
Low-level
software security

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Flaws

• Circumvention and hijacking are common in
security in many realms.

– Tanks drive around fortifications.

– Robbers bribe bank guards.

• In computer systems, they are sometimes the
consequence of design weaknesses.

• But many result from implementation flaws:
small but catastrophic errors in code.

Software security

Software security is

• not only about implementation flaws,

• not only about low-level attacks and defenses,

• certainly not only about buffer overflows,

but low-level attacks and defenses

• remain important,

• illustrate themes and techniques that appear
throughout software systems.

An example

 int f(int x, char y) {
 char t[16] ;
 initialize(t) ;
 t[x] = y ;
 return 0 ;
 }

An example

 int f(int x, char y) {
 char t[16] ;
 initialize(t) ;
 t[x] = y ;
 return 0 ;
 }

An example

So what?

• Threat model: The attacker chooses inputs.

 The attacker can (try to) modify a location of
 their choice at some offset from t’s address.

• Some possible questions:

– Can the attacker find the vulnerability and call f?

– Can the attacker identify good target locations?

– Can the attacker predict t’s address?

– Will the exploit work reliably? cause crashes?

Going further: two examples
[from Chen, Xu, Sezer, Gauriar, and Iyer]

• Attack NULL-HTTPD (a Web server on Linux).
– POST commands can trigger a buffer overflow.

 Change the configuration string of the CGI-BIN path:
– The mechanism of CGI:

• Server name = www.foo.com
• CGI-BIN = /usr/local/httpd/exe
• Request URL = http://www.foo.com/cgi-bin/bar
 Normally, the server runs /usr/local/httpd/exe/bar

– An attack:
• Exploiting the buffer overflow, set CGI-BIN = /bin
• Request URL = http://www.foo.com/cgi-bin/sh
 The server runs /bin/sh

 The attacker gets a shell on the server.

• Attack SSH Communications SSH Server:

void do_authentication(char *user, ...) {

 int auth = 0; /* initially auth is false */

 ...

 while (!auth) {

 /* Get a packet from the client */

 type = packet_read(); /* has overflow bug */

 switch (type) { /* can make auth true */

 ...

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, password))

 auth = 1;

 case ...

 }

 if (auth) break;

 }

 /* Perform session preparation. */

 do_authenticated(…);

}
 The attacker circumvents authentication.

• Attack SSH Communications SSH Server:

void do_authentication(char *user, ...) {

 int auth = 0; /* initially auth is false */

 ...

 while (!auth) {

 /* Get a packet from the client */

 type = packet_read(); /* has overflow bug */

 switch (type) { /* can make auth true */

 ...

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, password))

 auth = 1;

 case ...

 }

 if (auth) break;

 }

 /* Perform session preparation. */

 do_authenticated(…);

}
 The attacker circumvents authentication.

• These are data-only attacks.

• The most classic attacks often inject code.
• Injecting code is also central in higher-level

attacks such as SQL injection and XSS.

Run-time protection: the arms race

• Many attack methods:

– Buffer overflows

– Jump-to-libc exploits

– Use-after-free exploits

– Exception overwrites

– …

• Many defenses:

– Stack canaries

– Safe exception handling

– NX data

– Layout randomization

– …

• Not necessarily perfect
in a precise sense

• Nor all well understood

• But useful mitigations

• The expectation is that the contents of arg is at most
of size n.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

• The expectation is that the contents of arg is at most
of size n.

• In memory, we would have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address … First

• The expectation is that the contents of arg is at most
of size n.

• In memory, we would have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents f’s caller address …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address … First

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents (part) …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address … …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address + code …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address + code …

First

Later

• A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

Stack canaries and cookies

… (nothing yet) “tweety” f’s caller address

 local variable t canary return address

First

• A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

Stack canaries and cookies

… (nothing yet) “tweety” f’s caller address

 local variable t canary return address

… arg contents = … new return address + code …

First

Later !!!!

There are more things

• Stack canaries and cookies can be effective in
impeding many buffer overflows on the stack.

But:

• They need to be applied consistently.

• Sometimes they are judged a little costly.

• They do not help if corrupted data (e.g., a
function pointer) is used before the return.

• And there are many kinds of overflows, and
many other kinds of vulnerabilities.

NX (aka DEP)

Many attacks rely on injecting code.

 So a defense is to require that data that
 is writable cannot be executed.

• This requirement is supported by mainstream
hardware (e.g., x86 processors).

NX (aka DEP)

Many attacks rely on injecting code.

