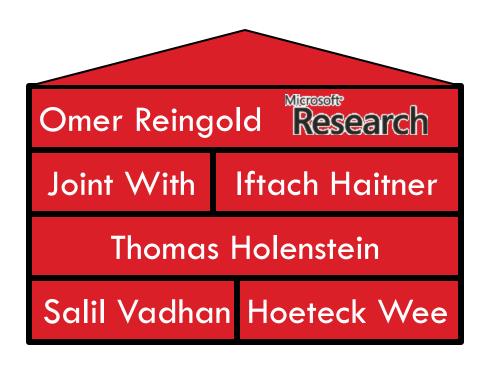
The Many Entropies of One-Way Functions



Cryptography

- Rich array of applications and powerful implementations.
- In some cases (e.g
 Zero-Knowledge),
 more than we would
 have dared to ask for.

Cryptography

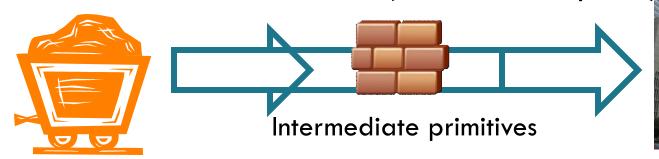
- Proofs of security very important
- BUT, almost entirely based on computational hardness assumptions (factoring is hard, cannot find collisions in SHA-1, ...)

One Way Functions (OWF)

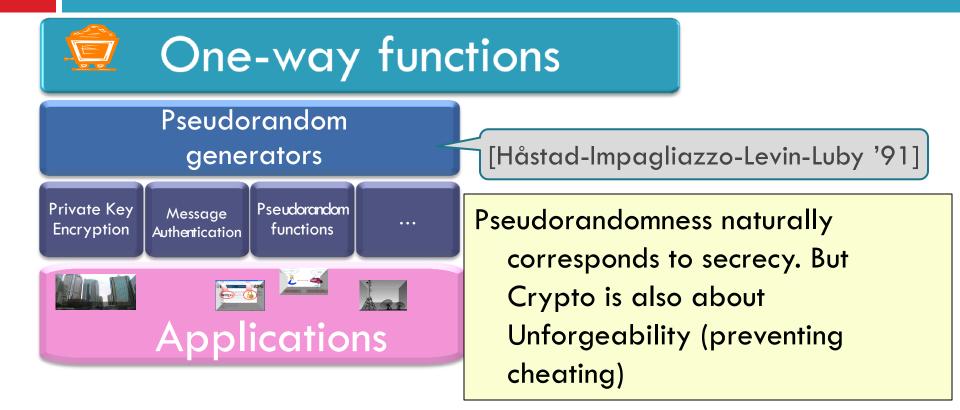
- Easy to compute
- Hard to invert (even on the average)

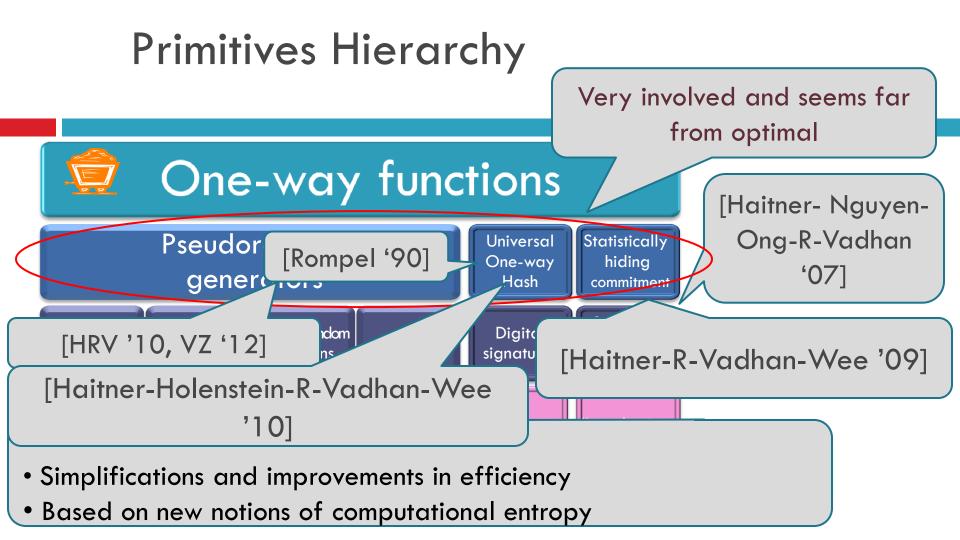
The most basic, unstructured form of cryptographic hardness [Impagliazzo-Luby '95]

Major endeavor: base as much of Crypto on existence of OWFs – Great success (even if incomplete)

