Protocols



Security protocols

e Security protocols are concerned with
properties such as authenticity and secrecy.

— Primary examples are protocols (like SSL) that
establish communication channels.

— Other examples include protocols for electronic
voting and commerce.

* |n distributed systems, security protocols
invariably rely on cryptography.



Authentication protocols
(or channel-establishment protocols)



Authentication protocols

There are many authentication protocols.
They typically involve:

e two principals (hosts, users, ...),

e secrets (possibly shared, usually keys),

e cryptography (shared-key or public-key),
e trusted servers,

* proofs of timeliness (nonces, timestamps).
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‘ 2. the session key K

under a long-term key K.
between Band S

1. new session key K
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under a long-term key K <
between Aand S

3. communication of payloads
under the session key K



A closer look: the WMF Protocol

1. A, encrypt(K ,,(T,, B, K)) ‘ 2. encrypt(Kgs, (T, A, K))

3. communication of payloads
under the new session key K

T,, T, are timestamps.
Here encrypt is symmetric encryption. /It may include authentication.



Questions

 What assumptions are we making?
* Does the protocol work?
* Can we do better?




Assumptions: communication

We assume that an intruder can interpose a
computer in all communication paths, and thus
can alter or copy parts of messages, replay
messages, or emit false material. While this
may seem an extreme view, it is the only safe
one when designing authentication protocols.

(Needham and Schroeder, 1978)

This view is sadly realistic, at least for the Internet.
It partly explains the use of timestamps in protocols.



Assumptions: end-point security

We also assume that each principal has a
secure environment in which to compute,
such as is provided by a personal computer or
would be by a secure shared operating
system. (Needham and Schroeder, 1978)

In fact, end-points are not secure monoliths.

E.g., Web 2.0 gadgets in mashups may not be trusted, and
communicate with small protocols.



No single protocol will do...

We may want:
* few messages,

ittle encryption,

ittle trust of other machines,

numan users (with limited memory or smart-cards),
asynchronous checking (for storage and e-mail),
different cryptosystems,

little server state,

one-way or two-way authentication,

client anonymity.
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A WMF variant with a nonce

3. A, encrypt(Ky, (N, B, K)) ‘ 4. encrypt(Kss, (N, A, K))

1. hello

2.N

5. communication of payloads
under the new session key K
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An classic protocol with nonces:
Needham-Schroeder

1.A, BN,
2. encrypt(K,,(N,,B,K, encrypt(Kyg (K,A)))

3. encrypt(Kzq, (KA)
4. encrypt(K,Ny)

5. encrypt(K,N,—1)

6. communication of payloads
under the new session key K



A criticism (Denning & Sacco)

Long after a run, an attacker may
e discover K,

* replay encrypt(K;o (K,A)) to B,

e conduct a handshake with B,

* send arbitrary data to B under K,
Impersonating A.



Some possible improvements

 Make K strong and protect it well, and change
K s often.

* Let B and S interact directly.
e Use timestamps (as later in Kerberos).



Another authentication protocol




Another authentication protocol

A

1.A, B




Another authentication protocol

A

2. public-key
certificates
1.A, B for Aand B

\4




Another authentication protocol

A

2. public-key
certificates
1.A, B for Aand B

3. new session key K, signed,

encrypted under B’s public key
(plus certificates)

»
>



Another authentication protocol

A

2. public-key
certificates
1.A, B for Aand B

3. new session key K, signed,

encrypted under B’s public key
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»
>

As usual, K can then be used for encrypting and MACing payloads.



A closer look: the Denning-Sacco
public-key protocol

SK, A’ssecret key
PK; B’s public key

K  new symmetric key

2. public-key T  atimestamp

certificates

1.A,B for Aand B

\4

»
>

3. encrypt(PKg, sign(SK,, (K, T)))
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An attack

»
>

3. encrypt(PK,, sign(SK,, (K, T))) 3. encrypt(PK;, sign(SK,, (K, T)))



An attack

So C has K, but B believes
that K is shared with A!

»
>

3. encrypt(PK,, sign(SK,, (K, T))) 3. encrypt(PK;, sign(SK,, (K, T)))



Correction [with Needham]

Every message should say what it means.

‘ If the identity of a principal is important for the

‘ meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

A B

Encryption is not synonymous with security.

»
>

3. encrypt(PKj, sign(SK,, (“K is a good key for A and B at time T7)))

A 4




Other subtleties and flaws

There are many!

N2 US-CERT

° eve n i n re Ce nt yea rS’ =% UNITED STATES COMPUTER EMERGENCY READINESS 1
] ] e Vulnerability Note VU#612636
* in both design and Database

Google SAML Single Sign on vulnerability

implementation.

