
Access control

Access control

Access control is prominent at many levels:

• memory-management hardware,

• operating systems, file systems, and the like,

• middleware,

• applications,

• firewalls,

and also in physical protection.

Access control (cont.)

• Access control is a mechanism.

– It aims to guarantee secrecy, integrity, and
availability properties, and more.

• Access control can also be seen as a model,
as specification for lower-level mechanisms.

– (Higher-level policies are often not explicit.)

The access control model

• Elements:

– Objects or resources

– Requests

– Sources for requests, called principals (or subjects)

– A reference monitor to decide on requests

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

An access control matrix
[Lampson, 1971]

 objects

principals

file1 file2 file3 file4

user1 rwx rw r x

user2 r r x

user3 r r x

Implementing access control

Authentication

Access control depends on authentication:

• Access control (authorization):

– Is principal A trusted on statement s?

– If A requests s, is s granted?

• Authentication:

– Who says s?

Other machinery

• Auditing

• Recovery
…

The reference monitor
and mediation

The principle of complete mediation
[Saltzer and Schroeder, 1975]

Every access to every object must be checked
for authority.

This principle can be enforced in several ways:

• The OS intercepts some of the requests.
The hardware catches others.

• A software wrapper / interpreter intercepts
some of the requests. (E.g., as in VMs.)

Strategies for representing
an access control matrix

In practice, a matrix is typically represented in
terms of ACLs and capabilities.

• ACL: a column of an access control matrix,
attached to an object.

• Capability: (basically) a pair of an object and
an operation, for a given principal.
It means that the principal may perform the
operation on the object.

More on ACLs

• An ACL says which principals can access a
particular object.

– It is a column of an access control matrix,

– typically maintained “near” the object that it
protects.

• ACLs can be compact and easy to review.

• Revoking a principal can be painful.

More on capabilities

• An alternative is to associate capabilities with
each principal.

– A capability means that the principal can perform
an operation on an object.

• These capabilities form a row of an access
control matrix for the principal

• Capabilities are often easy to pass around
(so they enable delegation).

• They can be hard to review and to confine.

Implementing capabilities

 Principals should not be allowed to
 forge capabilities.

This leads to implementations of capabilities

• stored in a protected address space, or

• with special tags with hardware support, or

• as references in a typed language, or

• with a secret, or

• with cryptography, e.g., certificates.

ACLs vs. capabilities

• ACLs and capabilities are dual.

• Both can yield practical implementations of
access matrices.

• In actual systems, they are often combined.

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

Principal
Reference
Monitor

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

Principal
Reference
Monitor

request

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

Principal
Reference
Monitor

request

evidence

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

?

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

evidence

?

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

evidence

?

?

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

evidence

?

? more

push vs. pull

• The reference monitor relies on proofs of
identity, the access policy, and other evidence.

• It can gather this evidence by two methods:

• Concerns: completeness, efficiency, privacy.

push: Principals present evidence
with requests

pull: Reference monitors gather
evidence, with help from others.

Principal
Reference
Monitor

Principal
Reference
Monitor

request

evidence

request

evidence

?

? more

Embellishments and
complications

Principals

Principals may be

• users,

• programs,

• computers,

• origins (in browsers),

• their combinations,

• …

On principals

The notion of principal varies (dangerously)
across systems and abstraction layers.

For example, one should not confuse

• IP addresses (e.g., 118.214.218.135),

• domains (e.g., whitehouse.gov),

• the computers at those addresses,

• the people who control the computers.

Some further elaborations

• Joint requests

• Groups

• Roles

• Negation

• Delegation

• Running programs

Conjunctions

• Sometimes a request should be granted only if
it is made jointly by several principals.

Conjunctions

• Sometimes a request should be granted only if
it is made jointly by several principals.

• A conjunction may or may not be made
explicit in the access policy.

Conjunctions

• Sometimes a request should be granted only if
it is made jointly by several principals.

• A conjunction may or may not be made
explicit in the access policy.

app

libs / VM

OS

Groups and roles

• Principals can be organized into groups.

