
Assurance and  
formal models  

(in particular for security protocols) 



Assurance 



Specification and implementation 
(review) 

For any system: 

• Specification: What is it supposed to do? 

• Implementation: How does it do it? 

• Correctness: Does it really work? 

In security: 

• Specification: Policy 

• Implementation: Mechanism 

• Correctness: Assurance 



Assurance vs. security by obscurity 

• In many systems, obscurity (not correctness) is 
a goal. E.g., 

– spam filters, 

– censorship systems, 

– computer games, 

– military systems. 

• Obscurity may sometimes help, at least for a 
while, in combination with other precautions. 



The enemy knows the system.  
[C. Shannon] 

For example, motivated attackers typically can 
learn how cryptosystems work.  
It is much easier to protect only the keys. 
(See Kerckhoff’s principle in cryptography.) 

 

 The security of a system cannot depend on  
  secrecy of specification or implementation. 

 Policies must be appropriate,  
  mechanisms must actually be correct. 

 



Assurance 

Some strategies and techniques: 

• open design (maybe open source?), 

• specifications and proofs, 

• testing, 

• processes, 

• certification, 

• economy of mechanism, and  
the trusted computing base (TCB). 



The TCB 

Trusted Computing Base: the collection of 
hardware, software, and set-up information on 
which the security of the system depends.  
 
Also: 

• The part of the system that has to be right. 

• The part of the system that may appear to 
violate its security policy. 



The TCB (cont.) 

Ideally:  

• The TCB should be 
precisely defined, 
small, and simple. 

• The TCB should be 
specified, tested, 
and verified.  

In practice: 

• Often, lots of 
dubious code is put 
in the TCB.  

• The TCB gets big and 
not trustworthy. 





Formal models and proofs 
(in particular for security protocols) 



What is different about security (1) 

• Wish for some guarantees despite lucky, 
powerful, and persistent attackers. 

– Even if the attacker controls the network. 

– Even if a session key is compromised. 

– Even if an insider is dishonest. 

– … 



What is different about security (2) 

• Attacks that exploit the limitations of models. 

– Binary-level exploits despite “secure” languages. 

– Power analysis on “secure” cryptography. 

– … 

• Doing without full functional correctness: 

   Message authenticity and secrecy,  
not message correctness. 

 

These characteristics impact models and proofs. 



The WMF protocol (reminder) 

  

A B 

S 1. A, encrypt(KAS,(TA, B, K))   2. encrypt(KBS,(TS, A, K)) 

TA, TS are timestamps. 
Here encrypt is symmetric encryption. It may include authentication. 

3. communication of payloads  
     under the new session key K 



What the messages actually mean 

1)   K is a good key for A and B around time TA 

2)   A says that K is a good key for A and B 
   around time TS 

 

Understanding the meaning of messages is 
central to designing and analyzing protocols. 

Even imprecise, informal meanings can be 
extremely helpful. 



A first analysis in a logic of 
authentication (late 1980s) 

• Replace messages with formal representations of 
their meanings. 

• Set out assumptions: 
S believes (KAS is a good key for A and S) 
S believes fresh(TA) 
B believes (A controls (K is a good key for A and B)) 
… 

• Reason with a few general rules. 

• Conclude: 
 A believes (K is a good key for A and B)  
 B believes (K is a good key for A and B) 



Comments on  
a logic of authentication 

• Served for finding many 
subtleties and errors. 

• Explained protocols. 

• Highlighted 
assumptions and 
conclusions. 

• Used by many people, 
including protocol 
designers. 

• Lacked a clear link with 
operational models of 
protocols or clear 
cryptographic 
justification  
(but see PCL). 

• Required more 
creativity as one moved 
away from the classic 
key-exchange protocols. 



Some other approaches 
(not a complete or orthogonal list) 

• Informal but rigorous frameworks based on 
probabilities and complexity theory. 

• Theorem proving, e.g., with Coq or Isabelle. 

• Finite-state model checking, e.g., with FDR. 

