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Cryptography 

 Rich array of  
applications and  
powerful  
implementations. 

 In some cases (e.g 
Zero-Knowledge),  
more than we would  
have dared to ask for. 



Cryptography 

 Proofs of security 

very important 

 BUT, almost entirely based 

on computational hardness 

assumptions (factoring is 

hard, cannot find collisions 

in SHA-1, …) 

 



One Way Functions (OWF) 
 Easy to compute 

 Hard to invert (even on the average) 

The most basic, unstructured form of cryptographic hardness 
[Impagliazzo-Luby ‘95] 

Major endeavor: base as much of Crypto on existence of 
OWFs – Great success (even if incomplete)  
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Pseudorandomness naturally 

corresponds to secrecy. But 

Crypto is also about 

Unforgeability (preventing 

cheating) 
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[Rompel ‘90]  

 

• Simplifications and improvements in efficiency 

• Based on new notions of computational entropy 

Very involved and seems far 

from optimal 

[Haitner-R-Vadhan-Wee ’09] 
[HRV ’10, VZ ‘12] 

[Haitner-Holenstein-R-Vadhan-Wee 

’10] 
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Entropy and Pseudoentropy 

 For a random variable X denote by H(X) the entropy of 
X.  Intuitively: how many bits of randomness in X. 

 Various measures of entropy: Shannon entropy (H(X) = 
ExX[log(1/Pr[X=x)]), min-entropy, max-entropy, …  

 For this talk, enough to imagine X that is uniform over 2k 
elements. For such X, H(X)=k.  

 X has pseudoentropy  k if  Y with H(Y)  k such that 
X and Y are computationally indistinguishable [HILL] 

  



Pseudorandom Generators [BM,Yao]  

Efficiently computable function G:{0,1}s  {0,1}m 
 

                      

 Stretching (m > s) 

 Output is computationally indistinguishable from uniform 

(i.e., has pseudoentropy m).  

          x                       G(x) 



False Entropy Generator 

 Loosely, the most basic object in HILL is: 

Gfe(x,g,i)=f(x),g,g(x)1..i 

(think of g as matrix multiplication). 

Lemma Let k=log|f-1(f(x))|, then when i=k+log n then 
g,g(x)1..i is pseudorandom (even given f(x)). 

 Intuition: first k-c¢log n bits are statistically close to 
uniform (Leftover Hash Lemma) and next (c+1)log n 
bits are pseudorandom (GL Hard-Core Function).  



False Entropy Generator (II) 

Gfe(x,g,i)=f(x),g,g(x)1..i 

Lemma: For the variable Gfe(x,g,i) (with random inputs)  
  = pseudoentropy – real entropy > (log n)/n  

Reason: w.p 1/n over choice of i (when i=k+log n) the 
output Gfe(x,g,i) is indistinguishable from distribution 
with entropy |x|+|g|+log n (whereas real entropy 
|x|+|g|)  

 Disadvantages:  rather small, value of real entropy 
unknown, pseudoentropy < entropy of input 



Building Block of [HRV ’10] 

 Simply do not truncate: 

Gnb(x,g)=f(x),g, g(x) 

 Nonsense: Gnb(x,g) is invertible and therefore 

has no pseudoentropy! 

 Well yes, but: Gnb(x,g) does have pseudoentropy 

from the point of view of an online distinguisher 

(getting one bit at a time).  



Next-Bit Pseudoentropy 

 X has pseudoentropy  k if  Y with H(Y)  k such that X and Y are 
computationally indistinguishable 

 X=(X1…Xn) has next-bit pseudoentropy  k if  {Yi}i2[n] with  

 i H(Yi|X1…Xi-1)  k such that  

 Xi and Yi are computationally indistinguishable given X1,…,Xi-1 

 Remarks:  

 X and {Yi} are jointly distributed 

 The two notions are identical for k=n [BM, Yao, GGM] 

 Generalizes to blocks (rather than bits) 

 Next-bit pseudoentropy is weaker than pseudoentropy  

 

Gnb(x,g)=f(x),g,g(x)1,…n 



Our Next-Block Pseudoentropy Generator 

 Gnb(x,g)=f(x),g,g(x) 

