
The Many Entropies of One-Way Functions

Thomas Holenstein

Iftach Haitner

Salil Vadhan Hoeteck Wee

Joint With

Omer Reingold

Cryptography

 Rich array of
applications and
powerful
implementations.

 In some cases (e.g
Zero-Knowledge),
more than we would
have dared to ask for.

Cryptography

 Proofs of security

very important

 BUT, almost entirely based

on computational hardness

assumptions (factoring is

hard, cannot find collisions

in SHA-1, …)

One Way Functions (OWF)
 Easy to compute

 Hard to invert (even on the average)

The most basic, unstructured form of cryptographic hardness
[Impagliazzo-Luby ‘95]

Major endeavor: base as much of Crypto on existence of
OWFs – Great success (even if incomplete)

x f(x)
f

Intermediate primitives

 Pseudorandom
 generators

Message
Authentication

Private Key
Encryption

Pseudorandom
functions

…

Primitives Hierarchy

 Applications

[Håstad-Impagliazzo-Levin-Luby ’91]

Pseudorandomness naturally

corresponds to secrecy. But

Crypto is also about

Unforgeability (preventing

cheating)

 Pseudorandom
 generators

Message
Authentication

Private Key
Encryption

Pseudorandom
functions

…

Universal
One-way

Hash

Digital
signatures

Statistically
hiding

 commitment

Statistical
ZK

arguments

Primitives Hierarchy

[Haitner- Nguyen-

Ong-R-Vadhan

‘07]

Identification
 schemes

“everlasting
secrecy”

 Applications

[Rompel ‘90]

• Simplifications and improvements in efficiency

• Based on new notions of computational entropy

Very involved and seems far

from optimal

[Haitner-R-Vadhan-Wee ’09]
[HRV ’10, VZ ‘12]

[Haitner-Holenstein-R-Vadhan-Wee

’10]

 Pseudorandom
 generators

Message
Authentication

Private Key
Encryption

Pseudorandom
functions

…

Universal
One-way

Hash

Digital
signatures

Statistically
hiding

 commitment

Statistical
ZK

arguments

Primitives Hierarchy

Identification
 schemes

“everlasting
secrecy”

 Applications

 Next Block
 Pseudo entropy

 Inaccessible
 entropy Statistically

hiding
commitment

UOWHF

Building the First Layer

 Pseudorandom
 generator

UOWHF

Statistically
hiding

commitment

 Pseudorandom
 generator

Entropy and Pseudoentropy

 For a random variable X denote by H(X) the entropy of
X. Intuitively: how many bits of randomness in X.

 Various measures of entropy: Shannon entropy (H(X) =
ExX[log(1/Pr[X=x)]), min-entropy, max-entropy, …

 For this talk, enough to imagine X that is uniform over 2k
elements. For such X, H(X)=k.

 X has pseudoentropy  k if  Y with H(Y)  k such that
X and Y are computationally indistinguishable [HILL]

Pseudorandom Generators [BM,Yao]

Efficiently computable function G:{0,1}s  {0,1}m

 Stretching (m > s)

 Output is computationally indistinguishable from uniform

(i.e., has pseudoentropy m).

 x G(x)

False Entropy Generator

 Loosely, the most basic object in HILL is:

Gfe(x,g,i)=f(x),g,g(x)1..i

(think of g as matrix multiplication).

Lemma Let k=log|f-1(f(x))|, then when i=k+log n then
g,g(x)1..i is pseudorandom (even given f(x)).

 Intuition: first k-c¢log n bits are statistically close to
uniform (Leftover Hash Lemma) and next (c+1)log n
bits are pseudorandom (GL Hard-Core Function).

False Entropy Generator (II)

Gfe(x,g,i)=f(x),g,g(x)1..i

Lemma: For the variable Gfe(x,g,i) (with random inputs)
  = pseudoentropy – real entropy > (log n)/n

Reason: w.p 1/n over choice of i (when i=k+log n) the
output Gfe(x,g,i) is indistinguishable from distribution
with entropy |x|+|g|+log n (whereas real entropy
|x|+|g|)

 Disadvantages:  rather small, value of real entropy
unknown, pseudoentropy < entropy of input

Building Block of [HRV ’10]

 Simply do not truncate:

Gnb(x,g)=f(x),g, g(x)

 Nonsense: Gnb(x,g) is invertible and therefore

has no pseudoentropy!

 Well yes, but: Gnb(x,g) does have pseudoentropy

from the point of view of an online distinguisher

(getting one bit at a time).