 So a defense is to require that data that
 is writable cannot be executed.*

• This requirement is supported by mainstream
hardware (e.g., x86 processors).

* An exception must be made in order to allow
compilation (e.g., JIT compilation for JavaScript).

What bytes will the CPU interpret?

• Mainstream hardware typically places few
constraints on control flow.

• A call can lead to many places:

Safe code/data

Possible control-flow destination

x86 x86 RISC/NX RISC/NX x86/NX x86/NX

Data memory

Code memory

for function A

Code memory

for function B

Executing existing code

• With NX defenses, attackers cannot simply
inject data and then run it as code.

• But attackers can still run existing code:

– the intended code in an unintended state,

– an existing function, such as system(),

– even dead code,

– even code in the middle of a function,

– even “accidental” code (e.g., starting
half-way in a long x86 instruction).

An example of accidental x86 code
[Roemer et al.]

Two instructions in the entry point ecb_crypt are
encoded as follows:

f7 c7 07 00 00 00 test $0x00000007, %edi

0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)

95 xchg %ebp, %eax

45 inc %ebp

c3 ret

Layout randomization

Attacks often depend on addresses.

 Let us randomize the addresses!

– Considered for data at least since the rise of large
virtual address spaces
(e.g., [Druschel & Peterson, 1992] on fbufs).

– Now present in Linux (PaX), Windows, Mac OS X,
iOS, Android (4.0).

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

System

libraries

(in load

order)

Base of heap

Thread

control

data

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

System

libraries

(in load

order)

Base of heap

Thread

control

data

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

• It may be at various
granularities.

• It need not have performance
cost, but it may complicate
compatibility.

System

libraries

(in load

order)

Base of heap

Thread

control

data

A theory of layout randomization
[with Gordon Plotkin, now Jérémy Planul]

• Define high-level programs, with symbolic
locations (e.g., l := 3), and low-level programs,
with numbers as addresses (e.g., 8686 := 3).

  View randomization as part of a translation.

A theory of layout randomization
[with Gordon Plotkin, now Jérémy Planul]

• Define high-level programs, with symbolic
locations (e.g., l := 3), and low-level programs,
with numbers as addresses (e.g., 8686 := 3).

  View randomization as part of a translation.

• View attackers as contexts, i.e., other
programs with which our programs interact.

  Relate low-level contexts to high-level contexts.

A theory of layout randomization
[with Gordon Plotkin, now Jérémy Planul]

• Define high-level programs, with symbolic
locations (e.g., l := 3), and low-level programs,
with numbers as addresses (e.g., 8686 := 3).

  View randomization as part of a translation.

• View attackers as contexts, i.e., other
programs with which our programs interact.

  Relate low-level contexts to high-level contexts.

• Phrase security properties as equivalences.

  Study whether equivalences are preserved.

The source language

• Higher-order lambda calculus,

• with read/write/execute operations on
locations that hold natural numbers,

• with standard base types and optionally
a type of locations,

• also sometimes with an error constant
(which we assume here).

Syntax

• Types:

where b ranges over basic types which always
include nat and may include loc.

Syntax (cont.)

• Programs:

where c ranges over constants, each of a
unique type. These include the natural
numbers, the usual arithmetic operations,
constants for memory access (e.g., run, :=),
and constants for raising errors.

Memory access
(some specifics)

• Memory-access constants:

• Some semantics:

where a store s is a function from Loc to natural numbers,
and Dc is an “instruction decoding” function.

The target language

• Much like the source language,

• but with natural-number addresses rather
than locations.

The target model(s), informally

• A layout w is a function
chosen at random (for instance, uniformly).

• A memory m is a function:

– Memory may be accessed directly through
natural-number addresses.

– Some addresses may be unused.

• Accesses to unused addresses are either
fatal errors or recoverable errors.

– These two variants both make sense,
but lead to different results.

• A public program is one that cannot access
private locations directly. I.e.:

– Our languages have constants for locations (Loc).

– We distinguish sets of public locations (PubLoc)
and private locations (PriLoc).

– Private ones cannot occur in public programs.

• For us, attackers are public contexts.

Attackers as contexts

Equivalences

In the source language, two programs are
publically equivalent if no public context can
distinguish them:
 for M, N of the same type σ,

 iff for every initial store s, every public C of type
 (1) CM and CN both diverge,
 (2) or they both give an error,
 (3) or they both yield the same result value and two new
 stores that coincide on PubLoc.

