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Abstract. While groups are generally helpful for the definition of autho-
rization policies, their use in distributed systems is not straightforward.
This paper describes a design for authorization in distributed systems
that treats groups as formal languages. The design supports forms of
delegation and negative clauses in authorization policies. It also consid-
ers the wish for privacy and efficiency in group-membership checks, and
the possibility that group definitions may not all be available and may
contain cycles.

1 Introduction

Groups provide a useful level of indirection for authorization policies, in partic-
ular those described by access control lists (ACLs). When ACLs refer to groups,
the ACLs can be simple and short. For example, an ACL may permit access to
all principals in the group FriendlyClients, which itself consists of users in the
group Friends with devices in the group Devices via programs in the group
TrustedApps. The definitions of these groups can be managed separately from
the ACL, and shared by many other ACLs (e.g., [6]).

In distributed systems, the use of groups is not straightforward (e.g., [4, 5]).
First, it requires a distributed scheme for naming groups. Even with such a
scheme, group definitions may not all be available at the time of an ACL check;
they may have unintended consequences or circularities that no single participant
in the system can detect locally; and the entities that control them may not all be
equally trusted. In addition, lookups of group membership may incur the costs
of remote communication; and, in general, there is no guarantee of atomicity
of lookups across groups. Finally, the lookups need to be secure and provide
appropriate privacy guarantees. No universal solution to these difficulties seems
likely to emerge because each system faces different trade-offs and constraints.

This paper describes a design for access control with groups in a new set of li-
braries, tools, and services that aim to simplify the process of building distributed
applications. Our design supports forms of delegation, via local names. It also
supports negative clauses in ACLs, with a conservative semantics when group
definitions are not available or contain cycles. Moreover, it addresses the wish
for privacy and efficiency in group-membership checks—at least in the sense that
the dissemination of group memberships occurs in response to relevant queries,
not promiscuously.



In this setting, each principal is identified with a public key, but it typically
has one or more human-readable names, which we call blessings.1 Concretely,
these blessings are granted in public-key certificate chains bound to the prin-
cipal’s public key. For example, a television set owned by a principal with the
blessing Alice may have the blessing Alice / TV. Here, TV is a local name, which,
much as in previous systems and languages for security (e.g., [7, 2]), any principal
can generate and apply autonomously. Principals may have multiple blessings,
each reflecting the principal that granted it. For example, the same television
set may also have the blessing SomeCorp / TV123 from its manufacturer.

Blessings are the basis for authentication and authorization. Specifically, the
“Bless” operation allows a principal to extend one of its blessings and create a
blessing bound to another principal’s public key, thereby delegating the author-
ity associated with the blessing. For example, an ACL may include the clause
Allow Alice / TV, so that all principals with a blessing that matches Alice / TV
will have access to the object that the ACL protects, and a principal with the
blessing Alice may choose to grant the blessing Alice / TV to its television set.
In practice, the delegation of authority is seldom unconditional. Caveats [1] can
restrict the conditions under which blessings are usable, for instance limiting
their validity to a certain time period; we do not discuss these caveats further
in this paper, since their generation and validation precedes the access-control
checks on which we focus.

Our design supports groups that contain not only atomic names such as
Alice and TV, but also longer, compound blessings such as Alice / TV. Fur-
thermore, the definition of a group may refer to other groups at the top level
(e.g., “Friends includes OldFriends”) and as part of compound blessings (e.g.,
“FriendlyClients includes Friends / Devices / TrustedApps”). An important
theme of the design is to regard groups as formal languages, with group defi-
nitions inducing grammar productions. Unlike in traditional formal languages,
however, the grammar productions are distributed, so we have to consider con-
cerns such as communication costs, availability, and privacy. The analogy is
helpful despite these differences.

By now, many other systems support distributed authorization, in various
ways. On the other hand, the combination of local names, groups, and negative
clauses is, to our knowledge, rather uncommon and subject to limitations. Be-
yond the immediate value of our work, we hope that it contributes to shedding
light on some of the difficulties and options for systems with these features.

The next section introduces the definitions of blessings, groups, ACLs, and
related concepts. Section 3 gives a semantics to blessing patterns. Section 4
provides a simple but impractical definition of the semantics of ACLs, as a spec-

1 Strictly speaking, the term blessing refers to a certificate chain, and the term blessing
name refers to the human-readable name specified in the certificate chain. Blessing
name is often abbreviated to blessing when there is no risk of confusion, as in the
present paper. Below, we use the term blessing rather broadly: we consider that /-
separated sequences of names n1 / . . . /nk are blessings even when they might never
be related to public keys.
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ification. Section 5 then outlines a distributed implementation of this semantics.
Section 6 elaborates on the rationale for one delicate aspect of the semantics of
ACLs. Section 7 concludes.

