticate R as the
receiver of the message. This is a rather complicated issue
since we do not assume the existence of a PKI.

Second, we would like to hide the contents of the message
from TTP. Although we assume TTP to be honest, in the
worst scenario it might be curious or corrupt, and eavesdrop
on the communication between S and R. If there is no shared
secret between S and R then TTP can learn the message
sent to R. Our protocol can, however, prevent TTP from
learning the message as long as it does not eavesdrop on the
communication between S and R. It can also be amended
to use a shared secret between the two parties S and R to
encrypt the message.



Third, we desire an efficient implementation for the pro-
tocol. In particular, the protocol in the ideal model requires
the trusted party to keep state information, whereas we want
to implement a stateless TTP.

3. THE BASIC PROTOCOL
This section describes our protocol for certified email

using an on-line trusted third party. We start with some
preliminaries, then describe the protocol, and conclude with
a security analysis.

3.1 Preliminaries

3.1.1 Algorithms
The following notation is used for various cryptographic

primitives.

• E(k,m) denotes an encryption of m using key k under
some symmetric encryption algorithm, for example,
AES in CBC mode with random initialization vectors.
(We believe that integrity protection is not necessary
for our protocol.)

• H(m) denotes the hash of m in some collision resistant
hashing scheme, for example SHA.

• A(k,m) denotes an encryption of m using key k under
some public-key encryption algorithm. The encryp-
tion algorithm should provide non-malleability (also
known as security against adaptive chosen ciphertext
attacks, see [16, 13]). This property means that given
an encryption e it is impossible to generate a different
encryption e′ such that the plaintexts of both encryp-
tions satisfy any predetermined relation.

We suggest using for the encryption algorithm the RSA
PKCS standard (using OAEP or one of its variants [24,
19, 8]), for which these properties can be proved in
the random oracle model, or the Cramer-Shoup cryp-
tosystem [13] for which these properties can be proved
without any random oracle assumptions.

• S(k,m) denotes a signature of m using key k under a
public-key signature algorithm, for example, the ap-
propriate RSA standard.

• Finally m1 | · · · | mn denotes the unambiguous con-
catenation of the mis, for example, using a distin-
guished separator or length indicators.

3.1.2 Keys and Authentication
TTP has a public key TTPEncKey that can be used to

encrypt messages to TTP, and a corresponding secret key
TTPDecKey. TTP also has a secret key TTPSigKey that it
can use to sign messages and a public key TTPVerKey that
other parties can use to verify these signatures. Only the
sender S needs to know the public keys of TTP. We do not
assume that the receiver R has any knowledge about these
keys.

Our protocol supports four options for authenticating R:
BothAuth, TTPAuth, SAuth, and NoAuth. These correspond
to the combinations of authenticating R, namely TTP au-
thenticating R or not, and S authenticating R or not. To
simplify the notation we assume that TTP authenticates R
using a shared secret RPwd—a password that identifies R to

TTP. (In practice TTP might use a different authentication
method; for example if both TTP and R reside on the same
secure local-area network TTP can use R’s network address
to authenticate it.) The method in which S authenticates
R is a query/response mechanism. R is given a query q by
the receiver software and r is the response that S expects R
to give. For this method of authentication to work, both S
and R must establish the relationship between q and r before
using the protocol, or know each other well enough to guess
what the other intended. The sender picks the authentica-
tion option for each email sent, and the choice is denoted
by authoption. Of course, if the sender picks authentication
by TTP then TTP should be able to authenticate R; and if
the sender picks authentication by S then S itself should be
able to authenticate R.

3.2 The Protocol
Figure 1 shows a high-level sketch of the protocol. Let us

first describe the steps of the protocol without going into
detail. In step 1, the sender encrypts the message using a
freshly generated key, encrypts the key with the public key
of TTP, and sends this along with the encrypted message to
R. In step 2, R sends the encrypted key to TTP as a request
to release the key. If TTP is satisfied that the request is
legitimate it sends the key to R in step 3 and sends a return
receipt to S in step 4. R can then decrypt and read the
message.

