
Security in
programming

languages

Security in programming languages

• Languages have long been related to security.

• Modern languages should contribute to security:

– Constructs for protection (e.g., objects).

– Techniques for static analysis,
in particular for ensuring safety by typechecking.

– A tractable theory, with sophisticated methods.

• Several security techniques rely on language
ideas, with static and dynamic checks.

See Morris’s “Protection in Programming Languages”.

A class with a secret field

class C {

 // the field
 private int x;

 // a constructor
 public C(int v) { x = v; }

}

// two instances of C

C c1 = new C(17);

C c2 = new C(28);

• A possible conjecture:
Any two instances of this
class are observationally
equivalent (that is, they
cannot be distinguished
within the language).

• More realistic examples
use constructs similarly.

• Objects are unforgeable.
E.g., integers cannot be
cast into objects.

Mediated access [example from A. Kennedy]

 class Widget {// No checking of argument
 virtual void Operation(string s) {…};
}
class SecureWidget : Widget {
 // Validate argument and pass on
 // Could also authenticate the caller
 override void Operation(string s) {
 Validate(s);
 base.Operation(s);
 }
}
…
SecureWidget sw = new SecureWidget();

 sw.Operation(“Nice string”);
// Can’t avoid validation of argument

Some application areas
Avoiding or detecting
implementation flaws

• Various static analyses (e.g.,
for C programs).

• High-level languages with
automatic memory
management (e.g., Java).

• Typed assembly and
intermediate languages;
proof-carrying code.

Using language constructs to
embody policies

• Data abstraction for
protecting private state.

• Objects for capabilities.

• Method calls enriched with
security semantics (as in
stack inspection).

• Information-flow control
(e.g., in Jif).

Other aspects of
language-based security

• Secure coding practices.

• Signed code (e.g., with “strong names”).

• Libraries for cryptography, authentication, . . .

• Support for inline reference monitors.

• Code obfuscation.

Firstly, the notation should be designed to reduce
as far as possible the scope for coding error; or at
least to guarantee that such errors can be
detected by a compiler, before the program even
begins to run. Certain programming errors cannot
always be detected in this way, and must be
cheaply detectable at run time; in no case can
they be allowed to give rise to machine- or
implementation-dependent effects, which are
inexplicable in terms of the language itself. This
is a criterion to which I give the name security.
 Hoare (1973)

The security flaw reported this week in E-mail
programs produced by two highly respected
software companies points to an industrywide
problem – the danger of programming languages
whose greatest strength is also their greatest
weakness.

More modern programming languages, like the
Java language developed by Sun Microsystems,
have built-in safeguards that prevent programmers
from making many common types of errors that
could result in security loopholes.
 The New York Times (1998)

Types

• A program variable can assume a range of
values during the execution of a program.

• An upper bound of such a range is called a
type of the variable:

– A variable of type “bool” is supposed to assume
only boolean values.

– If x has type “bool” then “not(x)” has a sensible
meaning during every run of the program.

• An important application of type systems is to
prevent execution errors.

Typed vs. untyped languages

Untyped languages:

• The language does not
restrict the range of values
for a given variable.

• Operations might be
applied to inappropriate
arguments.
The behavior in such cases
might be unspecified.

Typed languages:

• Variables can be assigned
(non-trivial) types.

• Types might or might not
appear in programs.

Trapped vs. untrapped errors

Trapped errors:

• Trapped errors give rise to
well-specified behavior.
– E.g., division by zero.

• Even languages with
powerful type systems
permit trapped errors.

Untrapped errors:

• Untrapped errors lead to
unspecified behavior which
depends on machine state.
– E.g., accessing past the end of

an array.

– E.g., jumping to an address in
the data segment.

Safe languages

• A program is safe if it does not cause
untrapped errors.

• Languages where all programs are safe are
safe languages.

– Some languages with types are not safe
(“weakly typed languages”).

– A compromise is the isolation of unsafe code
(as in Cedar).

A typical theorem

A computation state consists of:
• values for program variables,
• a program counter,
• . . .
or the special state wrong to represent untrapped errors.
A computation step is a state transition, written s  t.

Suppose that P is a program that typechecks, and that we run
P from initial state s0 and:
• s0 is not wrong,

• s0  s1  . . .  sn−1  sn.

Then sn is not wrong.

Alternative formulation
(modelling errors by stuck states)

A computation state consists of:
• values for program variables,
• a program counter,
• . . .
(but without a special state wrong).
A computation step is a state transition, written s  t.

Suppose that P is a program that typechecks, and that we run P from
initial state s0 and:
• s0  s1  . . .  sn−1  sn,
• there is no t such that sn  t.

Then in sn the program counter points to a halt instruction in P.

Security with safe languages

Safe languages permit:

• predictable behavior (despite sharing),

• unforgeable capabilities,

• mediation guarantees,

and (in comparison with hardware protection)

• portability,

• often adequate efficiency,

• rich interfaces.

But safety does not automatically imply security.

Beyond safety

Safety is a foundation. We may also have higher-
level objectives, e.g., secrecy properties.

In a typical scenario, a host runs some foreign
code and wants some security guarantees.

• Safety clearly helps.

But there are other scenarios:

• The foreign code may want to some
guarantees, e.g., no reverse engineering.

• Two pieces of foreign code may coexist.

Caveats

Mismatch in characteristics:

• Security requires simplicity
and minimality.

• Common programming
languages are complex.