2 Basics: Blessings, Groups, and ACLs

In this section, we define blessings, ACLs, and also blessing patterns, which are
generalizations of blessings that allow references to groups.

2.1 Ordinary Names and Group Names

We assume a set of group names, and a disjoint set of other names that we call
ordinary names. We let g range over group names, and n over ordinary names.

In our implementation, ordinary names and group names have quite different
forms and usages. In particular, each group name suffices for determining an
appropriate server who can answer questions about the group and for querying
that server. On the other hand, ordinary names are fundamentally local names,
simple strings that can be interpreted differently across a system. They may
refer to a variety of entities (users, services, programs, program versions, . . . ).
They may however be subject to conventions.

2.2 Blessings and Blessing Patterns

The syntax of blessings and blessing patterns is given by the following grammar:

B ::= n blessings
| n /B

P ::= n blessing patterns
| g
| n /P
| g /P

Here,B ranges over blessings and P over blessing patterns; / is a binary operator
for forming blessings and blessing patterns. Thus, a blessing is a non-empty
sequence of ordinary names, separated by / , while a blessing pattern is a non-
empty sequence of ordinary names and group names, separated by / . We take
/ to be associative.

For example, if Alice and Phone are ordinary names and Friends and
Devices are group names, then:

– Alice and Alice / Phone are blessings, and they are also blessing patterns;
– so are Alice / Alice, Phone / Phone, and Phone / Alice, though they are not

necessarily meaningful—we do not have a type system or other constraints
that would prevent such expressions;
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– Friends, Friends / Phone, Alice / Devices, and Friends / Devices are all
blessing patterns, but not blessings.

We write AllBlessings for the set of all blessings. When B and B′ are bless-
ings, we write B � B′, and say that B is a prefix of B′, if the sequence of names
in B is a prefix of that in B′. We take this prefix relation to be reflexive, not
strict; that is, every blessing is a prefix of itself.

We often have to manipulate lists of blessings and lists of blessing patterns.
In particular, below, lists of blessings are an input to ACL checks; lists of blessing
patterns appear in group definitions. Therefore, we introduce syntactic categories
for them:

M ::= empty lists of blessings
| B, M

L ::= empty lists of blessing patterns
| L, P

We use the constant empty to represent the empty list, and use comma as a
binary operator for forming lists. We often omit empty, and for example may
write the list empty, Alice, Bob as Alice, Bob.

2.3 Groups

Group names are of two sorts: those for built-in groups and those for defined
groups. In both cases, a group can be thought of as a set of blessings.

Built-in Groups Some groups are provided by the underlying platform, so do
not require extensional definition. The set of all blessings, to which we refer by
the name AllBlessings, is an example. Another example—of much narrower
interest—might be the set of blessings of the form n1 /n2 such that n1 identifies
a sports team in a particular league and n2 identifies one of the players in n1’s
roster. We write BuiltInGroups for the set of names of these built-in groups.

In general, built-in groups may be implemented by fairly arbitrary pieces
of code that answer, in particular, membership queries. Below we discuss the
interface that such code should provide.

Formally, we assume a function Elts that maps each g ∈ BuiltInGroups to
a set of blessings (intuitively, the elements of g). In this paper, for simplicity,
the function Elts is fixed—in particular, independent of who computes it and
of the definitions of defined groups. For instance, we let Elts(AllBlessings) =
AllBlessings. As in this case, a set Elts(g) may be infinite.

Defining Groups Other group names may be associated with definitions that
equate a group name with a list of blessing patterns:

g =def L
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Given a set DefSet of definitions {g1 =def L1, . . . , gk =def Lk}, we require
that the group names gi be pairwise distinct and distinct from elements in
BuiltInGroups. As long as each group name is associated with a server, this
requirement is easy to enforce in a distributed manner.