• Principals can play roles.

• These groups and roles may be used as a level
of indirection in access control.

– E.g., any member of a group G may access a file f.

– E.g., anyone who can adopt the role R may then
access a file f.

Groups and roles (cont.)

• Suppose that any member of group
G may access file f owned by Alice.
– G may be maintained by someone else.

– G may change over time, without
immediate knowledge of Alice.

– f’s ACL should be short and clear.

– Proofs of memberships resemble (are?)
capabilities.

– Access to f may be partly anonymous.

– Still, Alice may require a proof of
identity at each f access, for auditing.

ACL for f
(owned by Alice)

G

Members of G
(owned by admin)

Alice

Bob

Charlie

On objects

Similarly, objects may include

• disk blocks,

• files,

• database tables, rows, and columns,

• application-level records, like calendar entries.

Picking objects is also an important part
of designing an access control system.

On operations

Similarly, too, there are important choices in
defining operations.

In particular, sometimes “small” operations
should be bundled to form “bigger” ones.

• E.g.,

– read a patient's record,

– write a log record (for auditing).

• A principal may be allowed to do a “big”
operation but not each of its components.

More on objects and operations

• Objects and operations may also be put in
groups, e.g.,

– all company files,

– all write operations (e.g., append) on an object.

• Moreover, some policy may be automatically
inherited from object to object.

Design choices

• Principals, objects, and operations should
have the “right” granularity and be at the
“right” level of abstraction

– for ease of understanding,

– to avoid giving away too much privilege.

Every program and every user of the system
should operate using the least set of privileges
necessary to complete the job.

The principle of least privilege
[Saltzer and Schroeder, 1975]

Common dangers

• Access control can be insufficient or irrelevant

– when it is implemented incorrectly,

– when the underlying operations are implemented
incorrectly,

– when the policy is wrong,

– when it is circumvented.

Further issues

• Many characteristics of distributed systems
make access control harder:

– size,

– faultiness (e.g., revocations may get lost),

– heterogeneity (e.g., of communication channels
and of protection mechanisms),

– autonomy, lack of central administration and
therefore of central trust,

– …

• Access control seems difficult to get right.

The snowball effect

• An illustration of the consequences of bad
policies (particularly in distributed systems).

• Not a new problem, but still a problem.

• With a recent precise formulation and some
research [Dunagan, Zheng, and Simon].

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice’s
machine1

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice’s
machine1

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice Alice’s
machine1

Alice
logs in

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice Alice’s
machine1

Alice
logs in

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice Alice’s
machine1

Alice’s
machine2

Alice
logs in

Alice
administers

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice Alice’s
machine1

Alice’s
machine2

Alice
logs in

Alice
administers

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice
A project

group
Alice’s

machine1

Alice’s
machine2

Alice
logs in

Alice
administers

Alice
belongs

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice
A project

group
Alice’s

machine1

Alice’s
machine2

Alice
logs in

Alice
administers

Alice
belongs

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice
A project

group
Alice’s

machine1

Alice’s
machine2

Project
machine

Alice
logs in

Alice
administers

Alice
belongs

Project
owns

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice
A project

group
Alice’s

machine1

Alice’s
machine2

Project
machine

Alice
logs in

Alice
administers

Alice
belongs

Project
owns

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice

Bob

A project
group

Alice’s
machine1

Alice’s
machine2

Project
machine

Alice
logs in

Alice
administers

Bob
logs in

Alice
belongs

Project
owns

The snowball effect

An illustration of the consequences of bad
policies (particularly in distributed systems):

Alice

Bob

A project
group

Alice’s
machine1

Alice’s
machine2

Project
machine

Alice
logs in

Alice
administers

Bob
logs in

Alice
belongs

Project
owns

Snowball experiment
[Dunagan, Zheng, and Simon]

• Over 1 week, observe “log in”, “administer”,
and “member” relations in a system.

• Then compute the effects of a single random
initial compromise.

Cutoff at 1,000 for
confidentiality
reasons.

In an organization
with ~100K accounts
and ~200K machines.