• Type systems and other static analyses for 
programming languages (and process calculi). 



Four current research directions 

1. Models, proof techniques, and tools  
(e.g., type systems). 

2. Analysis of particular protocols. 

3. Analysis of actual implementations. 

4. Relating and combining symbolic and 
computational approaches. 



Some observations 

• Most security protocols have ambiguities, 
subtleties, and flaws. 

• Many of these have to do with cryptography. 

• Many of these don’t have to do with the 
details of cryptography. 

  For design, implementation, and analysis,  
       abstract views of cryptography are practical. 



Other low-hanging fruit 

An example of a mundane ambiguity: 

The simplest fix is to require that a SSL 
implementation receive a change cipher spec 
message before accepting a finished message. 
(Indeed, there is some language in the 
specification which could be interpreted to 
mandate this restriction, although it is not 
entirely clear.) [. . . ] at least one 
implementation has fallen for this pitfall.  
                                              (Wagner and Schneier) 



The WMF protocol,  
more abstractly 

A B 

S 
1. new channel c  
for A and B,  
on a long-term channel cAS  

between A and S 

3. communication of payloads  
     on new private channel c 
     (e.g., A sends M to B on c) 

2. the channel c 
on a long-term channel cBS 
between B and S 



Towards a language for protocols 

• The pi calculus is a general, simple language 
for concurrent processes that communicate by 
sending messages on named channels. 

• It includes an operator  (“new”) for 
generating fresh channels. 

 

 
– Here two processes run in parallel. 

– One sends M to the other on a fresh channel c.  

– x is a bound variable. 

 

 

 “(new c )(send M on c and, in parallel, receive x on c…)” 



Syntax 

  



An abstract version of the protocol 

  

                                            “With new c, send c on cAS, send M on c.” 



An abstract version of the protocol 

  

                                            “Receive x on cAS, forward it on cSB.” 



An abstract version of the protocol 

  

                                            “Receive x on cSB, receive y on x.” 



An abstract version of the protocol 

  

                                            “With new cAS and cSB,  
                                    run S, A(M), and B in parallel.” 



Adding concurrent sessions 

  



Secrecy as equivalence 

• Secrecy properties can be phrased as 
equivalences between processes.  

– For example, P(M) and P(N) are equivalent,  
for all M and N. 



Secrecy as equivalence 

• Secrecy properties can be phrased as 
equivalences between processes.  

– For example, P(M) and P(N) are equivalent,  
for all M and N. 

Here, many notions of 
“equivalence” will do. 



Secrecy as equivalence 

• Secrecy properties can be phrased as 
equivalences between processes.  

– For example, P(M) and P(N) are equivalent,  
for all M and N. 

• Other security properties can also  
be presented and proved formally,  
as equivalences or as properties of executions. 

 

Here, many notions of 
“equivalence” will do. 



Extending the pi calculus 

• In the pure pi calculus, we can easily represent 
systems like 
 

 

• But it is much harder (or impossible) to 
represent the use of cryptography, as in: 
 

 

 

 Work with Blanchet, Fournet, Gordon, and others 



The applied pi calculus 

We add function symbols, as in: 
 
 

– Here the operator   generates a key. 

– Encryption and decryption are function symbols, 
with equations. 
 



Expressiveness 

• Representing protocols such as WMF is just “a 
matter of programming”.  

• For example, we may write: 
 
 
Here, a process reveals a term that uses a 
fresh name k without revealing k itself. 

– This does not arise in the pure pi calculus. 

– It is a source of expressiveness and complications. 



Syntax for terms 

where f is a function  
symbol of arity k 
(and optionally also with  
conditions on types) 

  



Syntax for processes 

  



Equality 

Equality is defined by an equational theory 
(basically, a set of equations). For example: 

• For pairs: 

 

 



Equality 

Equality is defined by an equational theory 
(basically, a set of equations). For example: 

• For pairs: 

 

 

• For symmetric encryption: 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
and optionally with other equations, e.g., 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
and optionally with other equations, e.g., 
 
 

• For probabilistic encryption: 



Other examples 

• MACs 

• Digital signatures 

• One-way hash functions 

• XOR 

• Exponentiation as used in Diffie-Hellman 

• Errors 

• … 



Semantics: reduction 

  

(In addition, some other trivial rules allow rearranging processes,  
e.g., by commutativity and associativity of parallel composition.) 