Tech titans meet in secret to plug SSL hole
Web authentication busted on Apache, lIS

By Dan Goodin in San Francisco The & Register’
Posted in Security, 5th November 2009 07:51 GMT

TechMet Home > TechMet Security = Bullstins

Microsoft Security Bulletin MS10-070 -
Important

Vulnerability in ASP.NET Could Allow Information
Disclosure (2418042)

Published: September 28, 2010 | Updated: Movember 03, 2010




1.A, B

Yet another protocol

A

2. public-key
certificates
for Aand B

PK, A’s public key
PK, B'’s public key
K, afreshsecretfromA
K; afresh secret from B
K=K,® K,

a new symmetric key

‘ 3. encrypt(PKg, K,) ‘

4. encrypt(PK,, K;)

As usual, K can then be used for encrypting and MACing payloads.




Yet another protocol

PK, A’s public key
PK, B'’s public key
K, afreshsecretfromA
I |2. public-key K; a fresh secret from B
certificates K=K,® K,
for Aand B a new symmetric key
1.A,B

‘ 3. encrypt(PKg, K,) ‘

4. encrypt(PK,, K;)

Does this
work???

As usual, K can then be used for encrypting and MACing payloads.  ©



An informal analysis

If A follows the protocol then she is assured
that the shared key |[. . . ] is not know to anyone
except B (though A does not have the
assurance that B knows the key). And
analogously for B. (H. Krawczyk)



An attack?
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An attack?

A and B (not C) get K.

A may believe that K is shared with C.
B knows that K is shared with A.

A, C A, B

‘ 3. encrypt(PK,, K,) 3. encrypt(PKy, K,) ‘

4. encrypt(PK,, Kp) 4. encrypt(PK,, Kg)




An attack? (cont.)

A and B (not C) get K.
A may believe that K is shared with C.
B knows that K is shared with A.

So:

* A should not give credit to C for messages
received under K.

* Chas responsibility for messages to A under K.

* |f A sends confidential data to C under K, then
B will see it, but C could divulge it to B anyway.



Perspectives

Authentication may vield responsibility, credit,
or both.
* Responsibility is essential.

— It is the basis of access control.

— It is compatible with delegation. If C says that B
speaks for C, then B does speak for C.

* Credit may be optional.

— It can be left for higher-level communication.

— But establishing credit may contribute to
robustness.  (Exercise: strengthen the protocol!)



An important modern example:
Secure Socket Layer (SSL)

* SSL relies on TCP/IP and aims to provide
secure end-to-end communication.

e SSL actually includes two layers of protocols:
— SSL Record Protocol for transport,
—higher protocols for negotiation and alerts.

Handshake Change Cipher Alert Applications
Protpc.ol Spec Protocol Protocol such as HTTPS
(negotiation) (just one message) (e.qg., for errors)

Record Protocol




-l A

The handshake

Client Server
lent_hejio Establish
hello security
Server_ capabilities
certificate

Server__key__exchan e Key exchange

) : _— Certificate_request
Establish security capabilities W
Authenticate server

: : Cli
Authenticate client %
Finish N’
S I
— her sp Change
m. cipher suite,
finish handshake



A piece of the handshake

(simplified)
2, ‘

1.N,

3. encrypt(PKjg, K), sign(SK,, hash(A, B, N,, N, K))

K: the premaster secret from which a master secret is derived,
and later encryption and MAC keys are also derived.

Exercise: What happens if various fields (e.g., A, B, ...) are
omitted in the hash of the third message? (as they were originally!)



Sessions and connections

SSL session: a client-server association.

Peer certificate X509.v3 certificate of the peer (may be null)
Compression method Compression algorithm

Cipher spec Cryptographic algorithms and parameters
Master secret 48-byte secret shared by client and server
Is resumable? Can new connections start with session?

SSL connection: a stream within a session.

Server and client random Byte sequences chosen by server and client

Server and client write MAC secrets | Keys used in MAC operations

Server and client write keys Encryption keys

Initialization vectors Initialization vectors for CBC encryption

Sequence numbers Maintained by each party for each direction




Header |[

SSL Record Protocol

MAC




SSL status

Evolution and deployment:
— various improvements in the TLS protocol,
— widespread deployment,

— but typically without client authentication
—> so users still rely on passwords, etc.,

— and with users checking server certificates
—> S0 users are victims of phishing attacks.

—> Still a challenge: strong mutual authentication
In practice.



SSL status (cont.)

* Analysis:
— several informal analyses;

— automated formal proofs of secrecy and integrity
properties (for big fragments);

— some vulnerabilities found over time.

—> Still a challenge: a complete analysis,
of actual implementations,
from solid cryptographic assumptions.



Other concerns

e SSL slows down servers.

* SSL breaks caching and complicates virtual
hosting (multiple identities for the same host).

e SSL protects data in transit, but not at rest.



