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Security in programming languages 

• Languages have long been related to security. 

• Modern languages should contribute to security: 

– Constructs for protection (e.g., objects). 

– Techniques for static analysis,  
in particular for ensuring safety by typechecking.  

– A tractable theory, with sophisticated methods. 

• Several security techniques rely on language 
ideas, with static and dynamic checks. 

See Morris’s “Protection in Programming Languages”. 



A class with a secret field 

class C { 

    // the field 
    private int x; 

    // a constructor 
    public C(int v) { x = v; } 

} 
 

// two instances of C 

C c1 = new C(17); 

C c2 = new C(28); 

• A possible conjecture: 
Any two instances of this 
class are observationally 
equivalent (that is, they 
cannot be distinguished 
within the language). 

• More realistic examples 
use constructs similarly. 

• Objects are unforgeable. 
E.g., integers cannot be 
cast into objects. 



Mediated access [example from A. Kennedy]  

   class Widget {// No checking of argument 
  virtual void Operation(string s) {…}; 
} 
class SecureWidget : Widget { 
  // Validate argument and pass on 
  // Could also authenticate the caller 
  override void Operation(string s) { 
    Validate(s); 
    base.Operation(s); 
  } 
} 
… 
SecureWidget sw = new SecureWidget(); 

  sw.Operation(“Nice string”); 
// Can’t avoid validation of argument 



Some application areas 
Avoiding or detecting 
implementation flaws 

• Various static analyses (e.g., 
for C programs). 

• High-level languages with 
automatic memory 
management (e.g., Java). 

• Typed assembly and 
intermediate languages; 
proof-carrying code. 

Using language constructs to 
embody policies 

• Data abstraction for 
protecting private state. 

• Objects for capabilities. 

• Method calls enriched with 
security semantics (as in 
stack inspection).  

• Information-flow control 
(e.g., in Jif).  



Other aspects of  
language-based security 

• Secure coding practices. 

• Signed code (e.g., with “strong names”). 

• Libraries for cryptography, authentication, . . . 

• Support for inline reference monitors. 

• Code obfuscation. 



Firstly, the notation should be designed to reduce 
as far as possible the scope for coding error; or at 
least to guarantee that such errors can be 
detected by a compiler, before the program even 
begins to run. Certain programming errors cannot 
always be detected in this way, and must be 
cheaply detectable at run time; in no case can 
they be allowed to give rise to machine- or 
implementation-dependent effects, which are 
inexplicable in terms of the language itself. This 
is a criterion to which I give the name security. 
                                                                                    Hoare (1973) 



The security flaw reported this week in E-mail 
programs produced by two highly respected 
software companies points to an industrywide 
problem – the danger of programming languages 
whose greatest strength is also their greatest 
weakness. 
 
More modern programming languages, like the 
Java language developed by Sun Microsystems, 
have built-in safeguards that prevent programmers 
from making many common types of errors that 
could result in security loopholes. 
                                                                The New York Times (1998) 



Types 

• A program variable can assume a range of 
values during the execution of a program. 

• An upper bound of such a range is called a 
type of the variable: 

– A variable of type “bool” is supposed to assume 
only boolean values. 

– If x has type “bool” then “not(x)” has a sensible 
meaning during every run of the program. 

• An important application of type systems is to 
prevent execution errors. 

 

 

 



Typed vs. untyped languages 

Untyped languages: 

• The language does not 
restrict the range of values 
for a given variable. 

• Operations might be 
applied to inappropriate 
arguments.  
The behavior in such cases 
might be unspecified. 

Typed languages: 

• Variables can be assigned 
(non-trivial) types. 

• Types might or might not 
appear in programs. 

 



Trapped vs. untrapped errors 

Trapped errors: 

• Trapped errors give rise to 
well-specified behavior. 
– E.g., division by zero. 

• Even languages with 
powerful type systems 
permit trapped errors. 

Untrapped errors: 

• Untrapped errors lead to 
unspecified behavior which 
depends on machine state. 
– E.g., accessing past the end of 

an array. 

– E.g., jumping to an address in 
the data segment. 



Safe languages 

• A program is safe if it does not cause 
untrapped errors. 

• Languages where all programs are safe are 
safe languages. 

– Some languages with types are not safe  
(“weakly typed languages”). 

– A compromise is the isolation of unsafe code 
(as in Cedar). 

 

 

 

 

 

 

 



A typical theorem 

A computation state consists of: 
• values for program variables, 
• a program counter, 
• . . . 
or the special state wrong to represent untrapped errors. 
A computation step is a state transition, written s  t. 
 
Suppose that P is a program that typechecks, and that we run 
P from initial state s0 and: 
• s0 is not wrong, 

• s0  s1  . . .  sn−1  sn. 

Then sn is not wrong. 



Alternative formulation  
(modelling errors by stuck states) 

A computation state consists of: 
• values for program variables, 
• a program counter, 
• . . . 
(but without a special state wrong). 
A computation step is a state transition, written s  t. 
 
Suppose that P is a program that typechecks, and that we run P from 
initial state s0 and: 
• s0  s1  . . .  sn−1  sn, 
• there is no t such that sn  t. 

Then in sn the program counter points to a halt instruction in P. 



Security with safe languages 

Safe languages permit: 

• predictable behavior (despite sharing), 

• unforgeable capabilities, 

• mediation guarantees, 

and (in comparison with hardware protection) 

• portability, 

• often adequate efficiency, 

• rich interfaces. 

But safety does not automatically imply security. 



Beyond safety 

Safety is a foundation. We may also have higher-
level objectives, e.g., secrecy properties. 

In a typical scenario, a host runs some foreign 
code and wants some security guarantees. 

• Safety clearly helps. 

