
1

CMPS 101
Algorithms and Abstract Data Types
Winter 2006

Programming Assignment 3
Breadth First Search and Shortest Paths in Graphs

Due Monday February 13 10:00 pm

The purpose of this assignment is to implement a Graph ADT and associated algorithms in java. This
project will utilize your List ADT from programming assignment 1, so spend some time going over the
grader's comments from that assignment to make sure your List is working properly. Begin by reading
appendices B.4 and B.5 (p. 1080-1091) and sections 22.1 and 22.2 (p. 527–539) from the text. The
adjacency list representation of a graph consists of an array of lists. Each list corresponds to a vertex in
the graph and gives the neighbors of that vertex. For example, the graph

 1 2

 3 4 5 6
has adjacency list representation

1: 2 3
2: 1 4 5 6
3: 1 4
4: 2 3 5
5: 2 4 6
6: 2 5

You will create a Graph ADT which represents a graph as an array of Lists. Each vertex will be
associated with an integer label in the range 1 to n, where n is the number of vertices in the graph. Your
program will use this Graph ADT to find shortest paths (i.e. paths with the fewest edges) between pairs of
vertices. The client program which uses your Graph ADT will be called FindPath, and will take two
command line arguments (here % denotes the unix prompt):

% FindPath input-file output-file

In this project, as in pa1, you are to write a Makefile which places your .class files into an executable
jar file called FindPath, which makes it possible to leave out java on the command line. You can
easily alter the Makefile from pa1 to work in this project by replacing the line MAINCLASS = Shuffle
with MAINCLASS = FindPath. If you’d like to learn more about Makefiles, I again suggest you go to
my CMPS 12B/12M website from Spring 2005 (http://www.soe.ucsc.edu/classes/cmps012b/Spring05/)
and read Lab Assignment 1, as well as some of the Makefiles under the ‘examples’ link. See also Lab
Assignment 2 from that class to learn how to read command line arguments and perform input-output
operations to and from files in java. Also read the example FileIO.java on our website.

2

File Formats
The input file will be in two parts. The first part begins with a line consisting of a single integer n which
gives the number of vertices in the graph. Each subsequent line will represent a single edge in the graph
by a pair of distinct numbers in the range 1 to n, separated by a space. These numbers are the end vertices
of the corresponding edge. The first part of the input file defines the graph, and will be terminated by a
dummy line containing “0 0” . After these lines are read your program will print the adjacency list
representation of the graph to the output file. For instance, the lines below define the graph pictured
above, and cause the above adjacency list representation to be printed.

6
1 2
1 3
2 4
2 5
2 6
3 4
4 5
5 6
0 0

The second part of the input file will consist of a number of lines, each consisting of a pair of integers in
the range 1 to n, separated by a space. Each line specifies a pair of vertices in the graph; a starting point
(or source) and a destination. The second part of the input file will also be terminated by the dummy line
“0 0” . For each source-destination pair your program will do the following:

• Perform a Breadth First Search (BFS) on the given source to assign a parent vertex to each vertex in

the graph. The BFS algorithm will be discussed in class and is described in general terms below. The
pseudo-code for BFS can be found on page 532 of the text.

• Use the results of BFS to print out the distance from the source vertex to the destination vertex, then
use the parent pointers to print out a shortest path from source to destination. (See the algorithm
Print-Path on p. 538 of the text.)

Examples
Input File:
6
1 2
1 3
2 4
2 5
2 6
3 4
4 5
5 6
0 0
1 5
3 6
2 3
4 4
0 0

Output File:
1: 2 3
2: 1 4 5 6
3: 1 4
4: 2 3 5
5: 2 4 6
6: 2 5

The distance from 1 to 5 is 2
A shortest path from 1 to 5 is: 1 -> 2 -> 5

The distance from 3 to 6 is 3
A shortest path from 3 to 6 is: 3 -> 1 -> 2 -> 6

The distance from 2 to 3 is 2
A shortest path from 2 to 3 is: 2 -> 1 -> 3

The distance from 4 to 4 is 0
A shortest path from 4 to 4 is: 4

3

If there is no path from source to destination (which may happen if the graph is disconnected), then your
program should print a message to that effect. Note that there may be more than one shortest path. The
particular path discovered by BFS depends on the order in which it steps through the vertices in your
adjacency lists. This order is not specified in the pseudo-code for BFS. Thus your output may differ from
the above on the very same input. The following example represents a disconnected graph.