Mismatch in scope:

• Language descriptions
rarely specify security.
Implementations may or
may not be secure.

• Security is a property of
systems (not languages).
Systems typically include
much security machinery
beyond what is given in
language definitions.

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

But JVML or IL may be written by
hand, or with other tools.

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

But JVML or IL may be written by
hand, or with other tools.

Verifying intermediate- and
low-level code

Intermediate- and low-level code may not have
been produced by the intended compilers.

• So typechecking source code is not enough!

• Various systems (e.g., JVMs and .NET CLR)
include verifiers for lower-level code.

• These verifiers are basically typecheckers.

(The goal is to protect the host systems, not the untrusted code,
which anyway is typically subject to lower-level attacks.)

Another Java class with a secret

• A possible conjecture: Any two instances of
this class cannot be distinguished within the
language.

Secrecy is preserved by translation
(sometimes)

• The same class at the bytecode level:

• Bytecode verification is required.

Verification

In bytecode verification, at each program point:
• the stack gets a height,
• each stack location gets a type,
• each local variable gets a type.
Various checks are then performed, e.g.,
• the stack never overflows or underflows,
• operations applied to operands of appropriate types,
• objects are not used before initialization,
• returns lead back to jump sites.
Some checks are left for runtime,
• e.g., array-bounds checks.

A miniature verifier

• We will give a formal treatment of a tiny
language MicroIL and a verifier for it.

– MicroIL is a fragment of the language of “A type
system for Java bytecode subroutines”
http://dl.acm.org/citation.cfm?doid=314602.314606

– It resembles other lower-level languages.

• The goal is to explain that lower-level
typechecking can be specified and analyzed
precisely, not to cover every feature.

http://dl.acm.org/citation.cfm?doid=314602.314606

MicroIL programs

A program is a sequence of instructions:

MicroIL states

MicroIL semantics

Rules for

Verifying MicroIL

The typing rules of MicroIL should prevent:

• type errors,

• operand stack overflow or underflow,

• wild jumps,

but they should allow local typing
(different types for the same variable or stack
location at different points).

MicroIL typing rules

Rules for

where

• Fpc[x] is the type of variable x at point pc
(possibly undefined),

• Spc is the type of the operand stack (i.e., one
type for each stack slot) at point pc.

 Basic types for values: Top, Int, …

means that P is well-typed,
with types given by F and S

MicroIL typing rules (cont.)

The top-level rule is:

MicroIL typing rules (cont.)

One rule for each instruction, such as:

A tiny example

If P is the program load x . load x . halt
then P is well-typed, with F and S given by:

• F1[x] = Top, S1 = 

• F2[x] = Top, S2 = Top . 

• F3[x] = Top, S3 = Top . Top . 

A theorem

In other words, if a program typechecks, then it makes
progress until it halts (without uncaught errors).

* is the reflexive
transitive closure of .

Another Java class with
a secret field?

• E is an inner class.

An accessor can break secrecy

This is the way inner classes were originally desugared.
Other techniques have been tried since then.

Other examples

There are many more examples,
for Java, C#, and other languages.

• In each case, some observational
equivalence that holds in
the source language does
not hold in implementations.

• We may say that the translations
are not fully abstract.

• Typechecking helps,
but it does not suffice.

High-level language

Implementation language

T

Mediated access, revisited

 class Widget {// No checking of argument
 virtual void Operation(string s) {…};
}
class SecureWidget : Widget {
 // Validate argument and pass on
 // Could also authenticate the caller
 override void Operation(string s) {
 Validate(s);
 base.Operation(s);
 }
}
…
SecureWidget sw = new SecureWidget();

 sw.Operation(…);
// Can’t avoid validation of argument

// In IL (pre-2.0), make a direct call
// on the superclass:
ldloc sw
ldstr “Invalid string”
call void Widget::Operation(string)

Alternatives

• One may ignore the security of translations

– when low-level code is signed by a trusted party,

– if one analyzes low-level code.

 These alternatives are not always satisfactory.

• In other cases, translations should preserve at
least some security properties; for example:

– limited versions of full abstraction
(e.g., for certain programming idioms),

– the secrecy of pieces of data labelled as secret,

– fundamental guarantees about control flow.

41

Proof-Carrying Code (PCC)

host

untrusted
client

application
code

Certifying
compiler

optimized
native code

CPU

automated
support

proof

small &
tamper-
proof

Proof
checker

simple,
small, &
fast

safety with
maximum
performance

formal
safety
policy

Flexible, customizable
safety policies

Abstractions and security

Abstractions are common
in computing, e.g.:

– function calls,

– objects with private
components,

– secure channels.

Clever implementation
techniques abound too:

– stacks,

– static and dynamic
access checks,

– cryptography.

Abstractions and security

Abstractions are common
in computing, e.g.:

– function calls,

– objects with private
components,

– secure channels.

Clever implementation
techniques abound too:

– stacks,

– static and dynamic
access checks,

– cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

Abstractions and security

Abstractions are common
in computing, e.g.:

– function calls,

– objects with private
components,

– secure channels.

Clever implementation
techniques abound too:

– stacks,

– static and dynamic
access checks,

– cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

This holds even for low-level code, and ideas originally
developed in high-level languages are useful there too.

Reading

• Morris’ “Protection in programming
languages”
http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855

• Kennedy’s “Securing the .NET Programming
Model”
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf

http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855
http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf

