
Access control 



Access control 

Access control is prominent at many levels: 

• memory-management hardware, 

• operating systems, file systems, and the like, 

• middleware, 

• applications, 

• firewalls, 

and also in physical protection. 



Access control (cont.) 

• Access control is a mechanism. 

– It aims to guarantee secrecy, integrity, and 
availability properties, and more. 

• Access control can also be seen as a model,  
as specification for lower-level mechanisms. 

– (Higher-level policies are often not explicit.) 



The access control model 

• Elements: 

– Objects or resources 

– Requests 

– Sources for requests, called principals (or subjects) 

– A reference monitor to decide on requests 

 

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource



An access control matrix  
[Lampson, 1971] 

         objects 

 

principals 

file1 file2 file3 file4 

user1 rwx rw r x 

user2 r r x 

user3 r r x 



Implementing access control 



Authentication 

Access control depends on authentication: 

 

• Access control (authorization):  

– Is principal A trusted on statement s? 

– If A requests s, is s granted?  

 

• Authentication: 

– Who says s? 



Other machinery 

• Auditing 

• Recovery 
… 



The reference monitor  
and mediation  

The principle of complete mediation  
[Saltzer and Schroeder, 1975] 

Every access to every object must be checked 
for authority. 

This principle can be enforced in several ways: 

• The OS intercepts some of the requests. 
The hardware catches others.  

• A software wrapper / interpreter intercepts 
some of the requests. (E.g., as in VMs.) 

 



Strategies for representing  
an access control matrix 

In practice, a matrix is typically represented in 
terms of ACLs and capabilities. 

• ACL: a column of an access control matrix, 
attached to an object. 

• Capability: (basically) a pair of an object and 
an operation, for a given principal. 
It means that the principal may perform the 
operation on the object. 



More on ACLs 

• An ACL says which principals can access a 
particular object. 

– It is a column of an access control matrix, 

– typically maintained “near” the object that it 
protects. 

• ACLs can be compact and easy to review. 

• Revoking a principal can be painful. 

 



More on capabilities 

• An alternative is to associate capabilities with 
each principal. 

– A capability means that the principal can perform 
an operation on an object. 

• These capabilities form a row of an access 
control matrix for the principal 

• Capabilities are often easy to pass around  
(so they enable delegation). 

• They can be hard to review and to confine. 

 

 

 



Implementing capabilities 

  Principals should not be allowed to  
   forge capabilities.  

This leads to implementations of capabilities 

• stored in a protected address space, or 

• with special tags with hardware support, or 

• as references in a typed language, or 

• with a secret, or 

• with cryptography, e.g., certificates. 

 

 



ACLs vs. capabilities 

• ACLs and capabilities are dual. 

• Both can yield practical implementations of 
access matrices. 

• In actual systems, they are often combined. 

 



push vs. pull 

• The reference monitor relies on proofs of 
identity, the access policy, and other evidence. 

• It can gather this evidence by two methods: 
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• Concerns: completeness, efficiency, privacy. 
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Embellishments and 
complications 



Principals 

Principals may be 

• users, 

• programs, 

• computers, 

• origins (in browsers), 

• their combinations, 

• … 



On principals 

The notion of principal varies (dangerously) 
across systems and abstraction layers.  

For example, one should not confuse 

• IP addresses (e.g., 118.214.218.135), 

• domains (e.g., whitehouse.gov), 

• the computers at those addresses, 

• the people who control the computers. 



Some further elaborations 

• Joint requests 

• Groups 

• Roles 

• Negation 

• Delegation 

• Running programs 



Conjunctions 

• Sometimes a request should be granted only if 
it is made jointly by several principals. 



Conjunctions 

• Sometimes a request should be granted only if 
it is made jointly by several principals. 

• A conjunction may or may not be made 
explicit in the access policy. 



Conjunctions 

• Sometimes a request should be granted only if 
it is made jointly by several principals. 

• A conjunction may or may not be made 
explicit in the access policy. 

app 

libs / VM 

OS 



Groups and roles 

• Principals can be organized into groups. 

• Principals can play roles. 

• These groups and roles may be used as a level 
of indirection in access control. 

– E.g., any member of a group G may access a file f. 

– E.g., anyone who can adopt the role R may then 
access a file f. 

 



Groups and roles (cont.) 

• Suppose that any member of group 
G may access file f owned by Alice. 
– G may be maintained by someone else. 

– G may change over time, without 
immediate knowledge of Alice. 

