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What is “Privacy”?

Lots of useful data out there, containing valuable information.

Substantial, and reasonable, concern about sensitive data.

Access control alone isn’t an answer; we want to understand
sensitive parts of a dataset and publish our conclusions.

In this talk “privacy” will be about releasing restricted but useful
information about sensitive data.

1. Early privacy definitions: k-anonymity, l-diversity, m-invariance, t-

2. A more recent definition: Differential Privacy.
3. Some applications thereof.
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Syntactic Privacy Definitions

Prevailing wisdom has been that privacy relates to databases.

Record attributes are either “public”, or “sensitive”.

Age Gender Diagnosis

37 Male Flu

35 Male Flu

32 Female Flu

23 Male STD

37 Male HIV

63 Male Dead

Releasing this information reveals information about patients.
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k-Anonymity

The first approach, k-Anonymity, requires suppressing public

attributes so that each equivalence class has size at least k:

Age Gender Diagnosis

37 Male Flu

35 Male Flu

32 Female Flu

23 Male STD

37 Male HIV

63 Male Dead

→

Age Gender Diagnosis

30s * Flu

30s * Flu

30s * Flu

* Male STD

* Male HIV

* Male Dead

Does the table on the right actually protect everyone’s privacy?
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l-Diversity

The next approach, l-Diversity requires equivalence classes to

have sufficiently high entropy secret attributes:

Age Gender Diagnosis

30s * Flu

30s * Flu

30s * Flu

* Male STD

* Male HIV

* Male Dead

→

Age Gender Diagnosis

30s * *

30s * *

30s * *

* Male STD

* Male HIV

* Male Dead

Does the table on the right actually protect everyone’s privacy?
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Syntactic Definitions

There are fundamental problems with these sorts of approaches:

Age Gender Diagnosis

30s * Flu

30s * Flu

30s * Flu

* Male STD

* Male HIV

* Male Dead

and

Age Gender Diagnosis

20s Male Flu

20s Male Flu

20s Male HIV

* * Flu

* * Lupus

* * Gout

Imagine you are the 20 year-old male who went to both hospitals.

Problem: These guarantees are syntactic, rather than semantic.

No bounds on how much I can learn about the actual input data.
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Data Mining: Privacy v. Utility

Motivation: Inherent tension in mining sensitive databases:

We want to release aggregate information about the data,
without leaking individual information about participants.

• Aggregate info: Number of A students in a school district.
• Individual info: If a particular student is an A student.

Problem: Exact aggregate info may leak individual info. Eg:

Number of A students in district, and
Number of A students in district not named Frank McSherry.

Goal: Method to protect individual info, release aggregate info.
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Two Privacy Models

1. Non-interactive: Database is sanitized and released.

Database

San
San DB

?

2. Interactive: Multiple questions asked / answered adaptively.

Database

San ?

We will focus on the interactive model in this talk.
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An Interactive Sanitizer: Kf

Kf applies query function f to database, and returns noisy result.

Kf(DB) ≡ f(DB)+Noise

` ?

Database

ƒ Noise

Adding random noise introduces uncertainty, and thus privacy.

Important: The amount of noise, and privacy, is configurable.
Determined by a privacy parameter � and the query function f .

4



Differential Privacy

Privacy Concern: Joining the database leads to a bad event.

Strong Privacy Goal: Joining the database should not substan-
tially increase or decrease the probability of any event happening.

Consider the distributions Kf(DB−Me) and Kf(DB+Me):

107 108 109 110 111 112 113106105104103102

Q: Is any response much more likely under one than the other?

If not, then all events are just as likely now as they were before.
Any behavior based on the output is just as likely now as before.
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Differential Privacy

Definition

We say Kf gives �-differential privacy if for all possible
values of DB and Me, and all possible outputs a,

Pr[Kf(DB+Me) = a] ≤ Pr[Kf(DB−Me) = a]× exp(�)

Theorem: Probability of any event increases by at most exp(�).

107 108 109 110 111 112 113106105104103102

Important: No assumption on adversary’s knowledge / power.
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Exponential Noise

The noise distribution we use is a scaled symmetric exponential:

0 1R 2R 3R 4R-1R-2R-3R-4R

Probability of x proportional to exp(−|x|/R). Scale based on R.

Definition : Let ∆f = max
DB

max
Me

|f(DB+Me)− f(DB−Me)| .

Theorem: For all f , Kf gives (∆f/R)-differential privacy.

Noise level R is determined by ∆f , independent of DB, f(DB).
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Summing Up

Interactive output perturbation based sanitization mechanism: K

` ?

Database

ƒ Noise

Using appropriately scaled exponential noise gives:

1. Provable privacy guarantees about participation in DB.
2. Very accurate answers to queries with small ∆f .

Protects individual info and releases aggregate info at same time.

Configurable: Boundary between individual/aggregate set by R.
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Doing things with DP

Let’s start to look at more some interesting things we can do.

First, we’ll generalize our noise mechanism to many dimensions.

1. k-Means clustering algorithms.
2. Histograms and visualization.

Second, we’ll look at a mechanism which bypasses additive noise.

