
Assurance and
formal models

(in particular for security protocols)

Assurance

Specification and implementation
(review)

For any system:

• Specification: What is it supposed to do?

• Implementation: How does it do it?

• Correctness: Does it really work?

In security:

• Specification: Policy

• Implementation: Mechanism

• Correctness: Assurance

Assurance vs. security by obscurity

• In many systems, obscurity (not correctness) is
a goal. E.g.,

– spam filters,

– censorship systems,

– computer games,

– military systems.

• Obscurity may sometimes help, at least for a
while, in combination with other precautions.

The enemy knows the system.
[C. Shannon]

For example, motivated attackers typically can
learn how cryptosystems work.
It is much easier to protect only the keys.
(See Kerckhoff’s principle in cryptography.)

 The security of a system cannot depend on
 secrecy of specification or implementation.

 Policies must be appropriate,
 mechanisms must actually be correct.

Assurance

Some strategies and techniques:

• open design (maybe open source?),

• specifications and proofs,

• testing,

• processes,

• certification,

• economy of mechanism, and
the trusted computing base (TCB).

The TCB

Trusted Computing Base: the collection of
hardware, software, and set-up information on
which the security of the system depends.

Also:

• The part of the system that has to be right.

• The part of the system that may appear to
violate its security policy.

The TCB (cont.)

Ideally:

• The TCB should be
precisely defined,
small, and simple.

• The TCB should be
specified, tested,
and verified.

In practice:

• Often, lots of
dubious code is put
in the TCB.

• The TCB gets big and
not trustworthy.

Formal models and proofs
(in particular for security protocols)

What is different about security (1)

• Wish for some guarantees despite lucky,
powerful, and persistent attackers.

– Even if the attacker controls the network.

– Even if a session key is compromised.

– Even if an insider is dishonest.

– …

What is different about security (2)

• Attacks that exploit the limitations of models.

– Binary-level exploits despite “secure” languages.

– Power analysis on “secure” cryptography.

– …

• Doing without full functional correctness:

 Message authenticity and secrecy,
not message correctness.

These characteristics impact models and proofs.

The WMF protocol (reminder)

A B

S 1. A, encrypt(KAS,(TA, B, K)) 2. encrypt(KBS,(TS, A, K))

TA, TS are timestamps.
Here encrypt is symmetric encryption. It may include authentication.

3. communication of payloads
 under the new session key K

What the messages actually mean

1) K is a good key for A and B around time TA

2) A says that K is a good key for A and B
 around time TS

Understanding the meaning of messages is
central to designing and analyzing protocols.

Even imprecise, informal meanings can be
extremely helpful.

A first analysis in a logic of
authentication (late 1980s)

• Replace messages with formal representations of
their meanings.

• Set out assumptions:
S believes (KAS is a good key for A and S)
S believes fresh(TA)
B believes (A controls (K is a good key for A and B))
…

• Reason with a few general rules.

• Conclude:
 A believes (K is a good key for A and B)
 B believes (K is a good key for A and B)

Comments on
a logic of authentication

• Served for finding many
subtleties and errors.

• Explained protocols.

• Highlighted
assumptions and
conclusions.

• Used by many people,
including protocol
designers.

• Lacked a clear link with
operational models of
protocols or clear
cryptographic
justification
(but see PCL).

• Required more
creativity as one moved
away from the classic
key-exchange protocols.

Some other approaches
(not a complete or orthogonal list)

• Informal but rigorous frameworks based on
probabilities and complexity theory.

• Theorem proving, e.g., with Coq or Isabelle.

• Finite-state model checking, e.g., with FDR.

• Type systems and other static analyses for
programming languages (and process calculi).

Four current research directions

1. Models, proof techniques, and tools
(e.g., type systems).

2. Analysis of particular protocols.

3. Analysis of actual implementations.

4. Relating and combining symbolic and
computational approaches.

Some observations

• Most security protocols have ambiguities,
subtleties, and flaws.

• Many of these have to do with cryptography.

• Many of these don’t have to do with the
details of cryptography.

  For design, implementation, and analysis,
 abstract views of cryptography are practical.

Other low-hanging fruit

An example of a mundane ambiguity:

The simplest fix is to require that a SSL
implementation receive a change cipher spec
message before accepting a finished message.
(Indeed, there is some language in the
specification which could be interpreted to
mandate this restriction, although it is not
entirely clear.) [. . .] at least one
implementation has fallen for this pitfall.
 (Wagner and Schneier)

The WMF protocol,
more abstractly

A B

S
1. new channel c
for A and B,
on a long-term channel cAS

between A and S

3. communication of payloads
 on new private channel c
 (e.g., A sends M to B on c)

2. the channel c
on a long-term channel cBS
between B and S

Towards a language for protocols

• The pi calculus is a general, simple language
for concurrent processes that communicate by
sending messages on named channels.