The protocol binds S and R to a single message in the
following way: In step 1, S computes the hash of the en-
crypted message, encrypts it with TTP’s public key, and
sends this information to R. In step 2, R computes a hash
of the encrypted message it receives from S, and it sends
to TTP this hash and the encrypted hash that S computed.
TTP compares these two values and if they are the same it
concludes that S and R are obligated to the same message
and continues the protocol.

In more detail, the protocol runs as follows. (Figure 2
shows this detail.)
Step 1: S performs the following operations:

1. First, S generates a random key k appropriate for use
with E. S also picks authoption. If authoption is Both-
Auth or SAuth then S knows or generates a query q to
which R should produce the response r. If authoption
is TTPAuth or NoAuth then q and r should be null. It
is important for S to remember m, k, q, and r for as
long as the receipt may be of value.

2. S encrypts the message m with k, computing em =
E(k, m).

3. S then computes a hash that will both identify the
message to TTP and authenticate R to S. Specifically
S computes hS = H(cleartext | q | r | em). The part
cleartext is a header that asks R to read the certified
email, perhaps explaining what is in the message.

4. Last, S forms a message that will ultimately be deliv-
ered to TTP by R. This message has the sender’s iden-
tity (so that TTP knows where to send the receipt),
the key, the authentication information, and the iden-
tifying hash: S2TTP = A(TTPEncKey, S | authoption |
“give k to R for hS”).

5. S sends to R:
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Message 1, S to R:
TTP | em | authoption | cleartext | q | S2TTP

(In our description of messages received during the pro-
tocol we refer to message components such as em’ and q’
rather than em and q because there is no a priori guarantee
that the receiver of the message receives the original com-
ponents unmodified, since an attacker may tamper with the
message or may send a bogus message.)
Step 2: R, upon receipt of a message of the form TTP |
em′ | authoption′ | cleartext′ | q′ | S2TTP′, performs the
following operations:

1. It reads cleartext′ and decides whether it wants to read
the message and is willing and able to use TTP as a
trusted third party. If it does, R checks what authen-
tication is needed. If authoption′ is SAuth or Both-
Auth it constructs a response r′ to query q′, while if
authoption′ is TTPAuth or NoAuth then R uses null for
r′. As for authenticating itself to TTP, if authoption′ is
TTPAuth or BothAuth then R recalls its password for
TTP, RPwd, while if authoption′ is SAuth or NoAuth
then R uses null for RPwd.

2. R computes its own hash to identify the message and
authenticate itself to S, hR = H(cleartext′ | q′ | r′ |
em′).

3. R sends to TTP:

Message 2, R to TTP:
S2TTP′ | “owner of RPwd wants key for hR”

This and the next message travel on the secure channel
between R and TTP.

Steps 3 and 4: TTP, upon receipt of a message of the form
S2TTP′′ | “owner of RPwd′ wants key for h′R”, performs the
following operations:

1. It tries to decrypt S2TTP′′ using TTPDecKey. The
plain text should be of the form S | authoption′′ |
“give k′ to R′ for h′S”.

2. TTP authenticates R: It checks that authoption is ei-
ther SAuth or NoAuth or that RPwd′ is the password
for R′. TTP then checks that h′S equals h′R. (This check
can be regarded as the most important test done by
TTP, since it verifies that S and R agree on the same
message and on the query/response pair.) If TTP is
unable to decrypt S2TTP′′, if the plain text has the
wrong form, or if any of the checks fails then TTP
sends “request denied” to R and stops. Otherwise it
proceeds with Messages 3 and 4.

3. TTP sends the following message to R

Message 3, TTP to R:
“try k′ for h′R”

Upon receipt of such a message R uses k′ to decrypt
em′, obtaining m.

4. TTP sends a message to S. The message depends upon
the authentication option. In the case authoption′′ is
BothAuth or TTPAuth then TTP sends S:

Message 4 (TTP auth), TTP to S:
S(TTPSigKey,

“I have released the key for S2TTP′′ to R′”)

Otherwise, TTP sends S:

Message 4 (no TTP auth), TTP to S:
S(TTPSigKey,

“I have released the key for S2TTP′′”)

Note that in this last case, the receipt does not give
evidence that S has not forged Message 2. (If the au-
thentication option is SAuth then TTP only knows that
it was provided an answer to a query which was gener-
ated by S; the source of the answer could be either R
or S.) It may make sense to make this forgery slightly
harder, for example, by adding the source IP address
of Message 2 in the receipt. Note also that the re-
ceipt does not have to include k (or a hash of k) since
S2TTP′′ contains (an encryption of) this value.