1. Motivated by problems and applications to game theory.
2. Results in a fully general mechanism for �-DP.
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Data Mining (k-Means)

Data: points x1, . . . , xn in Rd. Input: candidate means µ1, . . . , µk.

K-Means(µ1, . . . , µk)

1. For each 1 ≤ i ≤ k, compute

Si = {x : i = argmin
j

�x− µj�}

2. For each 1 ≤ i ≤ k, return µ�
i
= avgSi

x as the new mean.
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Data mining with K

By using sneaky functions f , we can emulate k-means:

K-Means(µ1, . . . , µk)

1. For each 1 ≤ i ≤ k, compute both

si = K(f(x) := 1 iff i = argmin
j

�x− µj�)

mi = K(f(x) := x iff i = argmin
j

�x− µj�)

2. For each 1 ≤ i ≤ k, return mi/si as the new mean.

Obs 1: If |Si| is sufficiently large, then mi/si ≈ µ�
i
.

Obs 2: In t iterations, K-means poses (d+1)kt questions.

Obs 3: Only access to data is through K. Privacy automatic.
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Tightening Privacy Guarantees

The standard composition rules for DP have us add all �.
This can be pessimistic for some analyses, like k-means.
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Probability of x proportional to exp(−|x|/R). Scale based on R.

Definition: Let ∆f = max
DB
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Me
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Data Mining (k-Means)

K-Means(µ1, . . . , µk)

1. For each 1 ≤ i ≤ k, compute both

si = K(f(x) := 1 iff i = argmin
j

�x− µj�)

mi = K(f(x) := x iff i = argmin
j

�x− µj�)

2. For each 1 ≤ i ≤ k, return mi/si as the new mean.

∆f = max
DB

max
Me

�f(DB+Me)− f(DB−Me)�1 ≤ d+1
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Example: Traffic Histogram

Database of traffic intersections. Each row is a (x, y) pair.
Histogram counts intersections in each of 64,909 grid cells.

Counting performed using K, with 1.000-differential privacy.

Maximum counting error: 13. Average counting error: 1.02.
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Example: Traffic Histogram
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Counting performed using K, with 0.010-differential privacy.

Maximum counting error: 1041. Average counting error: 98.56.
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Example: Traffic Histogram

Database of traffic intersections. Each row is a (x, y) pair.
Histogram counts intersections in each of 64,909 grid cells.

Counting performed using K, with 0.001-differential privacy.

Maximum counting error: 9663. Average counting error: 1003.23.
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Problems with Perturbation

Consider trying to price some good with a fixed production cost.
Picking the price high or low influences your revenue.

Pricing: Inputs are n bids in [0,1]. Output is a price p ∈ [0,1].

Problem: Perturbing the true answer by some noise may fail.

1. The function may have high sensitivity. (eg: Pricing)
2. Perturbations may not actually be useful. (eg: Pricing)

Moreover: Additive perturbations also fail when

3. Outputs are not numbers. (eg: strings, trees, etc...)
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A General Mechanism

Previously a “query” was f : DN → Rd, mapping data to result.
Implicit assumption that results r near f(d) are nearly as good.

Now, a query is q : (DN ×R) → R. Score of result r for data d.

Eg: Given bids and a price, revenue is q(d, r) = r×#(i : di > r).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

Definition: Let E�
q(d) output r with probability ∝ exp(�q(d, r)).

18



A General Mechanism

Previously a “query” was f : DN → Rd, mapping data to result.
Implicit assumption that results r near f(d) are nearly as good.

Now, a query is q : (DN ×R) → R. Score of result r for data d.

Eg: Given bids and a price, revenue is q(d, r) = r×#(i : di > r).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

Definition: Let E�
q(d) output r with probability ∝ exp(�q(d, r)).

18



A General Mechanism

Previously a “query” was f : DN → Rd, mapping data to result.
Implicit assumption that results r near f(d) are nearly as good.

Now, a query is q : (DN ×R) → R. Score of result r for data d.

Eg: Given bids and a price, revenue is q(d, r) = r×#(i : di > r).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

Definition: Let E�
q(d) output r with probability ∝ exp(�q(d, r)).

18



The Exponential Mechanism

Definition: Let E�
q(d) output r with probability ∝ exp(�q(d, r)).

This mechanism is referred to as “the Exponential Mechanism”.
It magically evaluates and pulls results from an arbitrary set R,
without incurring privacy cost proportional to |R|.

Privacy: E�
q gives (2�∆q)-differential privacy, where we define

∆q = max
r∈R

max
d≈d�

|q(d, r)− q(d�, r)| .

At the same time, it selects great results from discrete sets.

Utility: Pr[q(d, E�
q(d)) < OPT − t/�] is at most |R| exp(−t).

Also “complete” for DP. Any DP computation has a q function.
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Applications to Pricing

Every bidder gives a demand curve: di : [0,1] → R+. (rdi(r) ≤ 1)

Theorem: Taking q(d, r) = r
�

i di(r), then the mechanism E�
q

gives (2�)-differential privacy, and has expected revenue at least

OPT − 3 ln(e+ �2OPTm)/� ,

where m is the number of items sold at the optimal price.

Proof: Grind t = ln(e+ �2OPTm) through continuous theorem.
Argue that µ(St) is not small. (near-opt r gives near-opt q(d, r)).
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