– f’s ACL should be short and clear. 

– Proofs of memberships resemble (are?) 
capabilities. 

– Access to f may be partly anonymous. 

– Still, Alice may require a proof of 
identity at each f access, for auditing. 

ACL for f 
(owned by Alice) 

G 

Members of G 
(owned by admin) 

Alice 

Bob 

Charlie 



On objects 

Similarly, objects may include 

• disk blocks, 

• files, 

• database tables, rows, and columns, 

• application-level records, like calendar entries. 

Picking objects is also an important part  
of designing an access control system. 



On operations 

Similarly, too, there are important choices in 
defining operations. 

In particular, sometimes “small” operations 
should be bundled to form “bigger” ones. 

• E.g., 

– read a patient's record, 

– write a log record (for auditing). 

• A principal may be allowed to do a “big” 
operation but not each of its components. 

 



More on objects and operations 

• Objects and operations may also be put in 
groups, e.g.,  

– all company files, 

– all write operations (e.g., append) on an object. 

• Moreover, some policy may be automatically 
inherited from object to object. 





Design choices 

• Principals, objects, and operations should 
have the “right” granularity and be at the 
“right” level of abstraction 

– for ease of understanding, 

– to avoid giving away too much privilege. 

 



Every program and every user of the system 
should operate using the least set of privileges 
necessary to complete the job.  

The principle of least privilege 
[Saltzer and Schroeder, 1975] 



Common dangers 

• Access control can be insufficient or irrelevant 

– when it is implemented incorrectly, 

– when the underlying operations are implemented 
incorrectly, 

– when the policy is wrong, 

– when it is circumvented. 

 



Further issues 

• Many characteristics of distributed systems 
make access control harder:  

– size, 

– faultiness (e.g., revocations may get lost), 

– heterogeneity (e.g., of communication channels 
and of protection mechanisms), 

– autonomy, lack of central administration and 
therefore of central trust, 

– … 

• Access control seems difficult to get right. 



The snowball effect 

• An illustration of the consequences of bad 
policies (particularly in distributed systems). 

• Not a new problem, but still a problem. 

• With a recent precise formulation and some 
research [Dunagan, Zheng, and Simon]. 
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Snowball experiment 
[Dunagan, Zheng, and Simon] 

• Over 1 week, observe “log in”, “administer”, 
and “member” relations in a system. 

• Then compute the effects of a single random 
initial compromise. 

 

 

Cutoff at 1,000 for 
confidentiality 
reasons. 
 
In an organization 
with ~100K accounts 
and ~200K machines. 



Defenses 

• Having analyzed the relations in a system,  
one may try to remove some of them. 

– The functioning of the system requires many of 
these relations! 

– Dunagan et al. find good candidates in sparse cuts. 
 
 
 

• We can also use stronger building blocks. 

– E.g., making it harder for a compromised machine 
to impersonate its users. 

…  
(another big 
component) 

few edges 



Circumventing access control 

Sometimes the reference monitor does not 
protect all important objects and operations, 
for example because of 

• hostile platforms (e.g., for DRM systems), 

• control-flow subversions (as we will see), 

• race conditions, 

• data recovery from memory or disks, 

• side channels. 

check 

operation 



Data recovery from memory 

• Memory does not 
lose data as soon as 
it is disconnected!  

• An attacker must 
be able to access 
the memory 
physically, find 
secrets in it, and  
do some error 
correction. 

Cold 
RAM  
chips 
(-50°C). 

5 secs.     30 secs.    60 secs.    5 mins. 

Source: J. A. Halderman et al. 
http://citp.princeton.edu/memory/media/ 

http://citp.princeton.edu/memory/media/
http://citp.princeton.edu/memory/media/
http://citp.princeton.edu/memory/media/


“Tempest” in Dutch voting (2006) 

• A character in the name of 
a party caused some 
voting-machine displays to 
switch refresh frequencies. 

• The resulting radio 
emissions were different! 

• This could let someone 
outside a voting booth 
identify the party’s name. 

Source: B. Jacobs and W. Pieters 

A prototype tempest-
shielded vote-printer, with 
touch screen and protected 
tray for the printed vote; 
almost 100kg. 



