Basics

Unintended behavior

Often systems do not behave as we intend.

The unintended behaviors can be traced to:

- environmental disruption,
- operational errors,
- poor design or implementation (bugs),
- deliberate attacks.

These problems mean that systems don't meet their requirements.

Mitigations and remedies

Some approaches to addressing these problems are:

- environmental disruption:
 - ⇒ stronger interfaces,
 - \Rightarrow replication,
- operational errors:
 - \Rightarrow operator tolerance and education,
 - \Rightarrow better tools,
- poor design or implementation (bugs):
 - \Rightarrow languages and tools,
 - \Rightarrow testing,
 - \Rightarrow verification,
- deliberate attacks:
 - \Rightarrow lower expectations,
 - \Rightarrow ???

Some threats

In order of increasing severity:

- Unintentional blunders.
- Hackers driven by technical challenges.
- Disgruntled employees or customers seeking revenge.
- Criminals interested in personal gain.
- Organized crime interested in hiding something or in financial gain.
- Organized terrorist groups.
- Foreign espionage agents.
- Information-warfare operations intended to disrupt weapons or command structures.

Attack goals

The typical goals of attacks are not specific to computer systems:

- Publicity.
- Fraud.
- Theft of intellectual property.
- Destruction (including denial-of-service).
- Invasions of privacy; surveillance.

Intermediate goals (e.g., stealing a password) sometimes are.

The unchanging nature of security

Security for computer systems is much like security in the rest of the real world.

- It is not black and white.
- It is not about perfect defenses against wellfunded, capable, and determined attackers.

Be Ready for Security

Remove EVERYTHING from your pockets before entering. This includes all paper, plastic items, pens and wallets. Place items in the security bin or your carry-on luggage.

Take out liquids (in a baggie). Discard all liquids in containers over 3 ounces. The 3-ounce limit does not apply to formula, milk, baby food or medications.

Remove all footwear and outerwear.

Remove large electronics, including laptops, and place in a separate bin.

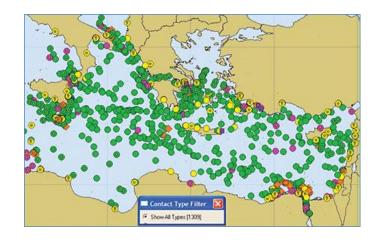
Questions? Ask a Transportation Security Officer.

Your safety is our priority www.tsa.gov

The unchanging nature of security (cont.)

Security is about

- value
 - sometimes a simple figure,
 - not always easy to calculate,
- locks
 - several kinds,
 - not always cheap,
 - seldom convenient,
 - imperfect.

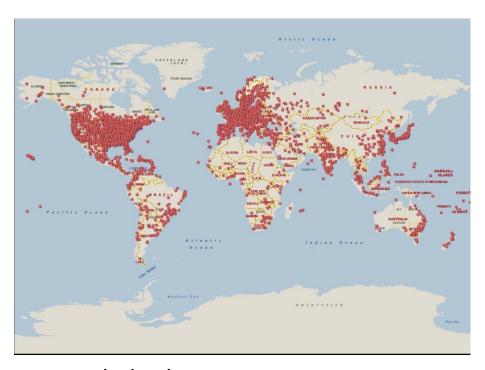


The unchanging nature of security (cont.)

Security is also about

- detecting attacks
 - not always possible,
 - not always possible in real time.

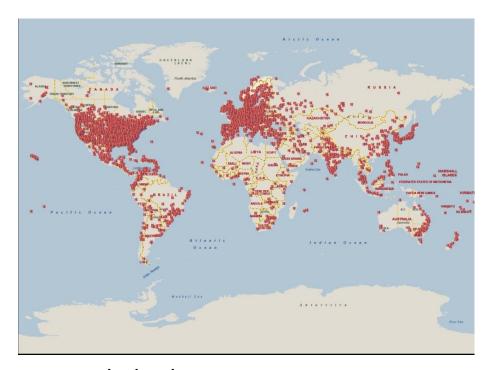
The unchanging nature of security (cont.)


Security is also about

- identifying attackers,
- catching them,
- punishing them.

Some specific characteristics

- Attacks can be launched from a distance.
 - Local laws and enforcement often do not suffice.
 - Global cooperation is slow and difficult.


Waledac botnet Source: microsoft.com

Some specific characteristics (cont.)

 Attacks are often automatic.

So they can easily be

- large-scale (against targets everywhere, in various domains),
- fast,
- inexpensive.

Waledac botnet Source: microsoft.com

Some specific characteristics (cont.)

- Attackers can be hard to identify.
- Even attacks can be hard to identify.
- Deterrence is often weak.

Some specific characteristics (cont.)

- Attackers can be hard to identify.
- Even attacks can be hard to identify.
- Deterrence is often weak.

Some of these characteristics are fairly intrinsic to computing. Others follow from important design choices.

Vulnerabilities

- Vulnerability: A flaw that can be exploited to breach security.
- Attack: A method of exploiting one or more vulnerabilities.

The dominant vulnerable systems

Some common system characteristics enable attacks (and aggravate other problems).

- Interaction
 - with an uncertain physical environment (e.g., for a laptop in the enemy's hands),
 - with an uncertain network environment (everything is connected),
 - with an uncertain software environment (e.g., with mobile code in Web pages).

The dominant vulnerable systems (cont.)

- Distributed administration.
- Diverse operators.
- Importance of time to market (and the market seldom pays for security).
- Open, shared infrastructures (e.g., the Internet).
- Building from commercial, off-the-shelf components.
- Automation, including automated infection!

The dominant vulnerable systems (cont.)

These characteristics are unlikely to disappear:

- They are the result of fundamental economic or technical trends.
- Many are generally desirable.

Reading

- Anderson's "Why information security is hard
 - An economic perspective"

http://www.cl.cam.ac.uk/~rja14/Papers/econ.pdf

Homework 1 (due October 4)

Exercise 1:

Describe an actual security failure in a computer system. State:

- a) the security property that is violated,
- b) the vulnerability that permits the violation,
- c) the attack that exploits the vulnerability,
- d) if possible, how to address the vulnerability.

You may use whatever sources you like (the Web, newspapers, the scientific literature), but please cite them. A paragraph may suffice; a page should.