 Next-block pseudoentropy > |x|+|g|+logn 

 X=G(x,g) and {Yi} obtained from X by replacing first k+logn 

bits of g(x) with uniform bits, where  k=log|f-1(f(x))|   

 Advantages:   

  = (next-block pseudoentropy – real entropy) > logn 

  Entropy bounds known (on total entropy) 

 “No bit left behind”  



Simple form of PRGs in OWFs 

In conclusion: for OWF f:{0,1}n  {0,1}n & (appropriate) 
pair-wise independent hash function g:{0,1}n  {0,1}n 

                      

 

 Has pseudoentropy in the eyes of an online distinguisher 
(i.e., next-block pseudoentropy) 

 [Vadhan-Zheng ‘12] Don’t need g at all + additional 
efficiency improvement.  

          x                       f(x), g, g(x) 



Pseudoentropy vs. Inaccessible Entropy 

[HILL ‘91]: A distribution X has pseudoentropy if it is 
indistinguishable from X’ such that H(X’)>H(X)  

 X looks like it has more entropy than it really does 

[HRVW ’09] X has in inaccessible entropy if for any 
efficient algorithm A, if A “samples from the support” of 
X then H(A(.)) < H(X) 

 X has entropy but some of it is inaccessible 
 

 

Secrecy 

Unforgeability 



Universal One-Way Hash Functions [NY] 

G={g} a family of efficiently computable hash functions 

such that                      

 (2nd pre-image) Given random g and x, hard to find x’ 
such that g(x)=g(x’). 

 Compare with collision resistance: Given g, hard to find 
x and x’ such that g(x)=g(x’).  



Simple form of UOWHFs in OWFs 

OWF f:{0,1}n  {0,1}n 

 Define F(x,i)= first i bits of f(x)  
 Given random x,i may be possible to find x’ such that 

F(x,i)= F(x’,i)  F may be broken as a UOWHF 

 But it is infeasible to sample such x’ with full entropy  
F is “a bit like” a UOWHF  



Simple form of UOWHFs in OWFs 

Proof idea: Assume that given x,i algorithm A samples x’ 
with full entropy such that F(x,i)= F(x’,i). 

 In other words, x’ is uniform such that first i bits of f(x) 
equal first i bits of f(x’)  

Given y find x=f-1(y) (breaking f) as follows:  

 Let xi be such that f(xi) and y agree on first i bits.   

 To get xi+1 from xi use A on input (xi,i) until it samples x’ such 
that f(x’) and y agree on first i+1 bits (set xi+1 = x’). 

 Output  x=xn. 
 



Inaccessible Entropy Generator 

OWF f:{0,1}n  {0,1}n 

 Inaccessible entropy generator: 

  Define Gie(x)=f(x)1,f(x)2,…,f(x)n,x 

 Informal thm: There is no algorithm that produces each 
one of the n+1 blocks (in an online fashion) with full 
entropy (hence an inaccessible entropy generator).  

 Useful in construction of statistically hiding commitment 
schemes and inspiring in construction of UOWHFS 
(slightly different analysis).  



Connection to Statistical Commitment 

 Inaccessible entropy generator: 

  Define Gie(s)=Z1,Z2,…,Zn 

 Assume Zi is a uniform bit (from the point of view of an 
observer) but is completely fixed conditioned on the 
internal state of any algorithm generating it. 

 Use Zi to mask a bit  (output Z1,Z2,…,Zi-1, Zi  ).  

 Then  is statistically hidden (for outside observer) but 
the committer can only open a single value.  



Two Computational Entropy Generators 

f:{0,1}n  {0,1}n OWF. 

 Next block pseudoentropy generator: 

  Gnb(x)=f(x),x1,x2,…,xn 

 Looks (on-line) like it has entropy|x|+log n. 

 Inaccessible entropy generator: 

  Gie(x)=f(x)1,f(x)2,…,f(x)n,x 

 Can generate (on-line) at most|x| - log n bits of entropy. 



Summary 

 

 

 When viewed correctly, one-way functions rather 
directly imply simple forms of the “first layer” of 
cryptographic primitives. 

 This view relies on setting the “right” computational 
notions of entropy. 

 Open problems: Beyond the world of OWFs, Use 
for lower bounds, Further Unifications, Better 
constructions, 
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