• It includes an operator  (“new”) for
generating fresh channels.

– Here two processes run in parallel.

– One sends M to the other on a fresh channel c.

– x is a bound variable.

 “(new c)(send M on c and, in parallel, receive x on c…)”

Syntax

An abstract version of the protocol

 “With new c, send c on cAS, send M on c.”

An abstract version of the protocol

 “Receive x on cAS, forward it on cSB.”

An abstract version of the protocol

 “Receive x on cSB, receive y on x.”

An abstract version of the protocol

 “With new cAS and cSB,
 run S, A(M), and B in parallel.”

Adding concurrent sessions

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

Here, many notions of
“equivalence” will do.

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

• Other security properties can also
be presented and proved formally,
as equivalences or as properties of executions.

Here, many notions of
“equivalence” will do.

Extending the pi calculus

• In the pure pi calculus, we can easily represent
systems like

• But it is much harder (or impossible) to
represent the use of cryptography, as in:

 Work with Blanchet, Fournet, Gordon, and others

The applied pi calculus

We add function symbols, as in:

– Here the operator  generates a key.

– Encryption and decryption are function symbols,
with equations.

Expressiveness

• Representing protocols such as WMF is just “a
matter of programming”.

• For example, we may write:

Here, a process reveals a term that uses a
fresh name k without revealing k itself.

– This does not arise in the pure pi calculus.

– It is a source of expressiveness and complications.

Syntax for terms

where f is a function
symbol of arity k
(and optionally also with
conditions on types)

Syntax for processes

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

• For pairs:

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

• For pairs:

• For symmetric encryption:

Equality (cont.)

• For asymmetric encryption:

Equality (cont.)

• For asymmetric encryption:

and optionally with other equations, e.g.,

Equality (cont.)

• For asymmetric encryption:

and optionally with other equations, e.g.,

• For probabilistic encryption:

Other examples

• MACs

• Digital signatures

• One-way hash functions

• XOR

• Exponentiation as used in Diffie-Hellman

• Errors

• …

Semantics: reduction

(In addition, some other trivial rules allow rearranging processes,
e.g., by commutativity and associativity of parallel composition.)

Semantics: structural equivalence

Equivalence

• Two processes P and Q are testing equivalent
if no context R can distinguish them.

– For a given channel n, P | R may output on n
 if and only if
 Q| R may output on n.

– The context R may represent an attacker.

Equivalence

• Two processes P and Q are testing equivalent
if no context R can distinguish them.

– For a given channel n, P | R may output on n
 if and only if
 Q| R may output on n.

– The context R may represent an attacker.

• This equivalence is coarse enough that, for
example, it relates the two processes:

ProVerif

• ProVerif is a mature tool for formal proofs.

• It has been applied to many protocols.

• Its input language is the applied pi calculus.

• Internally, ProVerif compiles systems into
logical formulas (Horn clauses)

– for expressing protocol actions, e.g., “if a message
x is received, then x is forwarded”,

– for expressing knowledge, e.g., “if the attacker has
a ciphertext and the key then it has the plaintext”.

A small example (first informally)

A small example
(a simple version, formally)

A small example
(in ProVerif, a little optimized)

ProVerif (cont.)

• ProVerif can prove various kinds of properties:

– correspondence properties, of the form “in any
behavior where event e happens event e’ must
also happen”,

– secrecy properties of the form “the attacker does
not obtain s in any behavior”,

– certain important equivalences, e.g., equivalences
that express secrecy properties.

• Proofs are automatic and reasonably fast
(milliseconds to minutes, typically).

Analyzing the WMF protocol
in ProVerif

• We do some trivial syntactic transformation to
fit into the actual ProVerif syntax.

• ProVerif establishes secrecy and authenticity
properties automatically.

• E.g., WMF(payload)  WMF(payload’)
where  is observational equivalence.

• It just works!

Analyzing reference
implementations (symbolically)

Run Run

Reference
protocol

implementation
(in F#)

 Crypto, Net
 Concrete libraries

 Crypto, Net
 Symbolic libraries

Interoperability
testing

 Compile Compile

Other
implementations

Symbolic
debugging

No Attack

 Verify (ProVerif)

Symbolic
verification

Security
goals

Attack

Work at MSR Cambridge and MSR-INRIA Joint Centre [Bhargavan et al.]

A TLS reference implementation

• A subset of TLS in F# (10 kLOC), supports:
– SSL3.0, TLS1.0, TLS1.1 with session resumption,

– ciphersuites using DES, AES, RC4, SHA1, MD5,

– server-only authentication, RSA mode only,

– no compression, fragmentation, or alerts.