Reading 

• Lampson’s “Protection” 
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf  

• Saltzer & Schroeder’s “The protection of information in computer 
systems” 
http://web.mit.edu/Saltzer/www/publications/protection/index.html  

• Lampson’s “Computer Security in the Real World” 
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf  

• Dunagan et al.’s “Heat-ray: Combating Identity Snowball Attacks 
Using Machine Learning, Combinatorial Optimization and Attack 
Graphs” 
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf  

• Jacobs & Pieters’s “Electronic Voting in the Netherlands: from early 
Adoption to early Abolishment”  
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf  

• Halderman et al.’s “Lest We Remember: Cold Boot Attacks on 
Encryption Keys” 
https://citp.princeton.edu/research/memory/  

http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/64-SecurityInRealWorld/Acrobat.pdf
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http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
http://research.microsoft.com/en-us/um/people/jdunagan/sosp112-dunagan.pdf
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http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/E-votingHistory.pdf
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https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/
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Bundling operations into programs 

             objects 

 

principals 

Data file Log file Program P’s 

code 

Alice x 

auditor r r 

Program P rw rw x 



Conjoining users through programs 

             objects 

 

principals 

Data file Program P’s 

code 

Alice x 

Bob x 

Program P rw x 

where P checks that both Alice and Bob make  
the same request before forwarding the request. 



Conjoining users through programs 
(an alternative) 

where P modifies the matrix so that Alice has  
access when Bob requests it, and vice versa. 

             objects 

 

principals 

Data file Data file’s 

ACL 

Program P’s 

code 

Alice x 

Bob x 

Program P rw x 



Modifying the matrix 

• The access control matrix need not be static. 

• It may be modified by programs like: 

    command CONFER (right, user, friend, file) 

      if right in matrix[user, file] 

      then enter right into matrix[friend,file] 

    end 

 

How can we ensure safety? 



Algorithmic analysis 
[starting with Harrison, Ruzzo, and Ullman, 1976] 

• A system has finite sets of rights and 
commands.  

• A command is of the form  
“if conditions hold, then perform operations”. 

– The conditions are predicates on the matrix. 

– Operations add/delete rights, principals, objects. 

Let A be a principal and f an object. 

In general, it is undecidable whether there is a 
reachable state such that A can access f. 



Algorithmic analysis (cont.) 
[in particular, Li, Winsborough, and Mitchell, 2003] 

• Not all interesting problems are undecidable! 

• Consider the containment problem: 
In every reachable state, does every principal 
that has one property (e.g., has access to a 
resource) also have another property (e.g., 
being an employee)?  
 

For different classes of systems, this problem is 
decidable (in coNP or coNEXP). 



Programs and other principals 

• So, programs may be principals too. 

• But then: 

– we need to deal with program combinations, 
 
 
 

– we need to connect programs to other principals 

• who write them or edit them, 

• who provide them or install them, 

• who call them. 

 

app1 OS app2 browser 



Running programs 

• What are the run-time rights of a program P? 

– those of P’s caller, or 

– those of some responsible user, or 

– something else, e.g, because of P’s properties, or 

– some combination. 

• The same factors appear in deciding whether 
to run a program. 

 

 
app1 
proved 

OS app2 browser 
from A 

request 

Bob 

invoke 



Running programs (cont.) 

Some approaches to 
combining authorities: 

• setuid,  

• code access security  
(with stack inspection 
or alternatives). 

 

Some approaches to 
intrinsic properties: 

• proofs (and proof-
carrying code), 

• types, 

• dynamic checks (e.g., in 
sandboxes), 

• their combinations 
(e.g., proofs about 
sandboxes). 

 



Protection and isolation 

• Programs must be protected (always) and 
limited to communicate on proper interfaces. 

• This is often the job of the computing 
platform (OS + hardware). 

– It can implement address spaces so that programs 
in separate spaces cannot interact directly  
(e.g., cannot smash or snoop on one another). 

• A language and its run-time system can 
provide fine-grained control. 

 More on this later. 



Examples 



Access control in Unix (basics) 

• Principals are users (plus root). 

• Objects are files. 

• Operations are read, write, and execute. 

• Each file has an owner and a group. 

• Each file has an ACL, which can be set by its 
owner and root. 

• ACLs specify rights for the owner (“user”), 
group, and others (e.g., rwxrw-r--). 



Access control in Unix (cont.) 

• If a program file is marked as suid, then the 
program executes with the privilege of its 
owner (not that of the caller). 

– The usage of setuid is error-prone. 

– The details are complex and vary across systems. 

• And there are other complications: sgid, 
capabilities in Linux, directories, … 

See “Setuid Demystified”, by Chen, Wagner, and Dean. 



The basic sandbox policy 

• Trusted code (e.g., local code) has the full 
power of the user that runs it. 

