
1
On Access Control, Data Integration,
and Their Languages

Martín Abadi

This paper considers the goals and features of recent languages for access
control in distributed systems. In particular, it relates those languages to data
integration.

Languages for access control

Access control is central to security, and in computer systems it appears in many
guises and in many places. Applications, virtual machines, operating systems,
and firewalls often have their own access-control machinery, with their own
idiosyncrasies, bugs, and loopholes. Physical protection, at the level of doors or
wires, is another form of access control.

Over the years, there have been many small and large efforts to unify models
and mechanisms for access control. Beyond any tiny intellectual pleasure that
such unifications might induce, these may conceivably contribute to actual secu-
rity. For example, when there is a good match between the permissions in
applications and those in the underlying platforms, access control mechanisms
may have clearer designs, simpler implementations, and easier configurations.
The benefits are however far from automatic�the result is sometimes more
problematic than the sum of the parts�and there probably will always be cases
in which access control resorts to ad hoc programs and scripts.

Those efforts have sometimes produced general languages for access control
(e.g., [2–5,7,10,11]). The languages are flexible enough for programming a wide
variety of access control policies (for example, in file systems and for digital
rights management). They are targeted at distributed systems in which cryptog-
raphy figures prominently. They serve for expressing the assertions contained in
cryptographic credentials, such as the association of a principal with a public
key, the membership of a principal in a group, or the right of a principal to per-
form a certain operation at a specified time. They also serve for combining cre-
dentials from many sources with policies, and thus for making authorization

2 Abadi

decisions. More broadly, the languages sometimes aim to support trust manage-
ment tasks.

Several of the most recent language designs rely on concepts and techniques
from logic, specifically from logic programming: Li et al.’s D1LP and RT [10,
11], Jim’s SD3 [7], and DeTreville’s Binder [4]. These are explicitly research
projects. Languages with practical aims such as XrML 2.0 include some closely
related ideas, though typically with less generality and simpler logic. This note
will focus on Binder.

One might question whether the use of these sophisticated languages would
reduce the number of ways in which access control can be broken or
circumvented. Policies in these languages might be difficult to write and to
understand�but perhaps no worse than policies embodied in Perl scripts and
configuration files. There seem to be no hard data on this topic.

A look at Binder

Binder is a good representative of this line of work. It shares many of the goals
of other languages and several of their features. It has a clean design, based di-
rectly on that of logic-programming languages.

Basically, a Binder program is a set of Prolog-style logical rules. Unlike
Prolog, Binder does not include function symbols; in this respect, Binder is close
to the Prolog fragment Datalog. Also, unlike Prolog, Binder has a notion of con-
text and a distinguished relation says.

For instance, in Binder we can write:

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

may-access(p,o,Rd) :- good(p)

These rules can be read as expressing that any principal p may access any ob-
ject o in read mode (Rd) if Bob says that p may do so or if p is good.

Here only :- and says have built-in meanings. The other constructs have to
be defined or axiomatized. As in Prolog, :- stands for reverse implication (“if”).
As in previous logical treatments of access control, says serves to represent the
statements of principals and their consequences [1]. Thus,

Bob says may-access(Alice,Foo.txt,Rd)

holds if there is a statement from Bob that contains a representation of the for-
mula

may-access(Alice,Foo.txt,Rd)

More delicately,

Bob says may-access(Alice,Foo.txt,Rd)

 On Access Control 3

also holds if there is a statement from Bob that contains a representation of the
formula

may-access(Alice,Foo.txt,RdWr)

and another one that contains a representation of the rule

may-access(p,o,Rd) :- may-access(p,o,RdWr)

The author of an access control policy need not be concerned with the details
of how formulas are associated with piles of bits and network protocols. In
particular, says abstracts from the details of authentication. When C says S, C
may send S on a local channel via a trusted operating system within a computer,
on a physically secure channel in a machine room, on a channel secured with
shared-key cryptography, or in a certificate with a public-key digital signature.

