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Flaws 

• Circumvention and hijacking are common in 
security in many realms. 

– Tanks drive around fortifications. 

– Robbers bribe bank guards. 

• In computer systems, they are sometimes the 
consequence of design weaknesses. 

• But many result from implementation flaws: 
small but catastrophic errors in code. 

 



Software security 

Software security is 

• not only about implementation flaws, 

• not only about low-level attacks and defenses, 

• certainly not only about buffer overflows, 

but low-level attacks and defenses  

• remain important,  

• illustrate themes and techniques that appear 
throughout software systems. 

 



        

An example 



 
       int f(int x, char y)  { 
            char t[16] ; 
            initialize(t) ; 
            t[x] = y ; 
            return 0 ; 
           } 

An example 



 
       int f(int x, char y)  { 
            char t[16] ; 
            initialize(t) ; 
            t[x] = y ; 
            return 0 ; 
           } 

An example 



So what? 

• Threat model: The attacker chooses inputs. 

 The attacker can (try to) modify a location of  
      their choice at some offset from t’s address. 

• Some possible questions: 

– Can the attacker find the vulnerability and call f? 

– Can the attacker identify good target locations? 

– Can the attacker predict t’s address? 

– Will the exploit work reliably? cause crashes? 

 

 

 

 



Going further: two examples 
[from Chen, Xu, Sezer, Gauriar, and Iyer] 

• Attack NULL-HTTPD (a Web server on Linux). 
– POST commands can trigger a buffer overflow. 

     Change the configuration string of the CGI-BIN path:  
– The mechanism of CGI: 

• Server name = www.foo.com 
• CGI-BIN = /usr/local/httpd/exe 
• Request URL = http://www.foo.com/cgi-bin/bar 
 Normally, the server runs /usr/local/httpd/exe/bar 

– An attack: 
• Exploiting the buffer overflow, set CGI-BIN = /bin 
• Request URL = http://www.foo.com/cgi-bin/sh 
 The server runs /bin/sh 

  The attacker gets a shell on the server. 



• Attack SSH Communications SSH Server: 

void do_authentication(char *user, ...) { 

    int auth = 0;           /* initially auth is false  */ 

    ... 

    while (!auth) { 

   /* Get a packet from the client */ 

      type = packet_read(); /* has overflow bug         */  

      switch (type) {       /* can make auth true       */  

      ... 

      case SSH_CMSG_AUTH_PASSWORD: 

       if (auth_password(user, password)) 

            auth = 1; 

      case ... 

    } 

    if (auth) break;  

   } 

 /* Perform session preparation. */ 

 do_authenticated(…); 

}  
  The attacker circumvents authentication. 



• Attack SSH Communications SSH Server: 

void do_authentication(char *user, ...) { 

    int auth = 0;           /* initially auth is false  */ 

    ... 

    while (!auth) { 

   /* Get a packet from the client */ 

      type = packet_read(); /* has overflow bug         */  

      switch (type) {       /* can make auth true       */  

      ... 

      case SSH_CMSG_AUTH_PASSWORD: 

       if (auth_password(user, password)) 

            auth = 1; 

      case ... 

    } 

    if (auth) break;  

   } 

 /* Perform session preparation. */ 

 do_authenticated(…); 

}  
  The attacker circumvents authentication. 

 

• These are data-only attacks.  
 

• The most classic attacks often inject code.  
• Injecting code is also central in higher-level 

attacks such as SQL injection and XSS. 
 



Run-time protection: the arms race 

• Many attack methods: 

– Buffer overflows 

– Jump-to-libc exploits 

– Use-after-free exploits 

– Exception overwrites 

– … 

• Many defenses: 

– Stack canaries 

– Safe exception handling 

– NX data 

– Layout randomization 

– … 

• Not necessarily perfect 
in a precise sense 

• Nor all well understood 

• But useful mitigations 
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define function f(arg) =  
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• If this size is too big and not checked (either statically 
or dynamically), there can be trouble. 
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• If this size is too big and not checked (either statically 
or dynamically), there can be trouble. 

• In memory, we could also have: 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 

A buffer overflow 
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• A known quantity (fixed or random) can be inserted 
between the local variable and the return address so 
that any corruption can be detected. 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 

Stack canaries and cookies 

… (nothing yet) “tweety” f’s caller address 

     local variable t      canary                   return address 

First 
 
 



• A known quantity (fixed or random) can be inserted 
between the local variable and the return address so 
that any corruption can be detected. 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 

Stack canaries and cookies 

… (nothing yet) “tweety” f’s caller address 

     local variable t      canary                   return address 

… arg contents = …   new return address  + code … 

First 
 
Later !!!! 



There are more things 

• Stack canaries and cookies can be effective in 
impeding many buffer overflows on the stack. 

But: 

• They need to be applied consistently. 