Next-Bit Pseudoentropy

 X has pseudoentropy  k if  Y with H(Y)  k such that X and Y are
computationally indistinguishable

 X=(X1…Xn) has next-bit pseudoentropy  k if  {Yi}i2[n] with

 i H(Yi|X1…Xi-1)  k such that

 Xi and Yi are computationally indistinguishable given X1,…,Xi-1

 Remarks:

 X and {Yi} are jointly distributed

 The two notions are identical for k=n [BM, Yao, GGM]

 Generalizes to blocks (rather than bits)

 Next-bit pseudoentropy is weaker than pseudoentropy

Gnb(x,g)=f(x),g,g(x)1,…n

Our Next-Block Pseudoentropy Generator

 Gnb(x,g)=f(x),g,g(x)

 Next-block pseudoentropy > |x|+|g|+logn

 X=G(x,g) and {Yi} obtained from X by replacing first k+logn

bits of g(x) with uniform bits, where k=log|f-1(f(x))|

 Advantages:

  = (next-block pseudoentropy – real entropy) > logn

 Entropy bounds known (on total entropy)

 “No bit left behind”

Simple form of PRGs in OWFs

In conclusion: for OWF f:{0,1}n  {0,1}n & (appropriate)
pair-wise independent hash function g:{0,1}n  {0,1}n

 Has pseudoentropy in the eyes of an online distinguisher
(i.e., next-block pseudoentropy)

 [Vadhan-Zheng ‘12] Don’t need g at all + additional
efficiency improvement.

 x f(x), g, g(x)

Pseudoentropy vs. Inaccessible Entropy

[HILL ‘91]: A distribution X has pseudoentropy if it is
indistinguishable from X’ such that H(X’)>H(X)

 X looks like it has more entropy than it really does

[HRVW ’09] X has in inaccessible entropy if for any
efficient algorithm A, if A “samples from the support” of
X then H(A(.)) < H(X)

 X has entropy but some of it is inaccessible

Secrecy

Unforgeability

Universal One-Way Hash Functions [NY]

G={g} a family of efficiently computable hash functions

such that

 (2nd pre-image) Given random g and x, hard to find x’
such that g(x)=g(x’).

 Compare with collision resistance: Given g, hard to find
x and x’ such that g(x)=g(x’).

Simple form of UOWHFs in OWFs

OWF f:{0,1}n  {0,1}n

 Define F(x,i)= first i bits of f(x)
 Given random x,i may be possible to find x’ such that

F(x,i)= F(x’,i)  F may be broken as a UOWHF

 But it is infeasible to sample such x’ with full entropy 
F is “a bit like” a UOWHF

Simple form of UOWHFs in OWFs

Proof idea: Assume that given x,i algorithm A samples x’
with full entropy such that F(x,i)= F(x’,i).

 In other words, x’ is uniform such that first i bits of f(x)
equal first i bits of f(x’)

Given y find x=f-1(y) (breaking f) as follows:

 Let xi be such that f(xi) and y agree on first i bits.

 To get xi+1 from xi use A on input (xi,i) until it samples x’ such
that f(x’) and y agree on first i+1 bits (set xi+1 = x’).

 Output x=xn.

Inaccessible Entropy Generator

OWF f:{0,1}n  {0,1}n

 Inaccessible entropy generator:

 Define Gie(x)=f(x)1,f(x)2,…,f(x)n,x

 Informal thm: There is no algorithm that produces each
one of the n+1 blocks (in an online fashion) with full
entropy (hence an inaccessible entropy generator).

 Useful in construction of statistically hiding commitment
schemes and inspiring in construction of UOWHFS
(slightly different analysis).

Connection to Statistical Commitment

 Inaccessible entropy generator:

 Define Gie(s)=Z1,Z2,…,Zn

 Assume Zi is a uniform bit (from the point of view of an
observer) but is completely fixed conditioned on the
internal state of any algorithm generating it.

 Use Zi to mask a bit  (output Z1,Z2,…,Zi-1, Zi  ).

 Then  is statistically hidden (for outside observer) but
the committer can only open a single value.

Two Computational Entropy Generators

f:{0,1}n  {0,1}n OWF.

 Next block pseudoentropy generator:

 Gnb(x)=f(x),x1,x2,…,xn

 Looks (on-line) like it has entropy|x|+log n.

 Inaccessible entropy generator:

 Gie(x)=f(x)1,f(x)2,…,f(x)n,x

 Can generate (on-line) at most|x| - log n bits of entropy.

Summary

 When viewed correctly, one-way functions rather
directly imply simple forms of the “first layer” of
cryptographic primitives.

 This view relies on setting the “right” computational
notions of entropy.

 Open problems: Beyond the world of OWFs, Use
for lower bounds, Further Unifications, Better
constructions,

Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear

circular)

16x9

4x3