In the target language, is similar,
but with probabilities (over the choice of layout).

Equivalences (cont.)

Secrecy and integrity properties can be phrased
as public equivalences.

E.g., for a private location l

With each high-level program M
we associate a low-level program .

Theorem: Suppose that M and N are high-level
terms of type σ. Assume that σ is loc-free.

If then .

Preserving equivalences
(“full abstraction”)

Layout randomization depends on
secrecy, but…

• The secrecy is not always strong.

– E.g., there cannot be much address randomness
on 32-bit machines.

– E.g., low-order address bits may be predictable.

• The secrecy is not always well-protected.

– Pointers may be disclosed.

– Functions may be recognized
by their behavior.

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

jump

(e.g., via
buffer overflow)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Source: Ratanaworabhan, Livshits, and Zorn (2009)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

– “Heap feng shui” influences heap layout [Sotirov].

– …

Layout randomization: status

This is an active area, with

• variants and ongoing improvements to the
randomization and its application,

• variants of the attacks,

• techniques detecting or mitigating the attacks.

Overall, randomization is widespread and seems
quite effective but not a panacea.

Diverting control flow

• Many attacks cause some sort of subversion of
the expected control flow.

– E.g., an argument that is “too large” can cause a
function to jump to an unexpected place.

• Several techniques prevent or mitigate the
effects of many control-flow subversions.

– E.g., canaries help prevent some bad returns.

Control-flow integrity (CFI)

• CFI means that execution proceeds according
to a specified control-flow graph (CFG).

• CFI is a basic property that thwarts a large
class of attacks.

check

operation

What bytes will the CPU interpret,
with CFI?

• E.g., we may allow jumps to the start of any
function (defined in a higher-level language):

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI

Data memory

Code memory

for function A

Code memory

for function B

Possible control-flow destination

Safe code/data

What bytes will the CPU interpret,
with CFI? (cont.)

• Or we may allow jumps the start of B only
from a particular call site in A:

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI

Data memory

Code memory

for function A

Code memory

for function B

Possible control-flow destination

Safe code/data

Some implementation
strategies for CFI

1. A fast interpreter performs control-flow
checks (“Program Shepherding”).

2. A compiler emits code with control-flow
checks (as in WIT).

3. A code rewriter adds control-flow checks
(as in PittSFIeld, where all control-flow
targets are required to end with two 0s).

A rewriting-based system
[with Budiu, Erlingsson, Ligatti, Peinado, Necula, and Vrable]

• The rewriting inserts guards to be executed at
run-time, before control transfers.

• It need not be trusted, because of the verifier.

Compiler Program
rewriting:
insert checks
in control
transfers

Program
execution

Program
executable

Verify
CFI

Load
into
memory

Program
control-flow

graph

Vendor or
trusted
party

 ECX := Mem[ESP + 4]
 EDX := Mem[ESP + 8]
 ESP := ESP - 0x14

 // ...

 push Mem[EDX + 4]
 push Mem[EDX]
 push ESP + 8
 call ECX

 // ...

 EAX := Mem[ESP + 0x10]
 if EAX != 0 goto L

 EAX := Mem[ESP]

L: ... and return

?

Machine-code basic blocks

Example

• Code uses data and
function pointers,

• susceptible to effects of
memory corruption.

int foo(fptr pf, int* pm) {
 int err;
 int A[4];

 // ...

 pf(A, pm[0], pm[1]);

 // ...

 if(err) return err;
 return A[0];
}

C
 s

o
u

rc
e

co
d

e

Example (cont.)

• We add guards for
checking control transfers.

• These guards are “inline
reference monitors”.

int foo(fptr pf, int* pm) {
 int err;
 int A[4];

 // ...

 pf(A, pm[0], pm[1]);

 // ...

 if(err) return err;
 return A[0];
}

C
 s

o
u

rc
e

co
d

e

 ECX := Mem[ESP + 4]
 EDX := Mem[ESP + 8]
 ESP := ESP - 0x14

 // ...

 push Mem[EDX + 4]
 push Mem[EDX]
 push ESP + 8
 cfiguard(ECX, pf_ID)
 call ECX

 // ...

 EAX := Mem[ESP + 0x10]
 if EAX != 0 goto L

 EAX := Mem[ESP]

L: ... and return

Machine-code basic blocks

 // ...

 ...
 cfiguard(ECX, pf_ID)
 call ECX …

 ret

pf

Machine code

 // ...