5. Finally, if S receives a message of the same form as
Message 4 then using TTPVerKey it verifies the sig-
nature, and checks that S2TTP′′ matches one of the
messages it sent. If these checks succeed then S notes
that message m was received by R.

Later on, if S ever wants to prove that R has received
m to a judge, then S exhibits this message, em, k, q,
and r, and the judge should check that these values
and the TTP’s public key match up.

3.3 Analysis
In this section we sketch an analysis of our protocol. We

aim to state some of the main properties of the protocol,
informally but clearly, and to provide informal arguments
that these properties hold.

Throughout, we assume that messages may be intercepted
and modified by a malicious party, following the standard
conventions of the literature on security protocols, but as-
sume that messages sent by TTP reach their destination.
We focus on the modes of the protocol where TTP authen-
ticates R. When only S authenticates R, inevitably, S is able
to impersonate R and cause TTP to produce a certificate
when R has not received the corresponding message.

There is plenty of interesting further research in this di-
rection: writing a complete and formal specification of the
protocol’s properties, and constructing formal correctness
arguments. While this work does not seem beyond the state
of the art in protocol analysis (which has progressed signif-
icantly in the last few years), it remains quite considerable
and difficult. It is beyond the scope of the present paper.

Proposition 1. R cannot read m without S obtaining a
receipt proving that R did so.

Proof sketch: R cannot read m without first receiving
a message containing em=E(k,m). It therefore cannot read
m without receiving k from TTP. The non-malleability of
the encryption function A ensures that the only way for R
to obtain the key is to forward the field S2TTP’ = S2TTP



to TTP.2 The protocol ensures that when TTP sends k to
R it also sends a signed receipt to S. (We assume that both
of these messages arrive at their destinations.) The receipt
contains an authentication of R’s identity (in a form depend-
ing on authoption), and a value S2TTP′′ which is equal to
the value S2TTP generated by S. This value is S2TTP =
A(TTPEncKey, S | authoption | “give k to R for hS”), where
hS = H(cleartext | q | r | em). S can therefore reveal m as
well as k, q, r, and cleartext, and show that they correspond
to the value signed by TTP.

Proposition 2. S cannot obtain a receipt proving that R
read a message m without R being able to read this message.

Proof sketch: Suppose that S has a receipt signed by
TTP and claims that it proves that R read a message m.
The receipt sent to S contains a value S2TTP′′ = S2TTP =
A(TTPEncKey, S | authoption | “give k to R for hS”), where
hS = H(cleartext | q | r | em). We assume for simplicity
that there is only a single public key associated with TTP.
(Otherwise the identity of the relevant key should be part of
the signed receipt sent by TTP.) The decryption function of
A is therefore deterministic and there is only a single possible
decryption of S2TTP. Consequently, given the receipt, S can
present only the values k, R, and hS that were used by TTP.

Before generating the receipt, TTP received a value hR

from R and verified that it is equal to hS. The collision
resistance of H ensures that R received the same encrypted
value em that was used to generate hS. Since TTP sends the
key k to R at the time it sends the receipt to S, and since we
assume that the channel between TTP and R is reliable, R
has both em and k. The message m that R can decrypt is
therefore the decryption of em with k, which is exactly the
message defined by the receipt.

3.3.1 Confidentiality
Although this is not its main focus, the protocol does pro-

vide confidentiality for the message m, both from external
adversaries and (to some extent) from TTP. To observe this,
note that one of our assumptions is that the communication
channel between R and TTP is secure (e.g., using HTTP
messages and SSL encryption). An external adversary can
therefore only recover Messages 1 and 4 which contain en-
crypted information. If TTP follows the protocol then it too
does not gain any information about the message, since it
only learns the key k and the hash of the encrypted mes-
sage.3 If we assume, however, that the trusted third party
TTP is corrupt, then it can eavesdrop on Message 1 which
is sent from S to R. In this case it has the same informa-
tion as R and can decrypt em and obtain the message m.
The only way to prevent this attack is by adding an addi-
tional encryption layer to the message m, that can only be
decrypted by R. If we do not assume the existence of a PKI
then the only key that can be used for this encryption is
the query/response pair (q,r) that S uses to authenticate R.