Semantics: structural equivalence 

  



Equivalence 

• Two processes P and Q are testing equivalent 
if no context R can distinguish them. 

– For a given channel n,   P | R may output on n  
                                              if and only if 
                                          Q| R may output on n. 

– The context R may represent an attacker. 



Equivalence 

• Two processes P and Q are testing equivalent 
if no context R can distinguish them. 

– For a given channel n,   P | R may output on n  
                                              if and only if 
                                          Q| R may output on n. 

– The context R may represent an attacker. 

• This equivalence is coarse enough that, for 
example, it relates the two processes: 



ProVerif 

• ProVerif is a mature tool for formal proofs. 

• It has been applied to many protocols. 

• Its input language is the applied pi calculus. 

• Internally, ProVerif compiles systems into 
logical formulas (Horn clauses) 

– for expressing protocol actions, e.g., “if a message 
x is received, then x is forwarded”, 

– for expressing knowledge, e.g., “if the attacker has 
a ciphertext and the key then it has the plaintext”. 



A small example (first informally) 



A small example  
(a simple version, formally) 



A small example  
(in ProVerif, a little optimized) 



ProVerif (cont.) 

• ProVerif can prove various kinds of properties: 

– correspondence properties, of the form “in any 
behavior where event e happens event e’ must 
also happen”, 

– secrecy properties of the form “the attacker does 
not obtain s in any behavior”, 

– certain important equivalences, e.g., equivalences 
that express secrecy properties. 

• Proofs are automatic and reasonably fast 
(milliseconds to minutes, typically). 



Analyzing the WMF protocol  
in ProVerif 

• We do some trivial syntactic transformation to 
fit into the actual ProVerif syntax.  

• ProVerif establishes secrecy and authenticity 
properties automatically. 

• E.g.,   WMF(payload)  WMF(payload’) 
where  is observational equivalence. 

 

• It just works! 



Analyzing reference 
implementations (symbolically) 

  

Run Run 

Reference 
protocol 

implementation 
(in F#) 

  Crypto, Net 
   Concrete libraries 

  Crypto, Net 
   Symbolic libraries 

Interoperability  
testing 

  Compile   Compile 

Other 
implementations  

Symbolic  
debugging 

No Attack 

 Verify (ProVerif) 

Symbolic  
verification 

Security  
goals 

Attack 

Work at MSR Cambridge and MSR-INRIA Joint Centre [Bhargavan et al.] 



A TLS reference implementation 

• A subset of TLS in F# (10 kLOC), supports: 
– SSL3.0, TLS1.0, TLS1.1 with session resumption, 

– ciphersuites using DES, AES, RC4, SHA1, MD5, 

– server-only authentication, RSA mode only, 

– no compression, fragmentation, or alerts. 

 

• Tested in a few basic scenarios, including: 
– an HTTPS client (with IIS and Apache servers), 

– an HTTPS server (with IE and Firefox clients). 



Sample code 

 HTTPS Client Implementation 
 

 

let client_request url =  

  let tcp = Net.connect url in 

  let connectionId, sessionId =  

    Handshake.connect tcp url in 

  let request = httpRequest url in 

  Record.send connectionId request; 

  let response = 

    Record.recv connectionId in 

  response 
 

Open TCP connection 

Run Handshake protocol 

Build HTTP request 

Send it over Record protocol 

Get response over Record protocol 



Symbolic verification: some results 

• Formal analysis is still non-trivial. 

• It requires some tweaks in protocol code. 

• Still, it is feasible and increasingly practical. 