• Tested in a few basic scenarios, including:
– an HTTPS client (with IIS and Apache servers),

– an HTTPS server (with IE and Firefox clients).

Sample code

 HTTPS Client Implementation

let client_request url =

 let tcp = Net.connect url in

 let connectionId, sessionId =

 Handshake.connect tcp url in

 let request = httpRequest url in

 Record.send connectionId request;

 let response =

 Record.recv connectionId in

 response

Open TCP connection

Run Handshake protocol

Build HTTP request

Send it over Record protocol

Get response over Record protocol

Symbolic verification: some results

• Formal analysis is still non-trivial.

• It requires some tweaks in protocol code.

• Still, it is feasible and increasingly practical.

Verified TLS code Time Memory

Handshake (authenticity queries) 16 sec 60 MB

Handshake (secrecy queries) 10 sec 80 MB

Handshake + Resumption
(resumption authenticity queries)

4 min 460 MB

Handshake + Resumption + Record
(record authenticity queries)

6 min 700 MB

Handshake + Resumption + Record 2 hours 1.7 GB

Meanwhile, in the
computational world…

An encryption scheme consists of functions
 on bitstrings for key generation,
encryption, and decryption.

It is IND-CPA and INT-CTXT if:

• Secrecy: For all PPTIME adversaries C,

is negligible (“very small”) as a function of the
security parameter .

• Integrity: ….

A soundness theorem
[Comon-Lundh & Cortier]

• If P s P’ in the formal model, then P and P’ are
computationally indistinguishable.

• Assumptions:
– The encryption scheme is IND-CPA and INT-CTXT.

– Only the key-generation algorithm creates keys.

– There are no encryption cycles.
• There is an ordering < on private keys such that, if k appears in the

plaintext of a ciphertext encrypted under k', then k < k'.

• We have proved this manually for WMF.

– It is possible to compute a symbolic representation of any
bitstring.
• This ``parsing assumption'' may not be needed but eases proofs.

Applying the theorem

• A priori,  (used withProVerif) is different from
s (treated by the theorem).

• They can be reconciled by

– in the ProVerif model: adding functions that reveal
the length or structure of plaintexts (not so easy),
or

– in the computational model: requiring encryption
to be length-concealing.

• So WMF(payload) and WMF(payload’) are
computationally indistinguishable, either way.

CryptoVerif

• CryptoVerif is a tool for computational proofs
via sequences of games.

• Its input language is basically a process
calculus for describing games.

• Its scope overlaps that of ProVerif.

• It is more recent and still a little less mature
than ProVerif.

Analyzing the WMF protocol
in CryptoVerif (1)

• We also model the protocol in CryptoVerif.
 E.g., for A,

Note the bounded replication.

Analyzing the WMF protocol
in CryptoVerif (2)

• We assume:

– Encryption is IND-CPA and INT-CTXT.

– The function concat returns bitstrings of constant
length.

– x,y,z can be computed from concat(x,y,z) in PTIME.

– All payloads have the same length.

Comparison of assumptions

• We do not assume that keys come only from
the key-generation algorithm.

• We do not have any parsing assumption.

• We do not assume the absence of encryption
cycles.

– The success of the game-transformation sequence
implies a key hierarchy.

Analyzing the WMF protocol
in CryptoVerif (3)

• We have to tweak the code:
We manually make a case distinction between
honest and dishonest interlocutors of A.

• Then CryptoVerif proves automatically the
desired computational indistinguishability.

Lessons

• Soundness theorems often require
more hypotheses.

• But, when the hypotheses are met,
symbolic models and proofs suffice, and
they are generally easier to obtain.

More work remains

• Adapt symbolic tools to the hypotheses of
computational-soundness theorems:
allow length-revealing encryption,
prove the absence of cycles, …

• Extend computational-soundness theorems:
allow private channels, nested replications, …

• Develop computationally sound provers:
more automation and/or more user guidance,
more primitives and game transformations, …

Outlook

• There has been a lot of progress!

• Several approaches now work reasonably well.

• They still require more research and a fair
amount of engineering.

• Which is most effective and fruitful remains
open to debate. For example:

– how much trouble is it to get
computational guarantees?

– when is it worthwhile?

Reading

• My “Security Protocols: Principles and Calculi
(Tutorial Notes)”, and its references
http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf

• “Modular Verification of Security Protocol
Code by Typing”, by Bhargavan, Fournet, and
Gordon (as sample of more recent work)
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf

http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf
http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf
http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf
http://users.soe.ucsc.edu/~abadi/Papers/fosad-protocols.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf
http://research.microsoft.com/en-us/um/people/adg/publications/modular-verification-popl10.pdf