• Sometimes they are judged a little costly. 

• They do not help if corrupted data (e.g., a 
function pointer) is used before the return. 

• And there are many kinds of overflows, and 
many other kinds of vulnerabilities. 

 



NX (aka DEP) 

Many attacks rely on injecting code. 

 So a defense is to require that data that  
      is writable cannot be executed. 

• This requirement is supported by mainstream 
hardware (e.g., x86 processors). 

 



NX (aka DEP) 

Many attacks rely on injecting code. 

 So a defense is to require that data that  
      is writable cannot be executed.* 

• This requirement is supported by mainstream 
hardware (e.g., x86 processors). 

 

* An exception must be made in order to allow 
compilation (e.g., JIT compilation for JavaScript). 



What bytes will the CPU interpret? 

• Mainstream hardware typically places few 
constraints on control flow. 

• A call can lead to many places: 

Safe code/data 

Possible control-flow destination 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 



Executing existing code 

• With NX defenses, attackers cannot simply 
inject data and then run it as code. 

• But attackers can still run existing code:  

– the intended code in an unintended state, 

– an existing function, such as system(), 

– even dead code, 

– even code in the middle of a function, 

– even “accidental” code (e.g., starting  
half-way in a long x86 instruction). 



An example of accidental x86 code 
[Roemer et al.] 

Two instructions in the entry point ecb_crypt are 
encoded as follows: 

f7 c7 07 00 00 00   test $0x00000007, %edi 

0f 95 45 c3    setnzb -61(%ebp) 

Starting one byte later, the attacker instead obtains 

c7 07 00 00 00 0f   movl $0x0f000000, (%edi) 

95     xchg %ebp, %eax 

45     inc %ebp 

c3     ret 



Layout randomization 

Attacks often depend on addresses. 

 Let us randomize the addresses! 

– Considered for data at least since the rise of large 
virtual address spaces  
(e.g., [Druschel & Peterson, 1992] on fbufs). 

– Now present in Linux (PaX), Windows, Mac OS X, 
iOS, Android (4.0). 
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Implementations 

• The randomization can be 
performed at build, install, 
boot, or load time. 

• It may be at various 
granularities. 

• It need not have performance 
cost, but it may complicate 
compatibility. 

System 

libraries 

(in load 
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A theory of layout randomization  
[with Gordon Plotkin, now Jérémy Planul] 

• Define high-level  programs, with symbolic 
locations (e.g., l := 3), and low-level programs, 
with numbers as addresses (e.g., 8686 := 3). 

   View randomization as part of a translation. 
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A theory of layout randomization  
[with Gordon Plotkin, now Jérémy Planul] 

• Define high-level  programs, with symbolic 
locations (e.g., l := 3), and low-level programs, 
with numbers as addresses (e.g., 8686 := 3). 

   View randomization as part of a translation. 

• View attackers as contexts, i.e., other 
programs with which our programs interact. 

   Relate low-level contexts to high-level contexts.  

• Phrase security properties as equivalences. 

   Study whether equivalences are preserved. 



The source language 

• Higher-order lambda calculus, 

• with read/write/execute operations on 
locations that hold natural numbers, 

• with standard base types and optionally  
a type of locations, 

• also sometimes with an error constant  
(which we assume here). 



Syntax 

• Types:  
 
 
where b ranges over basic types which always 
include nat and may include loc. 

 



Syntax (cont.) 

• Programs: 
 
 
 
 
where c ranges over constants, each of a 
unique type. These include the natural 
numbers, the usual arithmetic operations, 
constants for memory access (e.g., run, :=),  
and  constants for raising errors. 

 



Memory access 
(some specifics) 

• Memory-access constants: 

 

 

 

• Some semantics: 

 

where a store s is a function from Loc to natural numbers,  
and Dc is an “instruction decoding” function. 



The target language 

• Much like the source language,  

• but with natural-number addresses rather 
than locations. 



The target model(s), informally 

• A layout w is a function 
chosen at random (for instance, uniformly).  

• A memory m is a function:                                                   

– Memory may be accessed directly through 
natural-number addresses. 

– Some addresses may be unused. 

• Accesses to unused addresses are either  
fatal errors or recoverable errors. 

– These two variants both make sense,  
but lead to different results. 



• A public program is one that cannot access 
private locations directly. I.e.: 

– Our languages have constants for locations (Loc). 

– We distinguish sets of public locations (PubLoc) 
and private locations (PriLoc). 

– Private ones cannot occur in public programs. 

• For us, attackers are public contexts. 

 

 

 

Attackers as contexts 



Equivalences 

In the source language, two programs are 
publically equivalent if no public context can 
distinguish them: 
 for M, N of the same type σ, 

 iff for every initial store s, every public C of type 
 (1) CM and CN both diverge, 
 (2) or they both give an error, 
 (3) or they both yield the same result value and two new 
 stores that coincide on PubLoc. 