But there are other scenarios: 

• The foreign code may want to some 
guarantees, e.g., no reverse engineering. 

• Two pieces of foreign code may coexist. 



Caveats 

Mismatch in characteristics: 

• Security requires simplicity 
and minimality. 

• Common programming 
languages are complex. 

Mismatch in scope: 

• Language descriptions 
rarely specify security. 
Implementations may or 
may not be secure. 

• Security is a property of 
systems (not languages). 
Systems typically include 
much security machinery 
beyond what is given in 
language definitions. 
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Verifying intermediate- and  
low-level code 

Intermediate- and low-level code may not have 
been produced by the intended compilers. 

• So typechecking source code is not enough! 

• Various systems (e.g., JVMs and .NET CLR) 
include verifiers for lower-level code. 

• These verifiers are basically typecheckers. 

 

(The goal is to protect the host systems, not the untrusted code,  
which anyway is typically subject to lower-level attacks.) 



Another Java class with a secret 

 

 

 

 

 

• A possible conjecture: Any two instances of 
this class cannot be distinguished within the 
language. 



Secrecy is preserved by translation 
(sometimes) 

• The same class at the bytecode level: 

 

 

 

 

 

 

• Bytecode verification is required. 



Verification 

In bytecode verification, at each program point: 
• the stack gets a height, 
• each stack location gets a type, 
• each local variable gets a type. 
Various checks are then performed, e.g., 
• the stack never overflows or underflows, 
• operations applied to operands of appropriate types, 
• objects are not used before initialization, 
• returns lead back to jump sites. 
Some checks are left for runtime, 
• e.g., array-bounds checks. 

 



A miniature verifier 

• We will give a formal treatment of a tiny 
language MicroIL and a verifier for it. 

– MicroIL is a fragment of the language of “A type 
system for Java bytecode subroutines” 
http://dl.acm.org/citation.cfm?doid=314602.314606  

– It resembles other lower-level languages. 

• The goal is to explain that lower-level 
typechecking can be specified and analyzed 
precisely, not to cover every feature. 

 

 

 

http://dl.acm.org/citation.cfm?doid=314602.314606


MicroIL programs 

A program is a sequence of instructions: 



MicroIL states 



MicroIL semantics 

Rules for  



Verifying MicroIL 

The typing rules of MicroIL should prevent: 

• type errors, 

• operand stack overflow or underflow, 

• wild jumps, 

but they should allow local typing  
(different types for the same variable or stack 
location at different points). 



MicroIL typing rules 

Rules for 

where 

• Fpc[x] is the type of variable x at point pc 
(possibly undefined), 

• Spc is the type of the operand stack (i.e., one 
type for each stack slot) at point pc. 

 

 Basic types for values: Top, Int, … 

means that P is well-typed,  
with types given by F and S 



MicroIL typing rules (cont.) 

The top-level rule is: 



MicroIL typing rules (cont.) 

One rule for each instruction, such as: 



A tiny example 

If P is the program load x .  load x .  halt 
then P is well-typed, with F and S given by: 

• F1[x] = Top, S1 =  

• F2[x] = Top, S2 = Top .  

• F3[x] = Top, S3 = Top . Top .  

 

 

 



A theorem 

In other words, if a program typechecks, then it makes 
progress until it halts (without uncaught errors). 

* is the reflexive  
transitive closure of . 



Another Java class with  
a secret field? 

 

 

 

 

 

 

 

• E is an inner class. 



An accessor can break secrecy 

This is the way inner classes were originally desugared.  
Other techniques have been tried since then. 



Other examples 

There are many more examples,  
for Java, C#, and other languages. 

• In each case, some observational 
equivalence that holds in  
the source language does  
not hold in implementations. 

• We may say that the translations  
are not fully abstract. 

• Typechecking helps,  
but it does not suffice. 

High-level language 
 

 

Implementation language 
 

 

T 



Mediated access, revisited 

   class Widget {// No checking of argument 
  virtual void Operation(string s) {…}; 
} 
class SecureWidget : Widget { 
  // Validate argument and pass on 
  // Could also authenticate the caller 
  override void Operation(string s) { 
    Validate(s); 
    base.Operation(s); 
  } 
} 
… 
SecureWidget sw = new SecureWidget(); 

  sw.Operation(…); 
// Can’t avoid validation of argument 

// In IL (pre-2.0), make a direct call 
// on the superclass: 
ldloc sw 
ldstr “Invalid string” 
call void Widget::Operation(string) 



Alternatives 

• One may ignore the security of translations 

– when low-level code is signed by a trusted party, 

– if one analyzes low-level code. 

    These alternatives are not always satisfactory. 

• In other cases, translations should preserve at 
least some security properties; for example: 

– limited versions of full abstraction  
(e.g., for certain programming idioms), 

– the secrecy of pieces of data labelled as secret, 

– fundamental guarantees about control flow. 
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Abstractions and security 

Abstractions are common 
in computing, e.g.: 

– function calls, 

– objects with private 
components, 

– secure channels. 

Clever implementation 
techniques abound too: 

– stacks, 

– static and dynamic 
access checks, 

– cryptography. 
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Abstractions and security 

Abstractions are common 
in computing, e.g.: 

– function calls, 

– objects with private 
components, 

– secure channels. 

Clever implementation 
techniques abound too: 

– stacks, 

– static and dynamic 
access checks, 

– cryptography. 

Implementations often need to work in interaction with 
(malicious?) systems that do not use the abstractions. 
 

This holds even for low-level code, and ideas originally  
developed in high-level languages are useful there too.  



Reading 

• Morris’ “Protection in programming 
languages” 
http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855  

• Kennedy’s “Securing the .NET Programming 
Model” 
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf  
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