Defenses

• Having analyzed the relations in a system,
one may try to remove some of them.

– The functioning of the system requires many of
these relations!

– Dunagan et al. find good candidates in sparse cuts.

• We can also use stronger building blocks.

– E.g., making it harder for a compromised machine
to impersonate its users.

…
(another big
component)

few edges

Circumventing access control

Sometimes the reference monitor does not
protect all important objects and operations,
for example because of

• hostile platforms (e.g., for DRM systems),

• control-flow subversions (as we will see),

• race conditions,

• data recovery from memory or disks,

• side channels.

check

operation

Data recovery from memory

• Memory does not
lose data as soon as
it is disconnected!

• An attacker must
be able to access
the memory
physically, find
secrets in it, and
do some error
correction.

Cold
RAM
chips
(-50°C).

5 secs. 30 secs. 60 secs. 5 mins.

Source: J. A. Halderman et al.
http://citp.princeton.edu/memory/media/

http://citp.princeton.edu/memory/media/
http://citp.princeton.edu/memory/media/
http://citp.princeton.edu/memory/media/

“Tempest” in Dutch voting (2006)

• A character in the name of
a party caused some
voting-machine displays to
switch refresh frequencies.

• The resulting radio
emissions were different!

• This could let someone
outside a voting booth
identify the party’s name.

Source: B. Jacobs and W. Pieters

A prototype tempest-
shielded vote-printer, with
touch screen and protected
tray for the printed vote;
almost 100kg.

Reading

• Lampson’s “Protection”
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf

• Saltzer & Schroeder’s “The protection of information in computer
systems”
http://web.mit.edu/Saltzer/www/publications/protection/index.html

• Lampson’s “Computer Security in the Real World”
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf

• Dunagan et al.’s “Heat-ray: Combating Identity Snowball Attacks
Using Machine Learning, Combinatorial Optimization and Attack
Graphs”
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf

• Jacobs & Pieters’s “Electronic Voting in the Netherlands: from early
Adoption to early Abolishment”
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf

• Halderman et al.’s “Lest We Remember: Cold Boot Attacks on
Encryption Keys”
https://citp.princeton.edu/research/memory/

http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/

Access control and programs

Programs everywhere!

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

• Programs implement the operations that are
the concern of access control.

Reference

monitor
ObjectDo

operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

• Programs implement the operations that are
the concern of access control.

Reference

monitor
ObjectDo

operationPrincipal

GuardRequestSource Resource

Bundling operations into programs

 objects

principals

Data file Log file Program P’s

code

Alice x

auditor r r

Program P rw rw x

Conjoining users through programs

 objects

principals

Data file Program P’s

code

Alice x

Bob x

Program P rw x

where P checks that both Alice and Bob make
the same request before forwarding the request.

Conjoining users through programs
(an alternative)

where P modifies the matrix so that Alice has
access when Bob requests it, and vice versa.

 objects

principals

Data file Data file’s

ACL

Program P’s

code

Alice x

Bob x

Program P rw x

Modifying the matrix

• The access control matrix need not be static.

• It may be modified by programs like:

 command CONFER (right, user, friend, file)

 if right in matrix[user, file]

 then enter right into matrix[friend,file]

 end

How can we ensure safety?

Algorithmic analysis
[starting with Harrison, Ruzzo, and Ullman, 1976]

• A system has finite sets of rights and
commands.

• A command is of the form
“if conditions hold, then perform operations”.

– The conditions are predicates on the matrix.

– Operations add/delete rights, principals, objects.

Let A be a principal and f an object.

In general, it is undecidable whether there is a
reachable state such that A can access f.

Algorithmic analysis (cont.)
[in particular, Li, Winsborough, and Mitchell, 2003]

• Not all interesting problems are undecidable!

• Consider the containment problem:
In every reachable state, does every principal
that has one property (e.g., has access to a
resource) also have another property (e.g.,
being an employee)?

For different classes of systems, this problem is
decidable (in coNP or coNEXP).

Programs and other principals

• So, programs may be principals too.