On the other hand, we do not require the absence of cycles in the definitions,
primarily because we do not count on being able to enforce this requirement in a
distributed manner. Secondarily, some simple cycles may occasionally be useful.
For example, the definitions

Gadgets =def TV, Devices
Devices =def Phone, Gadgets

have the effect of equating Devices with Gadgets while allowing two different
servers to include TV and Phone in this group. As another example, the definition

DeviceChains =def Devices, Devices / DeviceChains

lets DeviceChains consist of blessings formed by sequences of elements of the
group Devices. So, we may warn about cycles, and we may discourage their use,
but we aspire to provide a clean, helpful semantics at least for simple cycles, and
a conservative semantics for all cycles.

We allow the possibility that some group names are neither in BuiltInGroups
nor have a definition (at least not an available definition). We aim to provide a
conservative semantics for those names.

Time Both the code associated with built-in groups and the definitions asso-
ciated with other group names may change over time. They may even change
during an ACL check. Correctness expectations may have to be relaxed accord-
ingly (for example, so as to allow reordering queries to servers.) Although the
definitions and algorithms presented in this paper are mostly silent on this mat-
ter, we discuss it briefly in Section 5.4.

2.4 ACLs

An ACL is a list of clauses, each of which permits or denies access to principals
that present blessings that match a particular blessing pattern:

A ::= empty ACLs
| A, Allow P
| A, Deny P

Our present implementation requires that all Allow clauses precede all Deny

clauses, but this paper treats a more general syntax with arbitrary alternations.
Our semantics of ACLs is order-dependent. Basically, later ACL entries will

win over earlier ones according to the specification of Section 4. For example,
when Alice is in the group Friends, the ACL Deny Alice, Allow Friends will
permit access with the blessing Alice but the ACL Allow Friends, Deny Alice
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will deny it. The default is to deny access, so for example neither the ACL
empty nor the ACL Allow Alice will permit access with the blessing Bob. The
specification of Section 4 also addresses other aspects of the semantics of ACLs,
and in particular the rules for matching blessings against the blessing patterns
in clauses, which rely on the prefix relation �.

We abbreviate ACLs by combining consecutive Allow clauses, for example
writing Allow Friends, Alice for Allow Friends, Allow Alice, and similarly
for consecutive Deny clauses.

We expect that many ACLs will be of the simple form Allow g, where g is
a group name. More generally, many may be of the form Allow P1, . . . , Pk, or
perhaps

Allow P1, . . . , Pk, Deny Pk+1, . . . , Pk+k′

where P1, . . . , Pk+k′ are blessing patterns. On the other hand, ACLs with many
alternations of Allow and Deny clauses

Allow P1, Deny P2, . . . , Allow Pk+k′−1, Deny Pk+k′

should arise only in advanced cases, as they can be hard to understand.

The current syntax does not allow naming ACLs. This limitation means that
sharing happens through named groups.

3 Semantics

Intuitively, each blessing pattern—and, in particular, each group name—denotes
a set of blessings. This section defines how we map blessing patterns to sets of
blessings.

3.1 The Meaning of Blessing Patterns

Assuming a semantics of group names (a mapping from group names to sets of
blessings, given as a parameter ρ), the function Meaning maps blessing patterns
and lists of blessing patterns to sets of blessings. It is defined inductively as
follows, first for blessing patterns:

Meaningρ(n) = {n}
Meaningρ(g) = ρ(g)

Meaningρ(n /P ) = {n / s | s ∈ Meaningρ(P )}
Meaningρ(g /P ) = {s / s′ | s ∈ Meaningρ(g), s′ ∈ Meaningρ(P )}

and then for lists of blessing patterns:

Meaningρ(empty) = ∅
Meaningρ(L, P ) = Meaningρ(L) ∪ Meaningρ(P )
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3.2 From Group Definitions to Grammars and Languages

A semantics of group names is basically a function ρ that maps each group name
to the set of members of the group. However, we have to decide what happens
when an expression (for instance, an ACL) refers, directly or indirectly, to a
group that has not been defined. In a distributed setting (when the definitions
are at different servers), we also have to decide what happens when the group
definition may exist but cannot be looked up, for whatever reason. Since we wish
to be conservative (fail-safe), our decision may be different in Allow and Deny

clauses. For this reason, we define not one function but two functions, called
ρ⇓ and ρ⇑. They coincide in the case in which all references to groups can be
resolved.

For the construction of ρ⇓, we regard a list of group definitions DefSet as
inducing formal languages, as follows.

– Ordinary names and / are terminals.
– Group names are non-terminals.
– We associate productions with the group definitions, for example turning a

definition
g1 =def Alice / Phone, g2 / Phone

into the two productions

g1 → Alice / Phone

g1 → g2 / Phone

– We also associate productions with each built-in-group name g: g → B for
each B ∈ Elts(g).