Each formula is relative to a context. In our example, Bob is a context (a
source of statements). Another context is implicit: the local context in which the
formula applies. For example,

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

is to be interpreted in the implicit local context, and Bob is the name for another
context from which the local context imports statements. This import relation
might be construed as a form of trust.

There is no requirement that predicates mean the same in all contexts. For
example, Bob might not even know about the predicate may-access, and might
assert

peut-lire(Alice,Foo.txt)

instead of

may-access(Alice,Foo.txt,Rd)

In that situation, one may adopt the rule:

may-access(p,o,Rd) :- Bob says peut-lire(p,o)

On the other hand, Binder does not provide much built-in support for local
name spaces. A closer look reveals that the names of contexts have global mean-
ings. In particular, if Bob exports the rule

may-access(p,o,Rd) :-

 Charlie says may-access(p,o,RdWr)

the local context will obtain

Bob says may-access(p,o,Rd) :-

 Charlie says may-access(p,o,RdWr)

without any provision for the possibility that Charlie might not be the same
locally and for Bob. Other systems, such as SDSI/SPKI [5], include more elabo-
rate naming mechanisms.

4 Abadi

Distributed access control as data integration

In the database field, a classic problem is how to integrate multiple sources of
data. The basic problem set-up is that there is a collection of databases, each
defining some relations, and one wants to do operations (in particular queries) on
all of them. The query language may be some variant of Prolog, or of its frag-
ment Datalog. Modern versions of the problem address the case where some or
all of the sources of data provide semi-structured objects�on the Web in XML,
for instance. The languages vary accordingly.

Each database may expose a different interface and export its data in a dif-
ferent format. In systems such as Tsimmis [6,12], wrappers translate data from
each source into a common model. Mediators then give integrated views of data
from multiple (wrapped) sources. For instance, the following is a mediator, writ-
ten in the language MSL (Mediator Specification Language) of Tsimmis:

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-

 <person {<name N> <dept ‘CS'> <relation R> |

 Rest1}>@whois

 AND decompose_name(N, LN, FN)

 AND <R {<first_name FN> <last_name LN> | Rest2}>@cs

This mediator defines an information source med in terms of two others,
whois and cs. A query to med on cs_persons results in two queries, one on
whois and one on cs, plus a call on the external predicate decompose_name.
In expressions of the form <...>@s, s is a site: a constant or a variable that
represents an information source. The details, which are unimportant for present
purposes, can be found in Papakonstantinou’s dissertation [12].

MSL and Binder have more in common than their proximity to Datalog. Both
deal with multiple sources of data (sites or contexts). In Binder, access control
policies may be regarded as mediators that integrate data from multiple contexts.
Each context may define some relations (good, may-access, etc.), so we may
as well regard contexts as databases. However, the databases may be imple-
mented by certificates, rather than with big tables (so revocation and negation
can be difficult). There is even a remarkable syntactic similarity between MSL
and Binder, at least at the level of abstract syntax: @ in MSL is analogous to
says in Binder, and we may read P@s as s says P.

These similarities suggest the possibility of exploiting ideas and methods
from databases in security. For instance, we may borrow implementation tech-
niques and some theory. We may also borrow some language design. The
thought of basing access control on semi-structured data is inevitable but some-
what frightening. More conservatively, languages for access control may incor-
porate important query-language constructs that go beyond first-order logic and
Datalog, for example for aggregating data.

 On Access Control 5

While MSL and Binder have similarities in syntax and semantics, their
pragmatics are quite different. In short, the two languages are used in different
environments, for different purposes, and under different constraints.

• Work on data integration seems to assume a messy but benign world.
This attitude may sometimes motivate pragmatic shortcuts, for example
the plausible assumption that two relations with the same name in dif-
ferent sites might be intended to mean the same unless stated otherwise.

• In security, on the other hand, we tend to regard data from foreign con-
texts with a healthy dose of distrust. While users may work around mis-
takes in data integration, and tolerate them as ordinary bugs, mistakes in
access control are vulnerabilities, often with serious consequences.