In the target language,                  is similar,  
but with probabilities (over the choice of layout).  

 

 

 



Equivalences (cont.) 

Secrecy and integrity properties can be phrased 
as public equivalences. 
 
E.g., for a private location l    

 



With each high-level program M 
we associate a low-level program        . 

 
Theorem: Suppose that M and N are high-level 
terms of type σ. Assume that σ is loc-free. 
 
If                        then                      . 

Preserving equivalences  
(“full abstraction”) 



Layout randomization depends on 
secrecy, but… 

• The secrecy is not always strong. 

– E.g., there cannot be much address randomness 
on 32-bit machines. 

– E.g., low-order address bits may be predictable. 

• The secrecy is not always well-protected. 

– Pointers may be disclosed. 

– Functions may be recognized  
by their behavior. 



Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 
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predictably, including with JIT-compiled code. 
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Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 

 

 

Source: Ratanaworabhan, Livshits, and Zorn (2009) 



Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 

– “Heap feng shui” influences heap layout [Sotirov]. 

– … 

 



Layout randomization: status 

This is an active area, with 

• variants and ongoing improvements to the 
randomization and its application, 

• variants of the attacks, 

• techniques detecting or mitigating the attacks. 

 

Overall, randomization is widespread and seems 
quite effective but not a panacea. 

 



Diverting control flow 

• Many attacks cause some sort of subversion of 
the expected control flow. 

 

 

– E.g., an argument that is “too large” can cause a 
function to jump to an unexpected place.  

• Several techniques prevent or mitigate the 
effects of many control-flow subversions. 

– E.g., canaries help prevent some bad returns. 

 

 

 



Control-flow integrity (CFI) 

• CFI means that execution proceeds according 
to a specified control-flow graph (CFG). 

• CFI is a basic property that thwarts a large 
class of attacks. 

check 

operation 



What bytes will the CPU interpret, 
with CFI? 

• E.g., we may allow jumps to the start of any 
function (defined in a higher-level language): 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 

Possible control-flow destination 

Safe code/data 



What bytes will the CPU interpret, 
with CFI? (cont.) 

• Or we may allow jumps the start of B only 
from a particular call site in A: 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 

Possible control-flow destination 

Safe code/data 



Some implementation 
strategies for CFI 

1. A fast interpreter performs control-flow 
checks (“Program Shepherding”). 

2. A compiler emits code with control-flow 
checks (as in WIT). 

3. A code rewriter adds control-flow checks  
(as in PittSFIeld, where all control-flow 
targets are required to end with two 0s). 



A rewriting-based system 
[with Budiu, Erlingsson, Ligatti, Peinado, Necula, and Vrable] 

 

 

 

 

 

 

• The rewriting inserts guards to be executed at 
run-time, before control transfers. 

• It need not be trusted, because of the verifier. 
 

  

Compiler Program 
rewriting: 
insert checks 
in control 
transfers 

Program 
execution 

Program 
executable 

Verify 
CFI 

Load 
into 
memory 

Program 
control-flow 

graph 

Vendor or 
trusted 
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   ECX := Mem[ESP + 4] 
   EDX := Mem[ESP + 8] 
   ESP := ESP - 0x14 

   // ... 

   push Mem[EDX + 4] 
   push Mem[EDX] 
   push ESP + 8 
   call ECX 

   // ... 

   EAX := Mem[ESP + 0x10] 
   if EAX != 0 goto L    

   EAX := Mem[ESP] 

L: ... and return 

? 

Machine-code basic blocks 

Example 

• Code uses data and  
function pointers, 

• susceptible to effects of  
memory corruption. 

int foo(fptr pf, int* pm) {  
  int err; 
  int A[4]; 
 

  // ... 
 

  pf(A, pm[0], pm[1]); 
 

  // ... 
 

  if( err ) return err; 
  return A[0]; 
} 

C
 s

o
u

rc
e 

co
d

e
 



Example (cont.) 

• We add guards for  
checking control transfers. 

• These guards are “inline  
reference monitors”. 

int foo(fptr pf, int* pm) {  
  int err; 
  int A[4]; 
 

  // ... 
 

  pf(A, pm[0], pm[1]); 
 

  // ... 
 

  if( err ) return err; 
  return A[0]; 
} 

C
 s

o
u

rc
e 

co
d

e
 

   ECX := Mem[ESP + 4] 
   EDX := Mem[ESP + 8] 
   ESP := ESP - 0x14 

   // ... 

   push Mem[EDX + 4] 
   push Mem[EDX] 
   push ESP + 8 
   cfiguard(ECX, pf_ID) 
   call ECX 

   // ... 

   EAX := Mem[ESP + 0x10] 
   if EAX != 0 goto L    

   EAX := Mem[ESP] 

L: ... and return 

Machine-code basic blocks 



 // ... 