 ...
 EAX := 0x12345678
 if Mem[ECX-4] != EAX goto ERR
 call ECX

…

 ret

0x12345678

A CFI guard
(a simple variant)

• A CFI guard matches IDs at source and target.

– IDs are constants embedded in machine code.

– IDs are not secret, but must be unique.

 pf(A, pm[0], pm[1]);

 // ...

C source code Machine code with 0x12345678 as CFI guard ID

Proving that CFI works

• Some of the recent systems come with (and
were guided by) proofs of correctness.

• The basic steps may be:

1. Define a machine language and its semantics.

2. Define when a program has appropriate
instrumentation, for a given control-flow graph.

3. Prove that all executions of programs with
appropriate instrumentation follow the
prescribed control-flow graphs.

1. A small model of a machine

• Instructions: nop, addi, movi, bgt, jd, jmp, ld, st.

• States: each state is a tuple that includes

– code memory Mc

– data memory Md

– registers R

– program counter pc

• Steps: transition relations define the possible
state changes of the machine.

1. A small model of a machine

1. A small model of a machine

Dc : instruction decoding function

1. A small model of a machine

1. A small model of a machine

+ Md could change at any time (because of attacker actions).

2. Example condition on
instrumentation

Computed jumps occur
only in context of a specific
instruction sequence:

2. Example condition on
instrumentation

Computed jumps occur
only in context of a specific
instruction sequence:

HALT is the address of a
halt instruction.

IMM is a constant that
encodes the allowed label
at the jump target.

3. A result

Let S0 be a state with pc = 0 and code memory Mc that
satisfies the instrumentation condition for a given CFG.

Suppose S0 S1 S2  …
where each  transition is either a normal n step or
an attacker step that changes only data memory.

For each i, if Si n Si + 1 then pc at Si + 1 is one of the
allowed successors of pc at Si according to the CFG.

Software-based fault isolation

• CFI does not assume memory protection.

• But it enables memory protection,
i.e., “software-based fault isolation” (SFI).

• Again, there are several possible
implementations of SFI.

– E.g., by code rewriting, with guards on
memory operations.

• Recent systems (XFI, BGI, LXFI, NaCl, …)
explore several variants and extensions.

check

memory
operation

A recent system:
Native Client (NaCl) [Yee et al.]

Native OS

Browser
(Chrome)

Native
system
calls

Renderer (sandboxed)

IPC

Loader (sandboxed)

NaCl
executable

NaCl sandbox
system calls

Plugin API

A recent SFI tool: RockSalt
[Morrisett et al.]

• RockSalt is an SFI checker

– for the NaCl sandbox policy,

– ~80 lines of Coq code, manually translated into C.

• A formal argument shows that, if RockSalt
accepts a string of bytes B, then B’s execution
on x86 will respect the sandbox policy.

– The argument is based on a sophisticated Coq
model of x86 integer instructions.

– More work remains, in several directions:
models, proofs, policies.

Some themes

Some themes

• Inventive attackers, with deep, detailed
understanding of their targets.

Some themes

• Inventive attackers, with deep, detailed
understanding of their targets.

• The malleability of software:

– enables sophisticated architectures and methods
for protection,

– benefits from looseness in systems constraints
(“our goal is not to preserve semantics, but to
improve it”),

– costs in compatibility and run-time efficiency.

Reading

• Aleph One’s “Smashing the stack for fun and
profit”
http://www.insecure.org/stf/smashstack.txt

• Pincus & Baker’s “Beyond stack smashing:
Recent advances in exploiting buffer overruns”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1

• Erlingsson’s“Low-level Software Security:
Attacks and Defenses”
http://research.microsoft.com/apps/pubs/default.aspx?id=64363

http://www.insecure.org/stf/smashstack.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1324594&tag=1
http://research.microsoft.com/apps/pubs/default.aspx?id=64363
http://research.microsoft.com/apps/pubs/default.aspx?id=64363

Homework 4 (due November 8)

Exercise 1:

In MicroIL, are the following two programs well-
typed, with respect to any F and S? (yes/no).
If so, give one pair of suitable F and S
(by defining F1, F2, F3, S1, S2, and S3.)

a) push0 . inc . halt

b) inc . inc . halt

Homework 4

Exercise 2:

Re. Kennedy’s Problem 4, sketch a small
example of a function g that illustrates the
difficulty being discussed in Section 3 (p9).

Homework 4, cont.

Exercise 3:

Erlingsson’s paper describes six defense
techniques (and some variants). Summarize
which of them rely on the secrecy of certain
information.