• Untrusted code (e.g., foreign code) has very 
limited rights, e.g.: 

– no direct use of files, 

– network connections only to the code’s origin. 

• The sandbox is enforced at run-time: 

– A reference monitor (“security manager”) is 
associated with code when the code is loaded. 



The basic sandbox policy 

Trusted code can access 
libraries and thereby the 
underlying OS services. 

 

Untrusted code mostly 
cannot. 

 

OS 

 
                         

                        Virtual machine 

Trusted 
Function 1 

Untrusted 
Function 2 

… 

libraries 
(e.g., I/O) 



Permissions (as in Java) 

Access to resources is 
expressed in terms of 
permissions, such as “may 
perform screen I/O”. 

Before execution, an 
annotation on each piece 
of code (e.g., function) 
indicates its permissions. 

A configurable policy 
determines permissions 
depending on code origin. 

 

OS 

 
                         

                        Virtual machine 

Function 1 Function 2 … 

libraries 
(e.g., I/O) 



Permissions (cont.) 

Code with a variety of 
origins, more or less 
trusted, may call one 
another or share data. 

 
Should all of their 
permissions count in 
access decisions?  

 

OS 

 
                         

                        Virtual machine 

Function 1 Function 2 … 

libraries 
(e.g., I/O) 



One answer, on a simple example 
(also as in Java) 

Suppose that f(s) modifies 
the file named s. 

If g calls f(s), both should 
have permission to write 
to s. 

(Otherwise, f may be used 
as a confused deputy.) 

 

OS 

 
                         

                        Virtual machine 

f g … 

libraries 
(e.g., file 
access) 

s 



An example where looking at the 
stack suffices 

// Fully trusted but naive: has all permissions  
public class NaiveApp { 
  public static void Write (string s, … ) { 
    File.Write (s, … ); 
  } 
} 
// Untrusted: no FileIOPermission 
class BadApp { 
  public static void Main() { 
    NaiveApp.Write (“..\\password”, …); 
} 

BadApp 
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An example where looking at the 
stack suffices 

// Fully trusted but naive: has all permissions  
public class NaiveApp { 
  public static void Write (string s, … ) { 
    File.Write (s, … ); 
  } 
} 
// Untrusted: no FileIOPermission 
class BadApp { 
  public static void Main() { 
    NaiveApp.Write (“..\\password”, …); 
} 

NaiveApp 

BadApp 

File 



A twist 

Suppose that f(s) wants to 
write to a log that g 
should not access. 

If f is a trusted function, it 
can check that g’s call is 
ok, assert it, and then use 
its own authority for 
writing to the log. 

Afterwards, g’s 
permissions do not 
matter, only f’s. 

 

OS 

 
                         

                        Virtual machine 

f g … 

libraries 
(e.g., file 
access) 

s Logs 



An example where looking at the 
stack does not suffice 

// Fully trusted but naive: has all permissions  
class NaiveApp { 
  public static void Main() { 
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    File.Write(s, … ); 
  } 
} 
// Untrusted: no FileIOPermission 
public class BadPlugIn { 
    public static string TempFile () { 
      return “..\\ password”; 
  } 
} 
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An example where looking at the 
stack does not suffice 

// Fully trusted but naive: has all permissions  
class NaiveApp { 
  public static void Main() { 
    string s = BadPlugIn.TempFile (); 
    File.Write(s, … ); 
  } 
} 
// Untrusted: no FileIOPermission 
public class BadPlugIn { 
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      return “..\\ password”; 
  } 
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Criticisms 

• Does this technique achieve real security?  
for what policy? 

• Looking at chains of calls is not satisfactory. 

– Some other constructs require careful treatment. 

– A standard formulation (“stack inspection”) is tied 
to a particular stack implementation. 
 It rules out or complicates optimizations. 

• It can get hard to understand security. 

 

See “Stack Inspection: Theory and Variants”,  by Fournet and Gordon. 



Access control in Android 

Applications are principals. 

Each application comes with 
fixed permissions 

– declared by developer; 

– accepted by user at 
installation time; 

– checked at run-time; 

– some standard,  
e.g., access network; 

– others defined by 
developers; 

– over 100. 

 

Linux system 
 

(with applications as users) 

Inter-component communication 
reference monitor 

Android middleware 

App1  
(e.g., radio) 

App2  
(e.g., alarm)   

… 

(For many other aspects to Android security, see 
“Understanding Android Security”, by Enck et al..) 