• But then:

– we need to deal with program combinations,

– we need to connect programs to other principals

• who write them or edit them,

• who provide them or install them,

• who call them.

app1 OS app2 browser

Running programs

• What are the run-time rights of a program P?

– those of P’s caller, or

– those of some responsible user, or

– something else, e.g, because of P’s properties, or

– some combination.

• The same factors appear in deciding whether
to run a program.

app1
proved

OS app2 browser
from A

request

Bob

invoke

Running programs (cont.)

Some approaches to
combining authorities:

• setuid,

• code access security
(with stack inspection
or alternatives).

Some approaches to
intrinsic properties:

• proofs (and proof-
carrying code),

• types,

• dynamic checks (e.g., in
sandboxes),

• their combinations
(e.g., proofs about
sandboxes).

Protection and isolation

• Programs must be protected (always) and
limited to communicate on proper interfaces.

• This is often the job of the computing
platform (OS + hardware).

– It can implement address spaces so that programs
in separate spaces cannot interact directly
(e.g., cannot smash or snoop on one another).

• A language and its run-time system can
provide fine-grained control.

 More on this later.

Examples

Access control in Unix (basics)

• Principals are users (plus root).

• Objects are files.

• Operations are read, write, and execute.

• Each file has an owner and a group.

• Each file has an ACL, which can be set by its
owner and root.

• ACLs specify rights for the owner (“user”),
group, and others (e.g., rwxrw-r--).

Access control in Unix (cont.)

• If a program file is marked as suid, then the
program executes with the privilege of its
owner (not that of the caller).

– The usage of setuid is error-prone.

– The details are complex and vary across systems.

• And there are other complications: sgid,
capabilities in Linux, directories, …

See “Setuid Demystified”, by Chen, Wagner, and Dean.

The basic sandbox policy

• Trusted code (e.g., local code) has the full
power of the user that runs it.

• Untrusted code (e.g., foreign code) has very
limited rights, e.g.:

– no direct use of files,

– network connections only to the code’s origin.

• The sandbox is enforced at run-time:

– A reference monitor (“security manager”) is
associated with code when the code is loaded.

The basic sandbox policy

Trusted code can access
libraries and thereby the
underlying OS services.

Untrusted code mostly
cannot.

OS

 Virtual machine

Trusted
Function 1

Untrusted
Function 2

…

libraries
(e.g., I/O)

Permissions (as in Java)

Access to resources is
expressed in terms of
permissions, such as “may
perform screen I/O”.

Before execution, an
annotation on each piece
of code (e.g., function)
indicates its permissions.

A configurable policy
determines permissions
depending on code origin.

OS

 Virtual machine

Function 1 Function 2 …

libraries
(e.g., I/O)

Permissions (cont.)

Code with a variety of
origins, more or less
trusted, may call one
another or share data.

Should all of their
permissions count in
access decisions?

OS

 Virtual machine

Function 1 Function 2 …

libraries
(e.g., I/O)

One answer, on a simple example
(also as in Java)

Suppose that f(s) modifies
the file named s.

If g calls f(s), both should
have permission to write
to s.

(Otherwise, f may be used
as a confused deputy.)

OS

 Virtual machine

f g …

libraries
(e.g., file
access)

s

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

BadApp

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

NaiveApp

BadApp

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

NaiveApp

BadApp

File

A twist

Suppose that f(s) wants to
write to a log that g
should not access.

If f is a trusted function, it
can check that g’s call is
ok, assert it, and then use
its own authority for
writing to the log.

Afterwards, g’s
permissions do not
matter, only f’s.

OS

 Virtual machine

f g …

libraries
(e.g., file
access)

s Logs

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

BadPlugIn

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

File

Criticisms

• Does this technique achieve real security?
for what policy?

• Looking at chains of calls is not satisfactory.

– Some other constructs require careful treatment.

– A standard formulation (“stack inspection”) is tied
to a particular stack implementation.
 It rules out or complicates optimizations.

• It can get hard to understand security.

See “Stack Inspection: Theory and Variants”, by Fournet and Gordon.