From SSL to SSL Double Layer

tous les fichiers étaient encryptés — un code

serieux, SSL Double Layer, 128 bits. Bref, j'ai
rien pu faire, je I'ai envoyé a la BEFTI. C’était
quoi le type, un parano ?

(de La carte et le territoire de M. Houellebecq)

There is no SSL Double Layer (not yet), and it
would probably not be a storage technique.

However, secure storage and publication do rely
on some of the same ideas as security protocols.



An example: XML access control

* A policy language
A mapping of policies to annotated XML

[Miklau and Suciu]

documents called protections

* A cryptographic implementation of
protections in terms of bitstrings

Policy

%%

1010111010
01010110101
10101110110
11101000101




A protection

<admin>

Intended semantics: Access to the information in a node requires
possession of the keys that guard the node.

(Here the label “true” means no key.)

Implementation: By symmetric encryptions.



A protection with disjunction (V)

<admin>

Intended semantics: Access to the information in a node requires
possession of a combination of keys that satisfy the formulas that
guard the node.



A protection with conjunction (A)

<admin>

Intended semantics: Access to the information in a node requires
possession of a combination of keys that satisfy the formulas that
guard the node.



Implementing disjunctions

true

Kl
<hosp>

-

or

v is implemented using auxiliary keys,

so that only atomic formulas guard each node.

true



Implementing conjunctions

Kl
<hosp>
true

/ true
and
K, K, K
Ky K,? K K,
K< @ K2 = K,

A is implemented using secret sharing,
so that only atomic formulas guard each node.



User authentication and protocols
with weak secrets (e.qg., passwords)



Bases for user authentication

User authentication may rely on:

 Something the user knows,
for example a PIN or a password.

 Something the user has,
for example a smart-card.

 Some characteristic of the user,
for example typing pattern, voice, fingerprints.

* Where the user is located,
for example in a secure building.
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The trouble with users

e Users cannot remember Iong secrets.

e Users cannot compute much, so for example
they cannot sign delegation certificates.

* Users are gullible, impatient, demanding,
changing, . ..

—> User authentication is often the weakest link.



Hashed passwords (reminder)

Using a one-way hash function f, passwords do
not need to be stored in cleartext.

“Alice”, f user name | f(password)
password= ”123456"?7 Alice 987987

Yes access / No access

Server




Adding a salt

Salts can prevent brute-force dictionary attacks.

“Alice”, f
“123456"[]

password=

Yes access / No access

user name | salt f(...+s)
Alice 1 129222 |/[987987
Bob 545454 | 876868

Server




Adding a pepper

Peppers (salts that are not stored, but
reconstructed by search) slow down attacks.

try all possible values
for the pepper

——

“Alice”, T
“123456"[]

password=

Yes access / No access

user name | salt f(...+s+p)
Alice 1 129222 | /987987
Bob 545454 | 876868

Server




Some of the remaining problems

* Protecting the password in transit.
* Protecting against replays.



Another approach

The server invents and sends a fresh challenge.

The response should be f(password challenge).

challenge=

“093843”

“Alice”,
response=[‘978886" L

Yes access / No access

\

user name | password
Alice 123456
Bob 234567

Server




Another approach

The two approaches can be combined.

The server invents and sends a fresh challenge.
The response should be f(password challenge).

challenge=|“093843"

“Alice” : user name | password
’ <
response=‘978886” L Alice 123456
« Bob 234567
/\

. \
Yes access / No access in clear!

Server




Secure communication
with passwords

Passwords typically do not make good
encryption keys.

* An attacker that sees data M encrypted under
a password P may try possible values for P.

— When the result of a decryption “makes sense”,
the attacker may conclude that it has found P.

— The attack may be off-line (so hard to throttle).



Secure communication
with passwords

Passwords typically do not make good
encryption keys.

* An attacker that sees data M encrypted under
a password P may try possible values for P.

— When the result of a decryption “makes sense”,
the attacker may conclude that it has found P.

— The attack may be off-line (so hard to throttle).

* The attack extends to the case where M is
encrypted under a random fresh key K, and K
is encrypted under P. (Cf. Kerberos.)



Strengthening and stretching

Several “low-tech” approaches can improve on
the security of using passwords as keys:

* Extend the password by a pepper to make a
key, and publish a hash of the key.

 Compute a key by applying a moderately
expensive function to the password.

Such techniques illustrate a trade-off between
security, user memory, and access time.

Their assumptions and specifics differ.



Encrypted key exchange

There are clever protocols for “encrypted key
exchange”. [Gong et al.; Bellovin and Merritt]

* These protocols allow the exchange of a key
despite the weakness of a password.

But:

* They are all rather complex.
 Some of them have flaws. [Patel]



EKE (sketch of one variant)

A generates a public-key pair. The security of
EKE requires that the public key look random.