Languages and logics  
for access control policies 



From matrices to rules 

• An access control matrix may be represented 
with a ternary predicate symbol may-access. 

• Other predicates may represent groups, etc.. 

• We may use standard logical operators. 

• We may then write formulas such as: 
  may-access(Alice, Foo.txt, Rd) 
and rules such as: 
  may-access(p, o, Wr)  may-access(p, o, Rd) 
  good(p)  may-access(p, o, Rd) 
                                      (see XACML and the like) 



Going further: policies for 
distributed systems 

• In distributed systems, there are multiple 
sources of assertions, trusted differently. 

• This is reflected in some proposed public-key 
infrastructures, policy languages, and logics. 

• One idea is to represent explicitly the 
principals that make assertions and to reason 
about them… 



Says 

export 

import 

Alice 

statement 

Bob 

Certificate 

export 

import 

Alice 

statement 

Bob 

Alice says 

statement 

Channel  

statement 

(from Alice) 

• “says” 
represents 
communication 
across contexts. 

• It abstracts from 
the details of 
authentication. 

• The statement 
may be atomic 
or a more 
complex rule. 

Alice says 

statement 

statement 

(signed Alice) 



• A simple notation for assertions:  

– A says s 

– A speaks for B 

• With logical rules, for example: 

⊢ A says (s  t)  (A says s)  (A says t) 

⊢ s  (A says s)      ⊢ (A says A says s)  (A says s) 

A calculus for access control  
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008] 



• A simple notation for assertions:  

– A says s 

– A speaks for B 

• With logical rules, for example: 

⊢ A says (s  t)  (A says s)  (A says t) 

⊢ s  (A says s)      ⊢ (A says A says s)  (A says s) 

⊢ A speaks for B  (A says s)  (B says s) 

⊢ A speaks for A 

⊢ A speaks for B ∧ B speaks for C  A speaks for C 

⊢ (B says (A speaks for B))  (A speaks for B) 

A calculus for access control  
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008] 



• A simple notation for assertions:  

– A says s 

– A speaks for B        for all X. ((A says X)  (B says X)) 

• With logical rules, for example: 

⊢ A says (s  t)  (A says s)  (A says t) 

⊢ s  (A says s)      ⊢ (A says A says s)  (A says s) 

⊢ A speaks for B  (A says s)  (B says s) 

⊢ A speaks for A 

⊢ A speaks for B ∧ B speaks for C  A speaks for C 

⊢ (B says (A speaks for B))  (A speaks for B) 

A calculus for access control  
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008] 



• A simple notation for assertions:  

– A says s 

– A speaks for B        for all X. ((A says X)  (B says X)) 

• With logical rules, for example: 

⊢ A says (s  t)  (A says s)  (A says t) 

⊢ s  (A says s)      ⊢ (A says A says s)  (A says s) 

⊢ A speaks for B  (A says s)  (B says s) 

⊢ A speaks for A 

⊢ A speaks for B ∧ B speaks for C  A speaks for C 

⊢ (B says (A speaks for B))  (A speaks for B) 

A calculus for access control  
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008] 

“same 
consequences” 



An example 

• Let good-to-delete-file1 be a proposition. 

• Let B controls s stand for (B says s)  s 

• Assume that  

– B says (A speaks for B) 

– B controls good-to-delete-file1 

– A says good-to-delete-file1 

• We can derive: 

– B says good-to-delete-file1 

– good-to-delete-file1 



Applications 

Several languages rely on logics for access control: 

• D1LP and RT [Li, Mitchell, et al.] 

• SD3 [Jim] and Binder [DeTreville] 

• Daisy [Cirillo et al.] 

• SecPAL [Becker, Fournet, and Gordon] and DKAL [Gurevich and Neeman] 

“says” and “speaks for” play a role in other systems: 

• SDSI and SPKI [Lampson and Rivest; Ellison et al.] 

• Alpaca [Lesniewski-Laas et al.] and Aura [Vaughan et al.] 

• PCFS (proof-carrying file system) [Garg and Pfenning] 

• … 



An example system: Grey  
[Bauer, Reiter, et al., 20052008] 

• Turns a cell phone into a tool for delegating 
and exercising authority. 

• Uses cell phones to replace physical locks and 
key systems. 

• Implemented in part of CMU. 

• With access control based on logic and 
distributed proofs. 