Access control in Android

Applications are principals.

Each application comes with
fixed permissions

– declared by developer;

– accepted by user at
installation time;

– checked at run-time;

– some standard,
e.g., access network;

– others defined by
developers;

– over 100.

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1
(e.g., radio)

App2
(e.g., alarm)

…

(For many other aspects to Android security, see
“Understanding Android Security”, by Enck et al..)

Languages and logics
for access control policies

From matrices to rules

• An access control matrix may be represented
with a ternary predicate symbol may-access.

• Other predicates may represent groups, etc..

• We may use standard logical operators.

• We may then write formulas such as:
 may-access(Alice, Foo.txt, Rd)
and rules such as:
 may-access(p, o, Wr)  may-access(p, o, Rd)
 good(p)  may-access(p, o, Rd)
 (see XACML and the like)

Going further: policies for
distributed systems

• In distributed systems, there are multiple
sources of assertions, trusted differently.

• This is reflected in some proposed public-key
infrastructures, policy languages, and logics.

• One idea is to represent explicitly the
principals that make assertions and to reason
about them…

Says

export

import

Alice

statement

Bob

Certificate

export

import

Alice

statement

Bob

Alice says

statement

Channel

statement

(from Alice)

• “says”
represents
communication
across contexts.

• It abstracts from
the details of
authentication.

• The statement
may be atomic
or a more
complex rule.

Alice says

statement

statement

(signed Alice)

• A simple notation for assertions:

– A says s

– A speaks for B

• With logical rules, for example:

⊢ A says (s  t)  (A says s)  (A says t)

⊢ s  (A says s) ⊢ (A says A says s)  (A says s)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B

• With logical rules, for example:

⊢ A says (s  t)  (A says s)  (A says t)

⊢ s  (A says s) ⊢ (A says A says s)  (A says s)

⊢ A speaks for B  (A says s)  (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C  A speaks for C

⊢ (B says (A speaks for B))  (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B  for all X. ((A says X)  (B says X))

• With logical rules, for example:

⊢ A says (s  t)  (A says s)  (A says t)

⊢ s  (A says s) ⊢ (A says A says s)  (A says s)

⊢ A speaks for B  (A says s)  (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C  A speaks for C

⊢ (B says (A speaks for B))  (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B  for all X. ((A says X)  (B says X))

• With logical rules, for example:

⊢ A says (s  t)  (A says s)  (A says t)

⊢ s  (A says s) ⊢ (A says A says s)  (A says s)

⊢ A speaks for B  (A says s)  (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C  A speaks for C

⊢ (B says (A speaks for B))  (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

“same
consequences”

An example

• Let good-to-delete-file1 be a proposition.

• Let B controls s stand for (B says s)  s

• Assume that

– B says (A speaks for B)

– B controls good-to-delete-file1

– A says good-to-delete-file1

• We can derive:

– B says good-to-delete-file1

– good-to-delete-file1

Applications

Several languages rely on logics for access control:

• D1LP and RT [Li, Mitchell, et al.]

• SD3 [Jim] and Binder [DeTreville]

• Daisy [Cirillo et al.]

• SecPAL [Becker, Fournet, and Gordon] and DKAL [Gurevich and Neeman]

“says” and “speaks for” play a role in other systems:

• SDSI and SPKI [Lampson and Rivest; Ellison et al.]

• Alpaca [Lesniewski-Laas et al.] and Aura [Vaughan et al.]

• PCFS (proof-carrying file system) [Garg and Pfenning]

• …

An example system: Grey
[Bauer, Reiter, et al., 20052008]

• Turns a cell phone into a tool for delegating
and exercising authority.

• Uses cell phones to replace physical locks and
key systems.

• Implemented in part of CMU.

• With access control based on logic and
distributed proofs.