– Finally, we do not associate productions with any remaining group names
(those that are neither defined in DefSet nor built-in-group names).

For each group name g, we let ρ⇓(g) be the set of blessings generated from g by
these productions. Thus, the question of group membership can be reduced to
that of formal-language membership.

When Elts(g) is finite for each g ∈ BuiltInGroups, the productions above
constitute a context-free grammar. Otherwise, we still obtain a formal language
ρ⇓(g) for each group name g, though these need not be context-free languages.
More precisely, much as in formal-language theory, ρ⇓ is the least fixed-point of
the function F such that, for every g,

– F (ρ)(g) = Meaningρ(L) if g is defined by g =def L;
– F (ρ)(g) = Elts(g) for g ∈ BuiltInGroups; and
– F (ρ)(g) = ∅ otherwise.

The existence of this least fixed-point follows from the facts that Meaningρ is
monotone as a function of ρ and that Elts does not depend on ρ.

The construction of ρ⇑ is analogous, except that in the last case we let
F (ρ)(g) = AllBlessings. In particular, we still take a least fixed-point (not a
greatest fixed-point).
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In practice, we need not always compute least fixed-points: we may allow our-
selves to treat some group definitions as being unavailable whenever we wish—for
instance, when the corresponding server has failed, or when we have exhausted
our computational budget. The result will be a conservative approximation. Sec-
tion 5 follows this approach.

Regular expressions are fairly common in access control, for example in defin-
ing firewall rules. The Singularity security model used them for defining groups,
without negation, via a file-system name-space [8]. With the definitions above,
we go beyond regular languages, not because we expect to need the full power of
context-free languages (and perhaps more), but in order to avoid cumbersome
syntactic conditions in group definitions. Still, it is conceivable that restricting
attention to regular languages would have advantages.

4 Specifying Authorization Checks

A principal that has collected multiple blessings may present a subset for the
purposes of an authorization decision. It may decide not to present all its bless-
ings, perhaps because of concerns about performance or confidentiality. However,
it should not gain additional rights by virtue of withholding some blessings.

Accordingly, the function that performs authorization checks, IsAuthorized,
is applied to a list of blessings M and an ACL A. It decides whether access should
be granted according to A when the blessings in M are presented. It is defined in
terms of an auxiliary function IsAuthorized1(B,A) that is applied to a single
blessing B and an ACL A. This auxiliary function works by cases on the three
possible forms of A, namely (1) empty, (2) A′, Allow P for some A′ and P ,
and (3) A′, Deny P for some A′ and P . In the first case, it returns false; in
the second and the third, it checks B against P and against A′, then returns
an appropriate boolean combination of the results. If B happens to match both
Allow and Deny clauses in A, later clauses win over earlier ones. Since each
blessing B is treated separately, IsAuthorized(·, A) is monotonic in its first
argument, as desired.

IsAuthorized(M,A) = ∃B ∈M.IsAuthorized1(B,A)

IsAuthorized1(B,A) =
case A of

empty : false
| A′, Allow P : (∃B′ ∈ Meaningρ⇓(P ).B′ � B) ∨ IsAuthorized1(B,A′)

| A′, Deny P : (¬∃B′ ∈ Meaningρ⇑(P ).B′ � B) ∧ IsAuthorized1(B,A′)

This definition relies on the mappings ρ⇓, ρ⇑, and Meaning, described in Sec-
tion 3. It is intended as a specification, without a directly evident concrete im-
plementation.

ACL clauses that refer (directly or indirectly) to undefined groups are treated
conservatively by relying on ρ⇓ and ρ⇑ depending on the type of clause. This con-
servative treatment is done “one entry at a time”. In some cases, this approach
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might yield slightly surprising (but safe) results. Let us consider, for example,
the unusual ACL

Allow Alice, Deny Friends, Allow Friends

where Friends is a group name but it has no corresponding definition, or its
definition is unavailable, and Friends is not in BuiltInGroups. Suppose that
we wish to know whether this ACL allows access to a request with the blessing
Alice. We start from the end. The clause Allow Friends does not permit access,
because we make the conservative assumption that Friends is empty. The clause
Deny Friends denies access, because we make the conservative assumption that
Friends contains all blessings. So we never look at Allow Alice, and deny
access! Although this outcome may be counterintuitive, it is conservative, and
seems adequate because we do not expect to give pleasing results when groups are
undefined or their definitions are unavailable. One may certainly imagine more
elaborate approaches, perhaps with some form of symbolic constraint-solving.