Slide originally from Mike Reiter 

D208 

Phone discovers door 

To prove: 
Mike says 

Goal(D208.open) 

Open 

D208 

Jon 

Jon’s 

phone 

Mike’s 

phone 
Mike 

I can prove that with any of 
1) Jon speaksfor Mike.Student 

2) Jon speaksfor Mike.Admin 

3) Jon speaksfor Mike.Wife 

4) Delegates(Mike, Jon, 

            D208.open)  

 

Please help 

Jon speaksfor 

Mike.Student Proof of: 
Jon says Goal(D208.open)  

Mike says Goal(D208.open)   

Proof of: 
Mike says 

Goal(D208.open) 

Hmm, I can’t prove 

that.  I’ll ask Mike’s 

phone for help. 

An example of a distributed proof: 



A small language: Binder 

• Binder is a relative of Prolog.  

• Like Datalog, it lacks function symbols. 

• It also includes the special construct says. 

• It does not include much else. 

 

• Binder is not the most recent. 

• Later systems (e.g., SecPAL) have similarities 
with Binder, but they are more complex. 

 



An example 

• Facts 

– owns(Alice, Foo.txt). 

– Alice says good(Bob). 

• Rules  

– may-access(p, o, Rd) :- owns(q, o), blesses(q, p). 

– blesses(Alice, p) :- Alice says good(p). 

• Conclusions 

– may-access(Bob, Foo.txt, Rd). 

 



Proof rules 

• Binder includes standard logical rules (“resolution”). 

• E.g., 
may-access(p, o, Rd) :- owns(q, o), blesses(q, p). 
owns(Alice, Foo.txt). 
                imply 
may-access(p, Foo.txt, Rd) :- Alice says good(p). 



Proof rules: importing 

• In addition, formulas from a context F can be 
imported to a context D. 

– This adds “F says” in front of all atoms without a 
“says”. 

– It applies only to clauses where the head atom 
does not have “says”. 



Importing by example 

• Suppose F has the rules 

– may-access(p, o, Rd) :- owns(q, o), blesses(q, p). 

– blesses(Alice, p) :- Alice says good(p). 

– Alice says good(Bob). 

• D may import the first two as: 

– F says may-access(p, o, Rd) :-  
    F says owns(q, o), F says blesses(q, p). 

– F says blesses(Alice, p) :- Alice says good(p). 

• D may import good(Bob) directly from Alice. 

 



Importing by example (cont.) 

• Suppose F has the rule 

– blesses(Alice, p) :- Alice says good(p). 

• D may import it as: 

– F says blesses(Alice, p) :- Alice says good(p). 

• D and F should agree on Alice’s identity. 

• But the meaning of predicates may vary, and it 
typically will.  
For example, F may also have: 

– blesses(Bob, p) :- Bob says excellent(p). 



Important properties 

• Policies can use application-specific predicates. 

• Statements can be read declaratively. 

• Queries are decidable (typically in PTime). 



Issues and research directions 

• What about algorithmic problems? 

• What about more proof systems? Semantics?  

• Can all reasonable policies be expressed?  
Can the simple ones be expressed simply? 

• Is this a way of explaining other approaches? 
or something for direct use (e.g., as XACML)? 



Reading 

• Chen et al.’s “Setuid Demystified” 
http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf  

• Fournet & Gordon’s “Stack Inspection: Theory 
and Variants” 
http://dl.acm.org/citation.cfm?id=641912  

• Enck et al.’s “Understanding Android Security” 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655   
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Homework 2 (due October 11) 

Exercise 1: 
Consider a system with users U1, . . . ,Um. The system has 
functionality for letting the users play a fixed, one-player 
game, for charging $1 to a user account, for resetting a 
user account to $0, and for showing the balance on a user 
account. Informally, its policy is: 
a) Users can play with a charge of $1 each time. 
b) Only user U1 can reset user accounts. 
c) The balance on a user account can be seen only by the 
user and by U1. 
Express this policy as an access control matrix. Be explicit 
on the definitions of subjects, objects, and operations. 
(E.g., if the subjects are U1, . . . ,Um, say so.) 



Homework 2 

Exercise 2: 

Comment on how one of the principles of 
Saltzer and Schroeder is followed or disregarded 
in some aspect of a contemporary system that 
you know. 

A paragraph should suffice. 



Homework 2 

Exercise 3: 

Lampson’s paper “Protection” (pp. 2–3) 
describes a simple scheme for identifying 
processes in systems. Comment on how it 
applies, or not, when the system in question is 
the Web. 

A paragraph should suffice. 