 ... 
 cfiguard(ECX, pf_ID) 
 call ECX  … 

 ret 

pf 

Machine code 

 // ... 

 ... 
 EAX := 0x12345678 
 if Mem[ECX-4] != EAX goto ERR 
 call ECX 

… 

 ret 

0x12345678 

A CFI guard 
(a simple variant) 

• A CFI guard matches IDs at source and target. 

– IDs are constants embedded in machine code. 

– IDs are not secret, but must be unique. 

  pf(A, pm[0], pm[1]); 
 

  // ... 

C source code Machine code with 0x12345678 as CFI guard ID 



Proving that CFI works 

• Some of the recent systems come with (and 
were guided by) proofs of correctness. 

• The basic steps may be: 

1. Define a machine language and its semantics. 

2. Define when a program has appropriate 
instrumentation, for a given control-flow graph. 

3. Prove that all executions of programs with 
appropriate instrumentation follow the 
prescribed control-flow graphs. 



1. A small model of a machine 

• Instructions: nop, addi, movi, bgt, jd, jmp, ld, st. 

• States: each state is a tuple that includes 

– code memory Mc 

– data memory Md 

– registers R 

– program counter pc 

• Steps: transition relations define the possible 
state changes of the machine. 



1. A small model of a machine 



1. A small model of a machine 

Dc : instruction decoding function 
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1. A small model of a machine 

+ Md  could change at any time (because of attacker actions). 



2. Example condition on 
instrumentation 

Computed jumps occur 
only in context of a specific  
instruction sequence: 

 



2. Example condition on 
instrumentation 

Computed jumps occur 
only in context of a specific  
instruction sequence: 

 
HALT is the address of a 
halt instruction. 

IMM is a constant that 
encodes the allowed label 
at the jump target. 



3. A result 

Let S0 be a state with pc = 0 and code memory Mc that 
satisfies the instrumentation condition for a given CFG. 

Suppose S0 S1 S2  … 
where each  transition is either a normal n step or 
an attacker step that changes only data memory. 

For each i, if Si n Si + 1 then pc at Si + 1 is one of the 
allowed successors of pc at Si according to the CFG. 
 



Software-based fault isolation 

• CFI does not assume memory protection. 

• But it enables memory protection,  
i.e., “software-based fault isolation” (SFI). 

• Again, there are several possible  
implementations of SFI. 

– E.g., by code rewriting, with guards on 
memory operations. 

• Recent systems (XFI, BGI, LXFI, NaCl, …) 
explore several variants and extensions. 

check 

memory  
operation 



A recent system:  
Native Client (NaCl) [Yee et al.] 
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A recent SFI tool: RockSalt 
[Morrisett et al.] 

• RockSalt is an SFI checker 

– for the NaCl sandbox policy, 

– ~80 lines of Coq code, manually translated into C. 

• A formal argument shows that, if RockSalt 
accepts a string of bytes B, then B’s execution 
on x86 will respect the sandbox policy. 

– The argument is based on a sophisticated Coq 
model of x86 integer instructions. 

– More work remains, in several directions:  
models, proofs, policies. 



Some themes 
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• Inventive attackers, with deep, detailed 
understanding of their targets. 



Some themes 

• Inventive attackers, with deep, detailed 
understanding of their targets. 

• The malleability of software: 

– enables sophisticated architectures and methods 
for protection, 

– benefits from looseness in systems constraints  
(“our goal is not to preserve semantics, but to 
improve it”), 

– costs in compatibility and run-time efficiency. 



Reading 

• Aleph One’s “Smashing the stack for fun and 
profit” 
http://www.insecure.org/stf/smashstack.txt  

• Pincus & Baker’s “Beyond stack smashing: 
Recent advances in exploiting buffer overruns” 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1  

• Erlingsson’s“Low-level Software Security: 
Attacks and Defenses” 
http://research.microsoft.com/apps/pubs/default.aspx?id=64363  

http://www.insecure.org/stf/smashstack.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1
http://research.microsoft.com/apps/pubs/default.aspx?id=64363
http://research.microsoft.com/apps/pubs/default.aspx?id=64363


Homework 4 (due November 8) 

Exercise 1: 

In MicroIL, are the following two programs well-
typed, with respect to any F and S? (yes/no).  
If so, give one pair of suitable F and S  
(by defining F1, F2, F3, S1, S2, and S3.) 

a) push0 . inc . halt 

b) inc . inc . halt 



Homework 4 

Exercise 2: 

Re. Kennedy’s Problem 4, sketch a small 
example of a function g that illustrates the 
difficulty being discussed in Section 3 (p9). 



Homework 4, cont. 

Exercise 3: 

Erlingsson’s paper describes six defense 
techniques (and some variants). Summarize 
which of them rely on the secrecy of certain 
information. 


