Security in
programming
languages

Security in programming languages

* Languages have long been related to security.
* Modern languages should contribute to security:

— Constructs for protection (e.g., objects).

— Techniques for static analysis,
in particular for ensuring safety by typechecking.

— A tractable theory, with sophisticated methods.

e Several security techniques rely on language
ideas, with static and dynamic checks.

See Morris’s “Protection in Programming Languages”.

A class with a secret field

class C{ * A possible conjecture:
// the field Any two instances of this
class are observationally

private Int X; equivalent (that is, they

// a constructor cannot be distinguished
public C(intv) {x=v;} withinthe language).
) * More realistic examples

use constructs similarly.

* Objects are unforgeable.
E.g., integers cannot be
cast into objects.

// two instances of C
Ccl=new C(17);
C c2 = new C(28);

Mediated dCCeSS [example from A. Kennedy]

class widget {// No checking of argument
virtual void Operation(string s) {..};
¥
class Securewidget : widget {
// Validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
Validate(s);
base.Operation(s);

¥
¥

Securewidget sw = new Securewidget();

sw.Operation(“Nice string’);
// Can’t avoid validation of argument

Some application areas

Avoiding or detecting
implementation flaws

Using language constructs to
embody policies

Various static analyses (e.g.,
for C programs).

High-level languages with
automatic memory
management (e.g., Java).

Typed assembly and
intermediate languages;
proof-carrying code.

Data abstraction for
protecting private state.

Objects for capabilities.

Method calls enriched with
security semantics (as in
stack inspection).

Information-flow control
(e.g., in Jif).

Other aspects of
language-based security

Secure coding practices.
Signed code (e.g., with “strong names”).

Libraries for cryptography, authentication, . ..

Support for inline reference monitors.
Code obfuscation.

Firstly, the notation should be designed to reduce
as far as possible the scope for coding error; or at
least to guarantee that such errors can be
detected by a compiler, before the program even
begins to run. Certain programming errors cannot
always be detected in this way, and must be
cheaply detectable at run time; in no case can
they be allowed to give rise to machine- or
implementation-dependent effects, which are
inexplicable in terms of the language itself. This
is a criterion to which | give the name security.
Hoare (1973)

The security flaw reported this week in E-mail
programs produced by two highly respected
software companies points to an industrywide
problem — the danger of programming languages
whose greatest strength is also their greatest
weakness.

More modern programming languages, like the
Java language developed by Sun Microsystems,
have built-in safequards that prevent programmers
from making many common types of errors that

could result in security loopholes.
The New York Times (1998)

Types

* A program variable can assume a range of
values during the execution of a program.

* An upper bound of such a range is called a
type of the variable:

— A variable of type “bool” is supposed to assume
only boolean values.

— If x has type “bool” then “not(x)” has a sensible
meaning during every run of the program.

* An important application of type systems is to
prevent execution errors.

Typed vs. untyped languages

Untyped languages:

Typed languages:

The language does not
restrict the range of values
for a given variable.

Operations might be
applied to inappropriate
arguments.

The behavior in such cases
might be unspecified.

Variables can be assigned
(non-trivial) types.

Types might or might not
appear in programs.

Trapped vs. untrapped errors

Trapped errors:

Untrapped errors:

Trapped errors give rise to
well-specified behavior.

— E.g., division by zero.

Even languages with
powerful type systems
permit trapped errors.

Untrapped errors lead to
unspecified behavior which
depends on machine state.

— E.g., accessing past the end of
an array.

— E.g., jumping to an address in
the data segment.

Safe languages

* A program is safe if it does not cause
untrapped errors.

* Languages where all programs are safe are
safe languages.

— Some languages with types are not safe
(“weakly typed languages”).

— A compromise is the isolation of unsafe code
(as in Cedar).

A typical theorem

A computation state consists of:

* values for program variables,

* aprogram counter,

or the special state wrong to represent untrapped errors.
A computation step is a state transition, written s — t.

Suppose that P is a program that typechecks, and that we run
P from initial state s, and:

* Sy is not wrong,
* Spg—>S;—>...>S._1 S,
Then s is not wrong.

Alternative formulation
(modelling errors by stuck states)

A computation state consists of:

* values for program variables,

* aprogram counter,

(but without a special state wrong).

A computation step is a state transition, written s — t.

Suppose that P is a program that typechecks, and that we run P from
initial state s, and:

* Sp—>S;—>...—>S,1 S,
* thereisnotsuchthats, —t.
Then in s_ the program counter points to a halt instruction in P.

Security with safe languages

Safe languages permit:

e predictable behavior (despite sharing),

* unforgeable capabilities,

* mediation guarantees,

and (in comparison with hardware protection)

e portability,

e often adequate efficiency,

* rich interfaces.

But safety does not automatically imply security.

Beyond safety

Safety is a foundation. We may also have higher-
level objectives, e.g., secrecy properties.