The term “views,” so often used in data integration, suggests that each source
of data provides part of the truth on a whole. The literature on data integration
explores two possible approaches [9]:

• global-as-view (GAV): each relation in the mediator schema is defined
by a query over the data sources;

• local-as-view (LAV): the data sources are defined by queries over the
mediator schema.

Both approaches have benefits in data integration. On the other hand, Binder
seems to fit only the GAV model; it is not clear how the LAV model might apply
in distributed access control.

Security is primarily a property of systems, not a property of languages. The
observation that some “security languages” resemble some “data integration lan-
guages” seems intriguing, and perhaps useful, but it mostly ignores the systems
for which the languages were invented.

Nevertheless, distributed access control is at least partly about data integra-
tion. We may therefore hope that advances in data integration, and more broadly
in databases, would eventually be of some benefit in security. We may even
imagine that we will be able to dispense with much of the special machinery for
access control, relying instead on systems for data integration and the like (e.g.,
[8]), by subsumption. Whether that outcome would be good, rather than merely
interesting, remains open to debate.

Acknowledgments

I am grateful to John DeTreville, Phokion Kolaitis, Butler Lampson, Roger
Needham, Dan Suciu, and Wang-Chiew Tan for discussions that contributed to
this note and to Mike Burrows for comments on the presentation of a draft. This
work was partly supported by the National Science Foundation under Grants
CCR-0204162 and CCR-0208800.

6 Abadi

References

1. ABADI, M., BURROWS, M., LAMPSON, B. AND PLOTKIN, G., ‘A calculus for access
control in distributed systems,’ ACM Trans. on Programming Languages and Sys-
tems, vol. 15, no. 4, September 1993, pp. 706-734.

2. BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J. AND. KEROMYTIS, A.D., The KeyNote
trust-management system, version 2. IETF RFC 2704, September 1999.

3. BLAZE, M., FEIGENBAUM, J. AND LACY, J., ‘Decentralized trust management,’ Proc.
1996 IEEE Symposium on Security and Privacy, pp. 164-173.

4. DETREVILLE, J., ‘Binder, a logic-based security language,’ Proc. 2002 IEEE Sympo-
sium on Security and Privacy, pp. 105-113.

5. ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B. AND YLÖNEN, T,.
SPKI certificate theory. IETF RFC 2693, September 1999.

6. GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV,
Y., ULLMAN, J.D., VASSALOS, V. AND WIDOM, J., ‘The TSIMMIS approach to me-
diation: data models and language,’ Journal of Intelligent Information Systems, vol.
8, no. 2, 1997, pp. 117-132.

7. JIM, T., ‘SD3: A trust management system with certified evaluation,’ Proc. 2001
IEEE Symposium on Security and Privacy, pp. 106-115.

8. JIM, T. AND SUCIU, D., ‘Dynamically distributed query evaluation,’ Proc. 2001 ACM
Symposium on Principles of Database Systems, pp. 28-39.

9. LENZERINI, M., Slides of the invited tutorial ‘Data integration: a theoretical perspec-
tive,’ given at the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2002, available at:
http://www.dis.uniroma1.it/~lenzerin/homepagine/publifile.html.

10. LI, N., GROSOF, B.N. AND FEIGENBAUM, J, ‘Delegation logic: A logic-based approach
to distributed authorization,’ ACM Trans. on Information and System Security, vol.
6, no. 1, February 2003, pp. 128-171.

11. LI, N., MITCHELL, J.C. AND WINSBOROUGH, W.H., ‘Design of a role-based trust-
management framework,’ Proc. 2002 IEEE Symposium on Security and Privacy,
pp. 114-130.

12. PAPAKONSTANTINOU, I.G., ‘Query processing in heterogeneous information sys-
tems’. Doctoral Dissertation, Stanford University, 1997, available at:
http://www.db.ucsd.edu/people/yannis.htm.