2The non-malleability property is important since R serves
as a communication channel between S and TTP. If A() was
malleable it might have been possible for R to change the
encrypted information, say from “give k to R for h” to “give
k to R for h’ ”. This option enables R to send h’ instead of
h to TTP, and results in S not being able to present a valid
receipt for the message m.
3We assume that this hash, H(cleartext | q | r | em), does
not reveal any information about the message em.

Unfortunately, in the case where human users can memo-
rize the response r, it would almost always be the case that
the response does not contain sufficient entropy to provide
security against off-line brute-force attacks by the corrupt
TTP.

3.3.2 Further Discussion
Note that the authentication of R is important for two

reasons. It is important for providing a receipt that iden-
tifies R as the receiver of the message, and for preventing
someone who has hijacked Message 1 from contacting TTP
and asking for the decryption key. Therefore, it is preferable
that the authentication option is TTPAuth or BothAuth and
there is a method of authenticating R to TTP. In this case
TTP can provide a receipt that contains R’s identity. Oth-
erwise, if SAuth is the chosen authentication method and
R is only authenticated by the query/response pair, then S
can be convinced that R read the message but other par-
ties cannot verify that a corrupt S did not impersonate R
(communicating with TTP) in order to obtain the receipt.

There are several further noteworthy properties related to
the computation of the hash values. First, it is important
to put cleartext in the hash in order to prevent a corrupt
S from sending a benign cleartext message to R, enclosing
an incriminating message m. (Consider for example S that
sends the cleartext message “please read the attached bill”
but encloses an unrelated message which R would definitely
not want to receive.) An unsuspecting R might read the
cleartext message and decide to engage in the protocol, at
the end of which S has a proof that R read the message.
Making the cleartext message part of the receipt enables R
to prove its innocence. Second, the query should be part of
the hash in order to have better authentication of R. The
response r alone is not sufficient since it might be the cor-
rect response for two different queries that identify different
persons (e.g., “Wharton” might be the answer to the query
“What is your mother’s maiden name?” but also to the
query “What business school did you attend?”).

4. IMPLEMENTATION
The receiver software was the focus of the most impor-

tant design decision for our implementation. We considered
several approaches.

In one approach, the receiver downloads an email plug-in.
Unfortunately, this approach limits the community of users
who would be willing to use the system for two reasons.
First, some users are reluctant or unauthorized to install
software on their machines, especially in a corporate envi-
ronment, thus would not use the system. Second, there are
currently many different email readers that have significant
market share. To be ubiquitous, an implementation would
need plug-ins for all these email readers; this requirement
makes the approach impractical.

Another approach uses a generic mail proxy that sits on
the receiver’s machine. The proxy could process all incom-
ing and outgoing emails looking for those messages tagged
as certified, and do the requisite processing of our proto-
col transparently. This is an attractive proposal since the
proxy could perform many other useful tasks, such as fil-
tering spam, and makes the system less dependent on the
particular email reader being used. Indeed, we have imple-
mented this approach for one version of the software that
the sender uses. However, this approach still suffers from



the requirement that the receiver must install a piece of
software.

We took a third approach, which we now describe. Be-
cause of the shortcomings listed above, we decided to im-
plement a receiver that uses only a standard MIME enabled
email reader and a Java-enabled browser. This design de-
cision dictated to a large extent how the rest of the sys-
tem functions. However, we give the receiver the option of
downloading a plug-in if they wish to have tighter integra-
tion with their mail system. Another design decision was
to implement the protocol using Java. This was attractive
because it fit in with our requirements on the receiver and
because there are high-quality Java packages for handling
MIME email and cryptography operations, which simplified
our coding.