Input File:
7
1 4
1 5
4 5
2 3
2 6
3 7
6 7
0 0
2 7
3 6
1 7
0 0

Output File:
1: 4 5
2: 3 6
3: 2 7
4: 1 5
5: 1 4
6: 2 7
7: 3 6

The distance from 2 to 7 is 2
A shortest path from 2 to 7 is: 2 -> 3 -> 7

The distance from 3 to 6 is 2
A shortest path from 3 to 6 is: 3 -> 2 -> 6

The distance from 1 to 7 is infinity
No path from 1 to 7 exists

Your program’s operation can be broken down into two basic steps, corresponding to the two groups of
input data.

1. Read and store the graph and print out its adjacency list representation.

2. Enter a loop which processes the second part of the input. Each iteration of the loop should read in

one pair of vertices (source, destination), run BFS on the source vertex, print the distance to the
destination vertex, then find and print the resulting shortest path, if it exists, or print a message if no
path from source to destination exists.

What is Breadth First Search? Given a graph G and a vertex s, called the source vertex, BFS
systematically explores the edges of G to discover every vertex that is reachable from s. It computes the
distance from s to all such reachable vertices. It also produces a “breadth-first tree” with root s that
contains all reachable vertices. For any vertex v reachable from s, the unique path in the breadth-first tree
from s to v is a shortest path in G from s to v. Breadth First Search is so named because it expands the
frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier; i.e. the
algorithm discovers all vertices at distance k from s before discovering any vertices at distance k+1. To
keep track of its progress and to construct the breadth-first tree, BFS requires that each vertex v in G
possess the following attributes: a color color[v] which may be white, gray, or black; a distance d[v]
which is the distance from v to the source s; and a parent (or predecessor) p[v] which points to the parent
of v in the breadth-first tree. At any point during the execution of BFS, the white vertices are those which
are as yet undiscovered, black vertices are discovered, and the gray vertices form the frontier between
discovered and undiscovered vertices. BFS uses a FIFO queue to manage the set of gray vertices. You
will use your List ADT from pa1 to implement both this FIFO queue, and the adjacency lists which
represent the graph itself.

4

Your Graph ADT will be implemented in a file called Graph.java which will define a class called
Graph. Without going any further into the details of BFS, we can see a need for the following fields in
your Graph class:

• An array of Lists whose i th element contains the neighbors of vertex i.
• An array of Strings (or ints) whose i th element is the color (white, gray, black) of vertex i.
• An array of ints whose i th element is the parent of vertex i.
• An array of ints whose i th element is the distance from the source to vertex i.

You should also include fields which store the number of vertices (called the order of the graph), the
number of edges (called the size of the graph), and the vertex that was most recently used as a source for
BFS(). An acceptable design option would be to include a private inner class called Vertex in your Graph
class (much like the inner Node class in List.) The Vertex class could then encapsulate the color, parent,
and distance-from-source for each vertex. The last three arrays mentioned above would then be replaced
by a single Vertex array. It is recommended that all arrays be of length 1+n , where n is the number of
vertices in the graph, and that only indices 1 through n be used. This is so that array indices can be
identified with vertex labels.

Your Graph class is required to include the following methods:

// Constructor
Graph(int n) // creates a graph with n vertices and no edges

// Access functions
int getParent(int u) // Returns the parent of vertex u
int getDist(int u) // Returns the distance from source to u
int getLastSource() // Returns the most recent source for BFS()
String getPath(int s, int u) // Returns string representation of shortest
 // path from s to u
// Manipulation procedures
void addEdge(int u, int v) // Inserts new edge joining vertex u to vertex v
void BFS(int s) // Runs the BFS algorithm on source vertex s, and sets
 // distance and parent fields for each vertex in this graph

// Other methods
public String toString() // Returns adjacency list representation as a string
public static void main(String[] args) // Tests Graph ADT

Function getPath(s,u) is to be based on the algorithm Print-Path on p. 538 of the text, and will return
a string representation of a shortest s-u path that is consistent with the output file format described above.
Also getPath(s,u) has the precondition that the most recent call to BFS() will have been on source
vertex s. Function addEdge(u,v) will place u in the adjacency list of v, and v in the adjacency list of u.
Observe that any operation which takes a vertex label u as an input parameter is undefined if either 1<u
or nu > , and therefore all such operations have the precondition nu ≤≤1 .

Submit the files README, Makefile, List.java, Graph.java, and FindPath.java to the assignment name
pa3. Use peek or go to /afs/cats.ucsc.edu/class/cmps101-pt.w06/pa3/foobar (where
foobar is your username) to check that the submission was complete. As always start early and ask
questions.