In a typical scenario, a host runs some foreign
code and wants some security guarantees.

e Safety clearly helps.
But there are other scenarios:

* The foreign code may want to some
guarantees, e.g., ho reverse engineering.

* Two pieces of foreign code may coexist.

Caveats

Mismatch in characteristics: Mismatch in scope:

e Security requires simplicity * Language descriptions
and minimality. rarely specify security.

« Common programming Implementations may or
languages are complex. may not be secure.

e Security is a property of
systems (not languages).
Systems typically include
much security machinery
beyond what is given in
language definitions.

ISE-2012-01] Critical security issue affecting Java SE 5/6/7

From: Security Explorations <contact () security-explorations com=

Date: Tue, 25 Sep 2012 10:47-17 +0200

Hello Al1,

We've recently discovered yvet another security vulnerability
affecting all latest wersions of Oracle Java SE software. The
impact of this issue i=s critical - we were able to successfully
exploit it and achieve a complete Java security =sandbox bypass
in the environment of Java S5E 5, &€ and 7. 5o far, we could only
claim =such an impact with reference to Jawva 7 environment ([(the
Apple QuickTime attack relvyving on Issues 15 and 22 is the only
exception here). Thu=s, this post.

The newly discovered bug is special for sewveral reasons. This
iz our "anniver=sary" finding (Is=sue number 50). We discovered
it exclusively for JavaCne 2012 [1l]. Finally, the bug allows
to violate a fundamental security constraint of a Java Virtual
Machine (Cype safety).

“Secure” programming platforms

C++ VB
Java compller C# compller complle compiler

JVM

@va Virtual Machiny

-

.NET CLR
(Common Language Runtime) /

“Secure” programming platforms

C++ VB
Java compiler C# compiler compile compiler

JVM
@va Virtual Machine)

.NET CLR
(Common Language Runtime) /

But JVML or IL may be written by
hand, or with other tools.

“Secure” programming platforms

C++ VB
Java compiler C# compiler compile compiler

JVM
@va Virtual Machine)

‘ But JVML or IL may be written by
hand, or with other tools.

.NET CLR
(Common Language Runtime) /

Verifying intermediate- and
low-level code

Intermediate- and low-level code may not have
been produced by the intended compilers.
* So typechecking source code is not enough!

e Various systems (e.g., JVMs and .NET CLR)
include verifiers for lower-level code.

* These verifiers are basically typecheckers.

(The goal is to protect the host systems, not the untrusted code,
which anyway is typically subject to lower-level attacks.)

Another Java class with a secret

class C {
private int x;
public void set_x(int v) {
this.x = v;

¥

Any two instances of
this class cannot be distinguished within the
language.

Secrecy is preserved by translation
(sometimes)

* The same class at the bytecode level:

class C {
private int x;
public void set x(int) {

.framelimits locals = 2, stack = 2;

aload 0; // load this
iload 1; // load v
putfield x; // set x

¥
h

* Bytecode verification is required.

Verification

In bytecode verification, at each program point:
e the stack gets a height,

e each stack location gets a type,

e each local variable gets a type.

Various checks are then performed, e.g.,

* the stack never overflows or underflows,

e operations applied to operands of appropriate types,
e objects are not used before initialization,

* returns lead back to jump sites.

Some checks are left for runtime,

e e.g., array-bounds checks.

A miniature verifier

 We will give a formal treatment of a tiny
language MicrollL and a verifier for it.

— MicrolL is a fragment of the language of “A type
system for Java bytecode subroutines”

http://dl.acm.org/citation.cfm?doid=314602.314606

— It resembles other lower-level languages.

* The goal is to explain that lower-level
typechecking can be specified and analyzed
precisely, not to cover every feature.

http://dl.acm.org/citation.cfm?doid=314602.314606

MicrolL programs

A program is a sequence of instructions:

instruction .= 1inc

pop
pushO
load x
store T
if L
halt

where = ranges over Var (the set of variables),

and L ranges over Addr (the set of addresses).

MicrolL states

A state is a triple (pc, f, s)
where:

e DC IS an address,
e f maps variables to values,

e 5 IS a stack of values.

MicrolL semantics

Rulesfor P (pc, f.s) — (pc, ', &)

P[pc] = inc P[pc] = pop

P '::JDC: f: H'S:} - '::JDC+ 1, f (ﬂ“+ l)'S} P+ {:ch f v-S) — {-DC—I_ 1: f? S:}

P[pc] = load = P[pc] = push0

P+ (pc f,s)— (pc+1, f, flz] - s) P+ (pc, f.s) — (pc+1, f, 0-s)

Plpd = if L Plpc|] = store =

(pc, f,0-s) — { ; \ , \
PF(pc, f,0-s) pCc+ 1, f, s, PF{pc, f,v-s) — (pc+ 1, flx — v], s)

Plpc] = if L
n =0

Pt (pc, f,n-s) — (L, f, s)

Verifying MicrolL

The typing rules of MicrolL should prevent:
* type errors,

* operand stack overflow or underflow,

e wild jumps,

but they should allow local typing

(different types for the same variable or stack
location at different points).