Our implementation has two different sender programs; S
can use either one of them. One provides a simple message
composition window into which the user enters the sender’s
email address, the receiver’s email address, the cleartext
message, and the message to be certified. It also allows
the setting of authentication options and other variations in
the protocol. The second sender program is designed as a
proxy: The user uses an ordinary email composition pro-
gram, but instead of sending the message to the intended
receiver, sends it to a special address that is redirected to
the proxy. The proxy reads the real receiver from a special
header field.

Both sender programs then proceed as follows. They form
the first message in the protocol and encode it as a binary
stream in an appropriate way. This binary stream is Base 64
encoded [10] into a textual string, call this string m1. Next,
the sender programs form a two-part MIME email to the
receiver. The first part is a plain text part explaining that
the message is a certified email message and that it can be
read by sending the second part to a Java-enabled browser.
The second part is HTML containing an applet whose code
(JAR files) will come from TTP’s site and whose parameters
describe the sender, describe the receiver, give TTP’s URL,
and give m1. The sender programs then send this email to
the receiver.

When the receiver gets the email, they are shown the
cleartext message and if they wish to read the certified email
message they should double-click the HTML attachment to
launch a browser. The browser downloads the applet from
TTP’s site and runs it with the parameters in the HTML.
The applet Base 64 decodes m1, and, if necessary, obtains
authentication information from the receiver. Then it forms
the second message in the protocol and sends it by POST-
ing it (suitably encoded) to a cgi-bin script on TTP’s site.
To secure this POST message and its response, we build a se-
cure channel using a combination of public-key and symmet-
ric encryption. The cgi-bin script on TTP’s site runs a Java
application that reads the second message, and performs the
necessary authentication and hash comparison checks. It re-
turns a suitable piece of HTML that indicates either success
or failure. In the latter case, the HTML also includes the
third message of the protocol Base 64 encoded. The receiver
applet then obtains the key from the returned third message
and decrypts the original message from the decoded m1. It
displays this message in its area of the browser’s window.
Currently, our implementation just displays the raw mes-
sage in a scrollable text area. This could easily be extended
to do some basic MIME processing. Finally, in case of suc-

cess, TTP’s application also sends the fourth message of the
protocol to the sender as an ordinary email message.

The implementation was fairly simple—a straightforward
combination of some standard packages and some code to
glue it together. However, we ran into problems with the
cryptography libraries. Java’s standard libraries and JCE
(Java Cryptographic Extension) provide a comprehensive
range of cryptographic primitives. Many browsers, however,
have older or even no versions of the libraries. The applet
could include the libraries itself, except that most browsers
do not allow applets to include cryptography code within
the framework of the standard libraries (presumably in or-
der to prevent Trojan Horse cryptography libraries from af-
fecting the browser.) Thus, we were forced to re-implement
these libraries as a stand-alone package not tied to the secu-
rity mechanism. Similarly, we wanted to use SSL to secure
the channel between the receiver and TTP, and while most
browsers have SSL capabilities, these capabilities are not
exposed to Java applets. Thus, we were forced either to
implement SSL in Java ourselves or to resort to our own im-
plementation of secure channels. We would recommend that
designers of runtime systems think carefully about cryptog-
raphy libraries, if possible making them standard and avail-
able across all platforms, and not preventing applets from
extending the libraries with new methods for their own use.

The biggest advantage of our implementation is that it
does not require the receiver to have anything more than a
standard email reader and a Java-enabled browser—the spe-
cial software needed to operate the protocol is downloaded
through the standard mechanisms of the email reader and
browser. A disadvantage of this scheme is that the original
message is only available to the receiver in the applet—it is
not amenable to the usual email-program functions. For ex-
ample, it is more difficult to print, reply to, and search the
email; and each time the user wishes to view the email, they
must go through TTP. So while our solution is useful for ini-
tial deployment and avoiding the chicken and egg problem,
ultimately an implementation must provide a more conve-
nient and seamless solution. One compelling idea is to com-
bine our approach with one of the other two approaches—
proxy or plug-in. Our applet would enable receivers to re-
ceive and read certified emails without installing any soft-
ware, but later they could install a proxy or plug-in for more
convenience and seamlessness. Our applet could even facili-
tate the downloading and installation of the proxy or plug-
in, and also of appropriate sender software.
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