The definition uses the prefix relation � (instead of requiring exact equality)
for checking both Allow and Deny clauses. While this consistency is certainly
attractive, the choice of � has different significance in the two cases:

– For Allow clauses, the use of the relation � is a matter of convenience.
For example, when one writes the ACL Allow Alice for an object that
one wishes to share with a principal with the blessing Alice, it is typically
expedient that this principal gain access even when this access may happen
via a phone with the blessing Alice / Phone. Thus, lengthening a blessing
does not reduce authority with respect to the Allow clauses in ACL checks.
The longer blessing is however not equivalent to the shorter one in other
respects: the longer blessing may trigger a Deny clause, and a principal that
holds the blessing Alice / Phone cannot in general obtain other extensions
of Alice, such as Alice / TV.
This semantics is definable from a semantics that requires exact equality.
For example, under the latter semantics, one could write the ACL

Allow Alice, Alice / AllBlessings

rather than Allow Alice. Conversely, even with the semantics that uses �
it is possible to define ACLs that insist on exact equality. For example, one
can write

Allow Alice, Deny Alice / AllBlessings

Alternatively,2 assuming that eob is a reserved name that appears in bless-
ings only at the end, one can write

Allow Alice / eob

2 In general, these two approaches do not always yield equivalent results. Sup-
pose that the group g is defined to contain Alice and Alice / Phone. The ACL
Allow g, Deny g / AllBlessings denies access with Alice / Phone, while the ACL
Allow g / eob allows access with Alice / Phone / eob. Both ACLs deny access with
Alice / Phone / FunnyApp and Alice / Phone / FunnyApp / eob.
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– For Deny clauses, it generally does not make sense to forbid access with the
blessingB but to permit it with a longer blessing, from a security perspective.
Whoever has B would be able to extend it in order to circumvent the Deny

check.

One may be tempted by an even weaker criterion for matching in Allow clauses,
which we call “prefix matching”. For example, with this criterion, the ACL
Allow Alice / Phone would permit access with the blessing Alice. The main
motivation for this decision is that denying this access has no clear security
benefit: whoever holds Alice could form Alice / Phone in order to gain access.
Section 6 discusses prefix matching in more detail and explains why we have not
adopted it.

5 An Implementation of Authorization Checks

The function IsAuthorized, as defined above, might be implemented by cal-
culating the functions ρ⇓, ρ⇑, and Meaning at the relying party, then applying
the definitions blindly. However, these calculations generally require knowledge
of the group definitions, which we may not want to disseminate for reasons of
efficiency and privacy. The relevant groups might even be infinite, so we can-
not enumerate them in general. Moreover, a full computation of Meaning is
sometimes not required for determining if some particular blessing is or is not a
member of the corresponding set of blessings. Therefore, we consider distributed,
query-driven implementations of IsAuthorized. We first reduce IsAuthorized

to a basic function R, then we discuss how to implement the required invocations
of R. Basically, we rely on a form of top-down parsing.

Other algorithmic approaches may perhaps be derived from work on formal
languages. More speculatively, the connection with formal languages suggests
problems in secure multiparty computation (e.g., [3]): if several parties hold
parts of a context-free grammar, can they cooperate to establish membership of
a string in the corresponding language while not revealing any other information?
General results on secure multiparty computation indicate that they can, but
an efficient solution does not seem straightforward.

5.1 An Auxiliary Function: R

Suppose that we wish to know whether a particular blessing is in Meaningρ(P ).
When the blessing is an ordinary name n, we may proceed as follows:

– If P = m or P = m /P1 or P = n /P1 or P = g /P1 then fail, for every
m 6= n and every group name g.

– If P = n then succeed.
– If P = g then ask a server responsible for g whether n is an element of g and

return the result.

When the blessing is a compound blessing n /B1, we may instead proceed as
follows:
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– If P = m or P = m /P1 then fail, for every m 6= n.

– If P = n then fail.

– If P = n /P1 then recurse with B1 and P1.

– If P = g then ask a server responsible for g whether n /B1 is an element of
g and return the result.

– If P = g /P1 then ask a server responsible for g whether there exist B2, B3

such that n /B1 = B2 /B3, and B2 is an element of g, and if so recurse with
B3 and P1 (for each suitable B3, for completeness).