Slide originally from Mike Reiter

D208

Phone discovers door

To prove:
Mike says

Goal(D208.open)

Open

D208

Jon

Jon’s

phone

Mike’s

phone
Mike

I can prove that with any of
1) Jon speaksfor Mike.Student

2) Jon speaksfor Mike.Admin

3) Jon speaksfor Mike.Wife

4) Delegates(Mike, Jon,

 D208.open)

Please help

Jon speaksfor

Mike.Student Proof of:
Jon says Goal(D208.open) 

Mike says Goal(D208.open)

Proof of:
Mike says

Goal(D208.open)

Hmm, I can’t prove

that. I’ll ask Mike’s

phone for help.

An example of a distributed proof:

A small language: Binder

• Binder is a relative of Prolog.

• Like Datalog, it lacks function symbols.

• It also includes the special construct says.

• It does not include much else.

• Binder is not the most recent.

• Later systems (e.g., SecPAL) have similarities
with Binder, but they are more complex.

An example

• Facts

– owns(Alice, Foo.txt).

– Alice says good(Bob).

• Rules

– may-access(p, o, Rd) :- owns(q, o), blesses(q, p).

– blesses(Alice, p) :- Alice says good(p).

• Conclusions

– may-access(Bob, Foo.txt, Rd).

Proof rules

• Binder includes standard logical rules (“resolution”).

• E.g.,
may-access(p, o, Rd) :- owns(q, o), blesses(q, p).
owns(Alice, Foo.txt).
 imply
may-access(p, Foo.txt, Rd) :- Alice says good(p).

Proof rules: importing

• In addition, formulas from a context F can be
imported to a context D.

– This adds “F says” in front of all atoms without a
“says”.

– It applies only to clauses where the head atom
does not have “says”.

Importing by example

• Suppose F has the rules

– may-access(p, o, Rd) :- owns(q, o), blesses(q, p).

– blesses(Alice, p) :- Alice says good(p).

– Alice says good(Bob).

• D may import the first two as:

– F says may-access(p, o, Rd) :-
 F says owns(q, o), F says blesses(q, p).

– F says blesses(Alice, p) :- Alice says good(p).

• D may import good(Bob) directly from Alice.

Importing by example (cont.)

• Suppose F has the rule

– blesses(Alice, p) :- Alice says good(p).

• D may import it as:

– F says blesses(Alice, p) :- Alice says good(p).

• D and F should agree on Alice’s identity.

• But the meaning of predicates may vary, and it
typically will.
For example, F may also have:

– blesses(Bob, p) :- Bob says excellent(p).

Important properties

• Policies can use application-specific predicates.

• Statements can be read declaratively.

• Queries are decidable (typically in PTime).

Issues and research directions

• What about algorithmic problems?

• What about more proof systems? Semantics?

• Can all reasonable policies be expressed?
Can the simple ones be expressed simply?

• Is this a way of explaining other approaches?
or something for direct use (e.g., as XACML)?

Reading

• Chen et al.’s “Setuid Demystified”
http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

• Fournet & Gordon’s “Stack Inspection: Theory
and Variants”
http://dl.acm.org/citation.cfm?id=641912

• Enck et al.’s “Understanding Android Security”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
http://dl.acm.org/citation.cfm?id=641912
http://dl.acm.org/citation.cfm?id=641912
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655

Homework 2 (due October 11)

Exercise 1:
Consider a system with users U1, . . . ,Um. The system has
functionality for letting the users play a fixed, one-player
game, for charging $1 to a user account, for resetting a
user account to $0, and for showing the balance on a user
account. Informally, its policy is:
a) Users can play with a charge of $1 each time.
b) Only user U1 can reset user accounts.
c) The balance on a user account can be seen only by the
user and by U1.
Express this policy as an access control matrix. Be explicit
on the definitions of subjects, objects, and operations.
(E.g., if the subjects are U1, . . . ,Um, say so.)

Homework 2

Exercise 2:

Comment on how one of the principles of
Saltzer and Schroeder is followed or disregarded
in some aspect of a contemporary system that
you know.

A paragraph should suffice.

Homework 2

Exercise 3:

Lampson’s paper “Protection” (pp. 2–3)
describes a simple scheme for identifying
processes in systems. Comment on how it
applies, or not, when the system in question is
the Web.

A paragraph should suffice.