MicrolL typing rules

Rulesfor r s p means that Pis well-typed,

where with types given by F'and §

* b, [x]is the type of variable x at point pc
(possibly undefined),

. Spc is the type of the operand stack (i.e., one
type for each stack slot) at point pc.

Basic types for values: Top, Int, ...

MicrolL typing rules (cont.)

The top-level rule is:

Ve € Var. F1|x] = Top
Sl — €
vi € Dom(P). F,S.i+ P

F.S5SFHP

where:
e TOp is the biggest type,
e € is The empty stack,

e ' 5.1+ F is a local typing check for program point i.

MicrolL typing rules (cont.)

One rule for each instruction, such as:

Pli] = load =
Tr C Dﬂm(FL)

Ji'[jl :1;; Fip1 = F; P[i] = pushO
SH_]_ = 5;=Int: « Sli_i_l - Fi[m] i SFH__I ;f? q.
| i+ 1< Dom(P) Yitl /AN T
i+ 1< Dom(P) i+ 1< Dom(P)
F,S,i- P 508 P F,5,iF P
P[i] = halt

F.S.iF P

A tiny example

If Pisthe program load z - load x - halt
then Pis well-typed, with F'and S given by:

* Fi[xz] =Top, S;=¢
* Fllz]=Top, S,=Top ¢
* Fi[z] =Top, S;=Top Top ¢

A theorem

Given a program F, F, and S such that F,S5F P,

if PF (1, fo, €) —* (pc, £, s) [9* s the reflexive J

transitive closure of —.

and there is no pcd, f/, §
such that PF (pc, f, s) — (pc, f', s')
then s Spc
and P[pc|] = halt.

In other words, if a program typechecks, then it makes
progress until it halts (without uncaught errors).

Another Java class with

a secret field?

class D {

class E {

private int y = x;

¥

private int x;

public void set x(int v) {

this.x = v;

¥

t

e Eisaninner class.

An accessor can break secrecy

class D {
private int x;
public void set_x(int v) {

this.x = v;
¥
static int get x(D d) {
return 4.x;
}s
} ¢
X
class E { \/
. get x ...
}

This is the way inner classes were originally desugared.
Other techniques have been tried since then.

Other examples

There are many more examples, High-level language.)
for Java, C#, and other languages.
* |In each case, some observational P~
. . /
equivalence that holds in
the source language does T
not hold in implementations. Implementation Ianguage\
* We may say that the translations T(P) £ T(Q)
are not fully abstract. y

* Typechecking helps,
but it does not suffice.

Mediated access, revisited

class widget {// No checking of argument
virtual void Operation(string s) {..};
¥
class Securewidget : widget {
// Validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
Validate(s);

haca Onoaration(c<) -

/}/ In IL (pre-2.0), make a direct call N
// on the superclass:
Tdloc sw
ldstr “Invalid string”

\Sa11 void widget: :Operation(string) J

Alternatives

* One may ignore the security of translations
— when low-level code is signed by a trusted party,
— if one analyzes low-level code.

These alternatives are not always satisfactory.

* |n other cases, translations should preserve at
least some security properties; for example:

— limited versions of full abstraction
(e.g., for certain programming idioms),

— the secrecy of pieces of data labelled as secret,
— fundamental guarantees about control flow.

Proof-Carrying Code (PCC)

automated
support

untrusted
client
“"$ma// &
host f_a mper-

safety with
maximum
performance

simple,
small, &
fast

Flexible, customizable
safety policies

41

Abstractions and security

Abstractions are common Clever implementation

in computing, e.g.: techniques abound too:
— function calls, — stacks,
— objects with private — static and dynamic
components, access checks,

— secure channels. — cryptography.

Abstractions and security

Abstractions are common Clever implementation

in computing, e.g.: techniques abound too:
— function calls, — stacks,
— objects with private — static and dynamic
components, access checks,
— secure channels. — cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

Abstractions and security

Abstractions are common Clever implementation

in computing, e.g.: techniques abound too:
— function calls, — stacks,
— objects with private — static and dynamic
components, access checks,
— secure channels. — cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

This holds even for low-level code, and ideas originally
developed in high-level languages are useful there too.

Reading

* Morris’ “Protection in programming
languages”

http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855

 Kennedy’s “Securing the .NET Programming
Model”

http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf

http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855
http://dl.acm.org/citation.cfm?id=361937&CFID=162158828&CFTOKEN=38362855
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf
http://research.microsoft.com/en-us/um/people/akenn/sec/appsem-tcs.pdf