Thus, a server responsible for g needs to answer questions of the following forms:

– whether a blessing B is in Meaningρ(g),

– whether a blessing B can be written in the form B2 /B3 where B2 is an
element of Meaningρ(g).

While each question of the latter kind can be reduced to several questions of the
former kind (one per prefix B2 of B), providing an interface for asking questions
of the latter kind allows a more direct, efficient interaction.

Therefore, we assume a function R with the following specification: R is such
that, given a blessing B and a set of blessings S, R(B,S) returns the set that
consists of

– ε if B ∈ S, and

– every blessing B′′ such that for some B′ we have B = B′ /B′′ and B′ ∈ S.

Note that R(B,S) may, in general, contain both blessings and ε. For example, if
S = {n1, n1 /n2, n1 /n2 /n3} then R(n1 /n2, S) = {ε, n3}. The name R stands
for “rest”, “remainder”, or “residue”.

Below we consider how to implement R.

5.2 Reducing IsAuthorized to R

Using R, we can reformulate the definition of IsAuthorized:

IsAuthorized(M,A) = ∃B ∈M.IsAuthorized1(B,A)

IsAuthorized1(B,A) =
case A of

empty : false
| A′, Allow P : R(B, Meaningρ⇓(P )) 6= ∅ ∨ IsAuthorized1(B,A′)

| A′, Deny P : R(B, Meaningρ⇑(P )) = ∅ ∧ IsAuthorized1(B,A′)

This formulation is equivalent to our original one, but closer to our implemen-
tation.
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5.3 Implementing the Calls to R

Next we consider how to compute and how to approximate R(B, Meaningρ⇓(P ))

and R(B, Meaningρ⇑(P )) without fully expanding the definitions of ρ⇓, ρ⇑, and
Meaning. We present basic algorithms first, then elaborate on distributed imple-
mentations.

We assume that we have R(B,Elts(g)) for each g ∈ BuiltInGroups. In prac-
tice, this assumption means that the code that implements a built-in group
g should offer an interface for asking queries of the form R(B,Elts(g)). Note
that R(B,Elts(g)) is always finite, even when Elts(g) is infinite. In the case of
AllBlessings, this set consists of ε and the proper suffixes of B. We write S(B)
for this set.

Basic Algorithms Suppose that we want functions R⇓ and R⇑ such that:

R⇓(B,P ) = R(B, Meaningρ⇓(P ))

R⇑(B,P ) = R(B, Meaningρ⇑(P ))

where R⇓ and R⇑ have, as implicit parameter, the group definitions DefSet. For
brevity, we write RX when we wish to refer to both R⇓ and R⇑ (but, in an equation
such as RX(. . .) = . . . RX(. . .) . . . we mean the same RX on both sides). Given a
list of blessing patterns L = P1, . . . , Pk, we let RX(B,L) = ∪i=1..kRX(B,Pi).

The desired functions R⇓ and R⇑ satisfy the equations:

RX(n, n) = {ε}
RX(n,m) = ∅ if m 6= n
RX(n /B,n) = {B}
RX(n /B,m) = ∅ if m 6= n
RX(n,m /P ) = ∅
RX(n /B,n /P ) = RX(B,P )
RX(n /B,m /P ) = ∅ if m 6= n

RX(B, g) =


RX(B,L) if g =def L ∈ DefSet, or else
R(B,Elts(g)) if g ∈ BuiltInGroups, or else
∅ if X is ⇓, or else
S(B) if X is ⇑

RX(B, g /P ) = {s | ∃s′ 6= ε.s′ ∈ RX(B, g), s ∈ RX(s′, P )}

When oriented from left to right, these equations immediately suggest an algo-
rithm for computing RX(B,P ). This algorithm proceeds by cases on the form
of P . When P is not a group name and does not start with a group name,
the algorithm then proceeds by cases on the form of B. When P is a group
name g with a definition g =def L in DefSet, the algorithm unfolds this defini-
tion. When P is a group name g ∈ BuiltInGroups, the algorithm simply returns
R(B,Elts(g)), which we have according to our assumptions. Finally, if P is any
other group name g (so, a group name for which no definition or implementation
is available), the algorithm returns ∅ (for R⇓) or S(B) (for R⇑).
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The computation of RX(B,P ) basically amounts to parsing B, top-down, as
an element of the formal language associated with P . It is common for top-down
parsing not to work, or not to work well, when any grammar productions are left-
recursive (of the form g → g . . . where g is a non-terminal). Here, left-recursion
could cause the algorithm to fall into an infinite loop. In theory, left-recursive
productions can always be avoided (in particular, by using Greibach normal
form). In our setting, however, we do not wish to restrict or to rewrite group
definitions in order to prevent left-recursion.

Therefore, we prefer weakenings of the definition of R⇓ and R⇑ that work
without the assumption. For a conservative implementation, we require only:

R⇓(B,P ) ⊆ R(B, Meaningρ⇓(P ))

R⇑(B,P ) ⊇ R(B, Meaningρ⇑(P ))

Fortunately, it is not hard to adapt our algorithm to achieve these properties
while improving its efficiency and guaranteeing its termination. In particular, we
can allow calculations to terminate—with a conservative decision—whenever a
given computational budget has been exhausted. As a special case, we can allow
queries on servers to time out. Furthermore, by passing an additional argument
to R⇓ and R⇑, we can keep track of the set of groups that we have examined,
and terminate—again, with a conservative decision—when we detect a loop. We
have studied variants that detect all loops or only those loops that arise as a
result of left-recursion. Only the latter loops cause divergence, but the former
variant is a little simpler and, we expect, adequate for our purposes. (We omit
lengthy details on this point.)

Writing R⇓(B,P ) and R⇑(B,P ), respectively, for these approximations of
R(B, Meaningρ⇓(P )) and R(B, Meaningρ⇑(P )), we obtain a conservative imple-
mentation of IsAuthorized:

IsAuthorizedimp(M,A) = ∃B ∈M.IsAuthorizedimp
1 (B,A)

IsAuthorized
imp
1 (B,A) =

case A of

empty : false

| A′, Allow P : R⇓(B,P ) 6= ∅ ∨ IsAuthorizedimp
1 (B,A′)

| A′, Deny P : R⇑(B,P ) = ∅ ∧ IsAuthorizedimp
1 (B,A′)

Thus, we replace occurrences of R with R⇓ for Allow checks and with R⇑ for Deny
checks.

5.4 Distribution

When ACLs and groups are defined in terms of other groups, it remains to spell
out how the corresponding servers contribute to an ACL check. This process may
be orchestrated by the client that requests access or by the entity that holds the
ACL. For example, if the ACL refers to a group g1 which is itself defined in terms
of a group g2, the client may obtain and present evidence about g1 and g2, or the
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entity that holds the ACL may do the lookups for both groups. Alternatively,
this entity may contact a server responsible for g1, which in turn may contact a
server responsible for g2.

It is this alternative scheme that we adopt as our primary one:

– the evaluation of IsAuthorizedimp(M,A) happens locally at the entity that
holds A, with calls to others for evaluating RX ;

– the evaluation of RX(B,P ) uses local recursive calls in all cases indicated
by the definition of RX , except in the case of RX(B, g), for which a server
responsible for g should be consulted (unless, as indicated above, this would
cause looping).

In practice, this scheme can be subject to many optimizations, such as caching,
batching of queries, and “pushing” of credentials by clients (e.g., [5]).

With this scheme, ACLs and the group memberships are partly revealed only
in response to queries (IsAuthorizedimp queries for the ACLs, RX queries for the
groups). An observer who can see enough message flows may also infer depen-
dencies, namely that particular ACLs or groups depend on certain other groups.
However, the full contents of ACLs and groups are not disclosed wholesale.

Without atomicity assumptions, it is possible that group definitions are
changing during the evaluation of IsAuthorizedimp(M,A). For example, let A
be the ACL Allow Friends, Deny Friends, and suppose that a member Alice is
being added to the group Friends. If the addition to the group happens between
the processing of the two clauses of the ACL, IsAuthorizedimp(Alice, A) will
return true, a behavior that could happen neither before nor after the addition.
We have considered techniques that prevent this behavior. One of them consists
in asking the servers responsible for the relevant groups to provide information
current as of the time of the ACL check of interest, via an extra “time” param-
eter for RX . Assuming that the servers keep a log of recent group changes, this
technique would help for ACL checks that complete reasonably fast, subject to
the limitations of clock synchronization. Whether such techniques are in fact
necessary remains open to debate.

6 On Prefix Matching

In this section we elaborate on prefix matching, described in Section 4, and
explain why we do not adopt it. Our reasons have to do with Deny clauses and
groups; they are weaker if either of those features is absent. Since we believe
that prefix matching is not essential for expressiveness or usability, we opted to
omit it in order to give a better treatment of those features.

The rationale for prefix matching is as follows. Suppose that a blessing B′

matches an ACL and that B � B′. Whoever holds B can extend it to B′,
thus passing the ACL check; therefore, not letting B match the ACL may cause
inconvenience and has no immediate benefit if B behaves maliciously. (It may
however protect against accidental misbehavior.)
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Adopting prefix matching would mean, for example, that the ACL

Allow n1 /n2

grants access when the blessing n1 is presented. Beyond this trivial example, it
is less clear what to do in other situations.

Let us consider the ACL

Allow n1 / g

and imagine that g is defined to be empty. Should access be granted when the
blessing n1 is presented? A positive answer would seem rather surprising, and
is not justified by the proposed rationale for prefix matching: there is no way
to extend n1 so that it matches n1 / g exactly. Prefix matching for a blessing
pattern P (n1 / g in this example) is about the prefixes of the blessings that
match P , not the blessings that match the prefixes of P . In other words, it is
about the prefixes of the meaning of P , not the meaning of the prefixes of P .

Next let us consider the ACL

Allow n1 /n2, Deny n1 /n2

Should access be granted when the blessing n1 is presented?

– We could answer this question positively by computing the meaning of the
Allow clause (which, with prefix matching, implies authorizing n1), the
meaning of the Deny clause (which does not imply rejecting n1), and then
taking the difference. This behavior seems odd, and is not justified by the
proposed rationale for prefix matching: there is no way to extend n1 so that
it matches n1 /n2 but does not match n1 /n2.

– An alternative approach consists in computing all the blessings allowed by
the entire ACL (subtracting for Deny clauses, but without prefixing for Allow
clauses), and then adding all their prefixes. As the example illustrates, sub-
tracting for Deny clauses does not commute with adding prefixes. This al-
ternative approach does conform to the rationale for prefix matching.

Unfortunately, the alternative approach appears difficult at best. Let us consider
the ACL

Allow n1 / g1 / eob, Deny n1 / g2 / eob

where g1 and g2 are group names and eob is our special terminator name. Ac-
cording to the alternative approach, access should be granted when the blessing
n1 is presented if and only if there is some element of g1 that is not in g2. In the
general case where group definitions may contain cycles, we face the inclusion
problem for context-free languages, which is undecidable! Even without cycles,
we do not have a satisfactory solution. Straightforward algorithms that require
enumerating the members of g1 or the non-members of g2 seem unattractive
from efficiency and privacy perspectives.
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7 Conclusion

As noted in the Introduction, many systems support distributed authorization.
Generally, their features include groups; sometimes, they also include forms
of negation, and more rarely compound names and local names. There is no
canonical solution to problems such as missing, unavailable, and circular group
definitions, which are made more delicate by negation and compound names.
The pioneering article on Digital’s DSSA noted that “it is impractical, in a dis-
tributed environment where group nonmembership cannot be certified, to imple-
ment denial to arbitrary groups” [4]. Years later, SDSI allowed an operator NOT
on groups, requiring certificates of non-membership. In SDSI, the fundamental
algorithm for checking group membership worked entirely locally, by computing
on credentials; in contrast, we describe a distributed algorithm.

A salient aspect of our design, which mitigates those difficulties, is that ACLs
contain negative clauses but groups do not, and that ACLs cannot be reused for
defining groups or other ACLs. This choice also enables us to provide a liberal
semantics for ACLs (in which, for example, the ACL Allow Alice permits access
with Alice / Phone) distinct from that of groups (according to which a group
that contains Alice need not contain Alice / Phone). The semantics of ACLs
contrasts with the treatment of compound principals in previous work (e.g., [5,
7, 8]). There, an ACL that would grant access to Alice would generally not
automatically grant access to a compound principal of the form Alice op Phone,
where op is a binary operator, unless this operator happens to be conjunction
(∧). Conjunction hardly resembles / , for example because it is commutative;
other operators previously considered seem closer to / . Beyond these differences,
the fact that we have only one operator ( / ) and that it is associative allows us
to sharpen the helpful connection with formal languages.

The realization of our design is under way. While the design addresses ex-
pressiveness and semantic questions with some consideration for implementation
strategies, its realization may rely on a number of optimizations, such as caching.
It may also lead to the development of auxiliary tools and idioms; in particular,
further work on conventions and on grouping objects could be helpful in writing
and managing policies.
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