

Naive Bayes, Laplace Smoothing, and Perceptron Learning

Review Examples

Naive Bayes Model

Want to model the joint distribution of our features X and label Y:

$$P(Y, \mathbf{X}) = P(Y = y, X_1 = x_1, X_2 = x_2, \dots, X_d, = x_d)$$

- Naive Bayes independence assumption
 - All features are independent of each other, given Y

$$P(Y, \mathbf{X}) = P(Y = y) \prod_{i=1} P(X_i = x_i | Y = y)$$

- Choose the most likely Y $y^* = \arg\max_{y} P(Y = y) \prod_{i=1}^{a} P(X_i = x_i | Y = y)$
- Maximum Likelihood estimates for model parameters

$$P(X_i = x_i) = \frac{count(X_i = x_i)}{N}$$

where N=#examples in data

Laplace Smoothing

- What if you've never seen feature before?
 - Joint probability becomes 0
 - Just because an event has not happened before, does not mean that it won't ever happen.
 - Use Laplace smoothing for Max Likelihood estimates.
 "Pretend you've seen each variable k extra times"

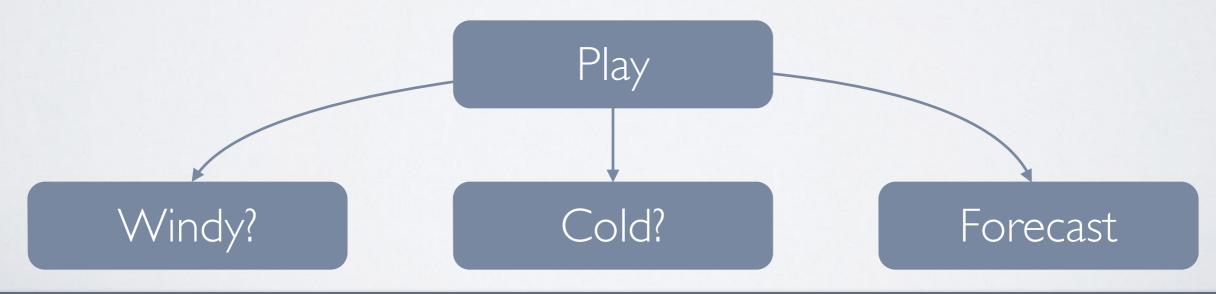
$$P_{Lap,k}(X_i = x_i) = \frac{count(X_i = x_i) + k}{N + k|X_i|} \qquad P_{Lap,k}(X_i = x_i|Y = y) = \frac{count(X_i = x_i, Y = y) + k}{count(Y = y) + k|X_i|}$$

• where $|X_i| = \#$ values X_i can take on (i.e. 2 for binary, and k is the Laplace smoothing factor

NB + Laplace Example

Day	Windy?	Cold?	Forecast	Play
1	Т	Т	Sunny	T
2	Т	Т	Cloudy	F
3	Т	F	Sunny	Т
4	F	Т	Rainy	F
5	F	F	Rainy	F
6	Т	F	Cloudy	Т
7	F	Т	Rainy	F
8	F	Т	Sunny	Т

Weather data and decision to play tennis from 8 different days



NB Estimates w/ Laplace Smoothing

Play	P(Play)
Т	$\frac{4+1}{8+2} = 0.5$
F	$\frac{4+1}{8+2} = 0.5$

Windy?	Play	P(Windy? Play)
Т	Т	$\frac{3+1}{4+2} = 0.67$
Т	F	$\frac{1+1}{4+2} = 0.33$
F	Т	$\frac{1+1}{4+2} = 0.33$
F	F	$\frac{3+1}{4+2} = 0.67$

Cold?	Play	P(Cold? Play)
Т	Т	$\frac{2+1}{4+2} = 0.5$
Т	F	$\frac{3+1}{4+2} = 0.67$
F	Т	$\frac{2+1}{4+2} = 0.5$
F	F	$\frac{1+1}{4+2} = 0.33$

Forecast	Play	P(Forecast Play)
Sunny	Т	$\frac{3+1}{4+3} = 0.57$
Sunny	F	$\frac{0+1}{4+3} = 0.14$
Cloudy	Т	$\frac{1+1}{4+3} = 0.29$
Cloudy	F	$\frac{1+1}{4+3} = 0.29$
Rainy	T _	$\frac{0+1}{4+3} = 0.14$
Rainy	F	$\frac{3+1}{4+3} = 0.57$

NB + Laplace Example

Using Laplace smoothed (k=1) NB estimates, what is the probability that they will Play, with Windy = T, Cold = F, and Forecast = Rainy?

```
P(Play=T)*P(Windy=T | Play=T) * P(Cold = F | Play=T) * P(Forecast=Rainy | Play=T)
= (0.5)(0.67)(0.5) (0.14)
```

= 0.02

Perceptron Learning

• Prediction function: $h(\mathbf{x}) = \text{sign}(\mathbf{w} \cdot \mathbf{x})$ $= \begin{cases} +1 & \mathbf{w} \cdot \mathbf{x} \geq 0 \\ -1 & \text{otherwise} \end{cases}$

- Weight Updates
 - Given:
 - Current weight vector at time t: w_t
 - Example at time t+1: (x, y*)
 - Update
 - If prediction correct $(h(\mathbf{x}) = y^*), \mathbf{w}_{t+1} = \mathbf{w}_t$
 - Else, $\mathbf{w}_{t+1} = \mathbf{w}_t + (\alpha y^*) \mathbf{x}$
 - α is learning rate (or step size)

Perceptron Example

• Given initial weight vector $\mathbf{w}_1 = \langle 1, 0, 2 \rangle$ What is the weight vector after seeing both of the following two examples (assume learning rate of 1)?

$$(\langle 1, 4, -1 \rangle, +1)$$

$$(\langle -1, 1, 0 \rangle, -1)$$

Perceptron Example

• Example 1: $(\langle 1, 4, -1 \rangle, +1)$

$$\mathbf{w}_1 = \langle 1, 0, 2 \rangle$$

$$h(\mathbf{x}_1) = \text{sign}(\mathbf{w}_1 \cdot \mathbf{x}_1)$$

= $\text{sign}(1(1) + 0(4) + 2(-1))$
= $\text{sign}(-1)$
= -1

- Incorrect $h(\mathbf{x}_1) = -1 \neq y_1^*$
- Update weights: $\mathbf{w}_2 = \mathbf{w}_1 + \alpha y_1^*(\mathbf{x}_1)$ $= \langle 1,0,2 \rangle + 1(1)\langle 1,4,-1 \rangle$ $= \langle 2,4,1 \rangle$

Perceptron Example

• Example 1: $(\langle -1, 1, 0 \rangle, -1)$

$$\mathbf{w}_2 = \langle 2, 4, 1 \rangle$$

$$h(\mathbf{x}_2) = \text{sign}(\mathbf{w}_2 \cdot \mathbf{x}_2)$$

= $\text{sign}(2(-1) + 4(1) + 1(0))$
= $\text{sign}(2)$
= $+1$

- Incorrect $h(\mathbf{x}_2) = +1 \neq y_2^*$
- Update weights: $\mathbf{w}_3 = \mathbf{w}_2 + \alpha y_2^*(\mathbf{x}_2)$ $= \langle 2,4,1 \rangle + 1(-1)\langle -1,1,0 \rangle$ $= \langle 3,3,1 \rangle$