A sends the public key encrypted under the
password P to B.

B obtains the public key, encrypts a fresh
secret R with it, and sends the whole thing to
A encrypted under P.

Afterwards A and B both know R.



Protocols for
secure multiparty computation



Other security protocols

Payment
Voting
Multi-party computation



Secure multiparty computation

The problem:
Howcan A, ..., A

? "y
who know M, ..., M respectively,
cooperate to compute functions of M, ..., M
and share the results

without revealing their inputs or anything else?

n

We assume that A,, ..., A, don’t lieon M, ..., M.



In general, each participant may learn the
output of a different function f,, ..., f,;:

“Secure Multiparty Computation System”

.

J

The problem is trivial with a trusted third party.

The difficulty is to solve it otherwise!



Examples

e A and B are two millionaires who each know
their own wealth.

* They want to know who is richer.

[Yao, 1982]




Examples (cont.)

* Eachof A, ..., A, wants to buy or sell sugar
beets, and knows how much it is willing to
pay/charge for various quantities.

* Collectively, A,, ..., A, want to compute the
“market clearing price”.

[Bogetoft et al., 2008]

&




Examples (cont.)

* Aand B each knows their own location.

 They want to know if they are in the same
location (or how far they are).

[Narayanan et al., 2011]




A physical, in-person protocol for
checking equality in a small set [Ajtai]
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A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. Aand B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.

They are in the same location
if and only if one of the cups
contains two “yeses”.




A cryptographic protocol

[Narayanan et al.]

Recall Diffie-Hellman:

* Let p be a prime and g a generator of Zp*
(chosen with a little care).

* Ainvents x and publishes g*.
B invents y and publishes g.
— x and y serve as secret keys.
— g¥and g¥ serve as public keys.

All this is “mod p” implicitly.



A cryptographic protocol (cont.)

[Narayanan et al.]

e A (atlocation a) invents r and publishes
(gr’ gx(a+r)).

* B (at location b) invents s and t and publishes
(grsgt’ gx(a+r)sgx(t-sb))’ i.e., (grs+t’ gx(s(a—b)+(rs+t)))

* From this and x, A can compute g*"*t and
then g*la-5),

* The locations are equal iff g*@-b) = 1.

(Cf. “ElGamal encryption”.)



Perspectives

* There are many clever, surprising protocols!

* Some of them explore trade-offs between
generality and efficiency.

* There are (still) few actual applications for
cryptographic multi-party computation.



Reading

* “Using Encryption for Authentication in Large
Networks of Computers”, by Needham and
Schroeder

http://dl.acm.org/citation.cfm?id=359659

 The TLS protocol (as an example)

http://datatracker.ietf.org/wg/tls/ and in particular http://datatracker.ietf.org/doc/rfc5246/

 “Comparing Information Without Leaking It”,
by Fagin, Naor, and Winkler

http://dl.acm.org/citation.cfm?id=229469



http://dl.acm.org/citation.cfm?id=359659
http://dl.acm.org/citation.cfm?id=359659
http://dl.acm.org/citation.cfm?id=359659
http://datatracker.ietf.org/wg/tls/
http://datatracker.ietf.org/wg/tls/
http://datatracker.ietf.org/wg/tls/
http://datatracker.ietf.org/doc/rfc5246/
http://datatracker.ietf.org/doc/rfc5246/
http://dl.acm.org/citation.cfm?id=229469
http://dl.acm.org/citation.cfm?id=229469

Homework 6 (continued)

Exercise 2:

In this exercise, we write “M,, ..., M)” for the concatenation of M,,...,M, and write {M}K for the result of
cryptographically protecting M under the symmetric key K. Let us assume that this protection provides
not only secrecy but also integrity.

Suppose that A and B are two principals that want to establish a secret shared key K,;. They initially
have shared keys K, and Ky with a server S and they invent fresh nonces N, and Ny, respectively.
When A requests it, the server S invents K, for them. In order to save state, S has a secret key K, gives
K,g under K to A, and forgets K,z and all other ingredients of the particular session until B reminds S
about them. Their messages are:

1) AtoS:A, B, N,

2) Sto A:{B, N,, KugtKas, {B, Np, Kag}Ks

3) AtoB:A, {B, N, Kyg}Ks

4) BtoS:A, B, Ng, {B, N, Kyg}Ks

5) StoB:{A, Ng, Kxs}Kps

After this, A may for example send data to B encrypted under a key derived from K.

a) Briefly explain how an attacker C can impersonate A, that is, break the protocol so that B is
convinced that it shares a secret with A when in fact C knows the secret. As usual, you may
assume that C may intercept messages, replay them, tamper with cleartext, participate in other
sessions with A and B, etc., but does not a priori know how to break the underlying cryptosystem.

b) Briefly explain a simple, minimal fix.