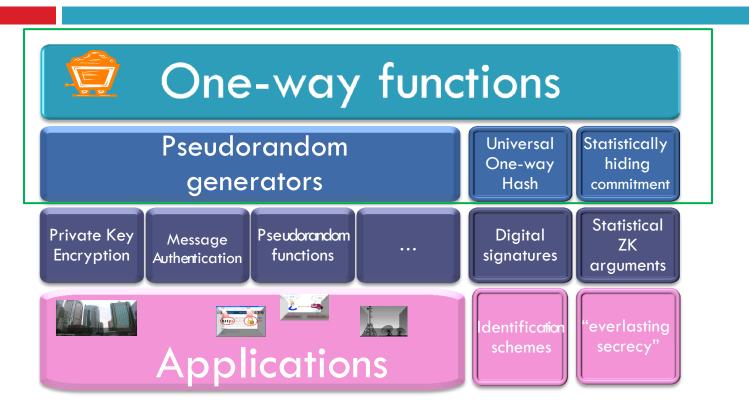


Primitives Hierarchy

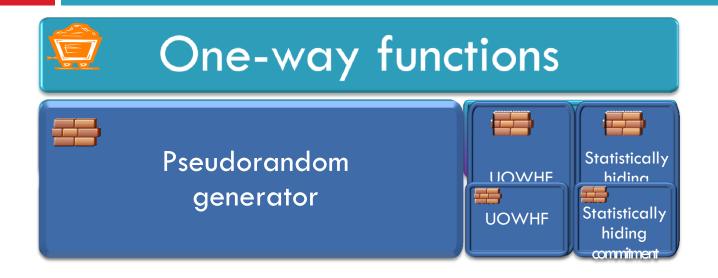




Primitives Hierarchy



Building the First Layer



Entropy and Pseudoentropy

- For a random variable X denote by H(X) the entropy of
 X. Intuitively: how many bits of randomness in X.
- □ Various measures of entropy: Shannon entropy ($H(X) = E_{x \leftarrow X}[log(1/Pr[X=x)])$), min-entropy, max-entropy, ...
- □ For this talk, enough to imagine X that is uniform over 2^k elements. For such X, H(X)=k.
- □ X has pseudoentropy $\geq k$ if $\exists Y$ with $H(Y) \geq k$ such that X and Y are computationally indistinguishable [HILL]

Pseudorandom Generators [BM, Yao]

Efficiently computable function $G:\{0,1\}^s \to \{0,1\}^m$

- \square Stretching (m > s)
- Output is computationally indistinguishable from uniform (i.e., has pseudoentropy m).

False Entropy Generator

Loosely, the most basic object in HILL is:

$$G_{fe}(x,g,i)=f(x),g,g(x)_{1..i}$$

(think of g as matrix multiplication).

- Lemma Let $k=\log|f^{-1}(f(x))|$, then when $i=k+\log n$ then $g_ig(x)_{1:i}$ is pseudorandom (even given f(x)).
- □ Intuition: first k-c·log n bits are statistically close to uniform (Leftover Hash Lemma) and next (c+1)log n bits are pseudorandom (GL Hard-Core Function).

False Entropy Generator (II)

```
G_{fe}(x,g,i)=f(x),g,g(x)_{1..i}

Lemma: For the variable G_{fe}(x,g,i) (with random inputs)

\Delta = \text{pseudoentropy} - \text{real entropy} > (\log n)/n

Reason: w.p 1/n over choice of i (when i=k+log n) the output G_{fe}(x,g,i) is indistinguishable from distribution with entropy |x|+|g|+\log n (whereas real entropy |x|+|g|)
```

□ Disadvantages: \triangle rather small, value of real entropy unknown, pseudoentropy < entropy of input

Building Block of [HRV '10]

Simply do not truncate:

$$G_{nb}(x,g)=f(x),g,g(x)$$

- □ Nonsense: $G_{nb}(x,g)$ is invertible and therefore has no pseudoentropy!
- □ Well yes, but: $G_{nb}(x,g)$ does have pseudoentropy from the point of view of an online distinguisher (getting one bit at a time).