Verified TLS code Time Memory 

Handshake (authenticity queries) 16 sec 60 MB 

Handshake (secrecy queries) 10 sec 80 MB 

Handshake + Resumption  
(resumption authenticity queries) 

4 min 460 MB 

Handshake + Resumption + Record  
(record authenticity queries)  

6 min 700 MB 

Handshake + Resumption + Record 2 hours 1.7 GB 



Meanwhile, in the 
computational world… 

An encryption scheme consists of functions  
               on bitstrings for key generation, 
encryption, and decryption. 

It is IND-CPA and INT-CTXT if: 

• Secrecy: For all PPTIME adversaries C,  
 
 
is negligible (“very small”) as a function of the 
security parameter . 

• Integrity: …. 

 

 



A soundness theorem  
[Comon-Lundh & Cortier] 

• If P s P’ in the formal model, then P and P’ are 
computationally indistinguishable. 

• Assumptions: 
– The encryption scheme is IND-CPA and INT-CTXT. 

– Only the key-generation algorithm creates keys. 

– There are no encryption cycles. 
• There is an ordering < on private keys such that, if k appears in the 

plaintext of a ciphertext encrypted under k', then k < k'. 

• We have proved this manually for WMF. 

– It is possible to compute a symbolic representation of any 
bitstring. 
• This ``parsing assumption'' may not be needed but eases proofs. 

 



Applying the theorem 

• A priori,  (used withProVerif) is different from 
s (treated by the theorem). 

• They can be reconciled by 

– in the ProVerif model: adding functions that reveal 
the length or structure of plaintexts (not so easy),            
or 

– in the computational model: requiring encryption 
to be length-concealing. 

• So WMF(payload) and WMF(payload’) are 
computationally indistinguishable, either way. 

 

 



CryptoVerif 

• CryptoVerif is a tool for computational proofs 
via sequences of games. 

• Its input language is basically a process 
calculus for describing games. 

• Its scope overlaps that of ProVerif. 

• It is more recent and still a little less mature 
than ProVerif. 



Analyzing the WMF protocol  
in CryptoVerif (1) 

• We also model the protocol in CryptoVerif. 
 E.g., for A,  
 
 
 
 
Note the bounded replication. 



Analyzing the WMF protocol  
in CryptoVerif (2) 

• We assume: 

– Encryption is IND-CPA and INT-CTXT. 

– The function concat returns bitstrings of constant 
length. 

– x,y,z can be computed from concat(x,y,z) in PTIME. 

– All payloads have the same length. 



Comparison of assumptions 

• We do not assume that keys come only from 
the key-generation algorithm. 

• We do not have any parsing assumption. 

• We do not assume the absence of encryption 
cycles. 

– The success of the game-transformation sequence 
implies a key hierarchy. 



Analyzing the WMF protocol  
in CryptoVerif (3) 

• We have to tweak the code: 
We manually make a case distinction between 
honest and dishonest interlocutors of A. 
 

• Then CryptoVerif proves automatically the 
desired computational indistinguishability. 



Lessons 

• Soundness theorems often require  
more hypotheses. 

• But, when the hypotheses are met,  
symbolic models and proofs suffice, and  
they are generally easier to obtain. 



More work remains 

• Adapt symbolic tools to the hypotheses of 
computational-soundness theorems:  
allow length-revealing encryption,  
prove the absence of cycles, … 

• Extend computational-soundness theorems:  
allow private channels, nested replications, … 

• Develop computationally sound provers:  
more automation and/or more user guidance, 
more primitives and game transformations, … 



Outlook 

• There has been a lot of progress! 

• Several approaches now work reasonably well. 

• They still require more research and a fair 
amount of engineering. 

• Which is most effective and fruitful remains 
open to debate. For example: 

– how much trouble is it to get  
computational guarantees? 

– when is it worthwhile? 

 

 



Reading 

• My “Security Protocols: Principles and Calculi 
(Tutorial Notes)”, and its references 
http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf  

• “Modular Verification of Security Protocol 
Code by Typing”, by  Bhargavan, Fournet, and 
Gordon (as sample of more recent work) 
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf  
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