Consider the following search problem, where S is the start state and G is the goal, given as a graph:

	S	B	C	D	E	G
h_{1}	0	0	0	0	0	0
h_{2}	4	2	1	2	0	0
h_{3}	4	3	3	2	0	0

1. Which heuristics are admissible (or write none)?
$\mathrm{H} 1, \mathrm{H} 2$ and H 3 are all admissible.
H1 is consistent. H3 is consistent: $f(n)$ along path to goal is non-decreasing. H 2 not consistent $\mathrm{b} / \mathrm{c} \mathrm{H}(\mathrm{S})=4$ but $\mathrm{g}(\mathrm{S}->\mathrm{C})+$ $h(C)=2$. Thus $f(n)$ decreases along path to goal.
${ }^{3 .}$ For heuristic h3, fill in the following table, showing the node expanded, the fringe, and the closed list, for A* graph search. Each item on the fringe should be a pair: path taken to n and $f(n)$.

2. For heuristic h3, what path will A^{*} graph search return?