 $G_{nb}(x,g)=f(x),g,g(x)_{1,...n}$

Next-Bit Pseudoentropy

- \square X has pseudoentropy $\ge k$ if \exists Y with $H(Y) \ge k$ such that X and Y are computationally indistinguishable
- \square X=(X₁...X_n) has next-bit pseudoentropy $\ge k$ if $\exists \{Y_i\}_{i\in[n]}$ with
 - $\Sigma_i H(Y_i | X_1...X_{i-1}) \ge k$ such that
 - \square X_i and Y_i are computationally indistinguishable given $X_1, ..., X_{i-1}$
- □ Remarks:
 - X and {Y_i} are jointly distributed
 - \square The two notions are identical for k=n [BM, Yao, GGM]
 - Generalizes to blocks (rather than bits)
 - Next-bit pseudoentropy is weaker than pseudoentropy

Our Next-Block Pseudoentropy Generator

- \Box $G_{nb}(x,g)=f(x),g,g(x)$
- □ Next-block pseudoentropy > |x|+|g|+logn
 - X=G(x,g) and $\{Y_i\}$ obtained from X by replacing first k+logn bits of g(x) with uniform bits, where $k=log|f^{-1}(f(x))|$
- □ Advantages:
 - \triangle = (next-block pseudoentropy real entropy) > logn
 - Entropy bounds known (on total entropy)
 - "No bit left behind"

Simple form of PRGs in OWFs

In conclusion: for OWF $f:\{0,1\}^n \to \{0,1\}^n$ & (appropriate) pair-wise independent hash function $g:\{0,1\}^n \to \{0,1\}^n$

$$\times$$
 \Rightarrow $f(x), g, g(x)$

- Has pseudoentropy in the eyes of an online distinguisher (i.e., next-block pseudoentropy)
- □ [Vadhan-Zheng '12] Don't need *g* at all + additional efficiency improvement.

Pseudoentropy vs. Inaccessible Entropy

- [HILL '91]: A distribution X has ps indistinguishable from X' such t Secrecy
 □ X looks like it has more entropy than it really does
 [HRVW '09] X has in inaccess efficient algorithm A, if A 'Unforgeability ort" of X then H(A(·)) < H(X)
- X has entropy but some of it is inaccessible

Universal One-Way Hash Functions [NY]

- $G=\{g\}$ a family of efficiently computable hash functions such that
- □ (2nd pre-image) Given random g and x, hard to find x' such that g(x)=g(x').
- □ Compare with collision resistance: Given g, hard to find x and x' such that g(x)=g(x').

Simple form of UOWHFs in OWFs

OWF
$$f:\{0,1\}^n \to \{0,1\}^n$$

- \square Define F(x,i)= first i bits of f(x)
- □ Given random x,i may be possible to find x' such that $F(x,i)=F(x',i) \Rightarrow F$ may be broken as a UOWHF
- \square But it is infeasible to sample such x' with full entropy \Longrightarrow F is "a bit like" a UOWHF

Simple form of UOWHFs in OWFs

- <u>Proof idea</u>: Assume that given x,i algorithm A samples x' with full entropy such that F(x,i) = F(x',i).
 - In other words, x' is uniform such that first i bits of f(x) equal first i bits of f(x')
- Given y find $x=f^{-1}(y)$ (breaking f) as follows:
 - \blacksquare Let x_i be such that $f(x_i)$ and y agree on first i bits.
 - To get x_{i+1} from x_i use A on input (x_i,i) until it samples x' such that f(x') and y agree on first i+1 bits (set $x_{i+1} = x'$).
 - \square Output $X=X_n$.

Inaccessible Entropy Generator

OWF
$$f:\{0,1\}^n \to \{0,1\}^n$$

□ Inaccessible entropy generator:

Define
$$G_{ie}(x)=f(x)_1,f(x)_2,...,f(x)_n,x$$

- □ Informal thm: There is no algorithm that produces each one of the n+1 blocks (in an online fashion) with full entropy (hence an inaccessible entropy generator).
- Useful in construction of statistically hiding commitment schemes and inspiring in construction of UOWHFS (slightly different analysis).

Connection to Statistical Commitment

□ Inaccessible entropy generator:

Define
$$G_{ie}(s)=Z_1,Z_2,...,Z_n$$

- □ Assume Z_i is a uniform bit (from the point of view of an observer) but is completely fixed conditioned on the internal state of any algorithm generating it.
- □ Use Z_i to mask a bit σ (output $Z_1, Z_2, ..., Z_{i-1}, Z_i \oplus \sigma$).
- \Box Then \Box is statistically hidden (for outside observer) but the committer can only open a single value.

Two Computational Entropy Generators

$$f:\{0,1\}^n \to \{0,1\}^n \text{ OWF.}$$

Next block pseudoentropy generator:

$$G_{nb}(x)=f(x),x_1,x_2,...,x_n$$

- Looks (on-line) like it has entropy $|x| + \log n$.
- Inaccessible entropy generator:

$$G_{ie}(x)=f(x)_1,f(x)_2,...,f(x)_n,x$$

 \square Can generate (on-line) at most $|x| - \log n$ bits of entropy.

Summary

- When viewed correctly, one-way functions rather directly imply simple forms of the "first layer" of cryptographic primitives.
- This view relies on setting the "right" computational notions of entropy.
- Open problems: Beyond the world of OWFs, Use for lower bounds, Further Unifications, Better constructions,

